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Background: The eikonal approximation is commonly used to calculate heavy-ion elastic scattering. However,
the full evaluation has only been done (without the use of Monte Carlo techniques or additional approximations)
for α-α scattering.
Purpose: Develop, improve, and test the Monte Carlo eikonal method for elastic scattering over a wide range of
nuclei, energies, and angles.
Method: Monte Carlo evaluation is used to calculate heavy-ion elastic scattering for heavy nuclei including
the center-of-mass correction introduced in this paper and the Coulomb interaction in terms of a partial-wave
expansion. A technique for the efficient expansion of the Glauber amplitude in partial waves is developed.
Results: Angular distributions are presented for a number of nuclear pairs over a wide energy range using
nucleon-nucleon scattering parameters taken from phase-shift analyses and densities from independent sources.
We present the first calculations of the Glauber amplitude, without further approximation, and with realistic
densities for nuclei heavier than helium. These densities respect the center-of-mass constraints. The Coulomb
interaction is included in these calculations.
Conclusion: The center-of-mass and Coulomb corrections are essential. Angular distributions can be predicted
only up to certain critical angles which vary with the nuclear pairs and the energy, but we point out that all critical
angles correspond to a momentum transfer near 1 fm−1.
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I. INTRODUCTION

Monte Carlo (MC) methods are very valuable for perform-
ing multidimensional integrals, especially in quantum applica-
tions [1]. Recently, MC calculations of nuclear structure have
been performed, both for light nuclei [2,3] and with the nuclear
shell model [4]. In the present article we study the use of this
technique for the evaluation of multidimensional integrals in
the calculation of elastic scattering of heavy ions in the eikonal
approximation.

Monte Carlo techniques have been used for classical simu-
lations of nuclear reactions for many years (see, e.g., Ref. [5]
and references within). In that case (highly inelastic reactions),
the assumption that phase information is unimportant appears
to be valid, at least under certain conditions. This technique
can reveal properties of nuclear reactions for inelastic reactions
where many channels are open. Much less use has been made
of the MC method for elastic (or nearly elastic) reactions.
The reason for this might be that integrals performed with
Monte Carlo methods are deemed not to be suitable for
producing the highly oscillating amplitudes because of the
growth in errors that typically occurs in this case. As we shall
see shortly the evaluation of the Glauber elastic scattering
amplitude does not suffer from this problem. We now review
some of the literature on this problem.

A. Review

1. The use of the Glauber approximation for
nucleus-nucleus scattering

Before discussing the use of Monte Carlo methods for
eikonal calculations, we briefly mention the applications of

the Glauber scattering method to heavy-ion scattering more
generally.

Franco and Yin [6] and Yin et al. [7] were the first to evaluate
the full sum for the α-α scattering amplitude which appears
to be the largest case for which the full scattering amplitude
can be evaluated without further approximation and without
the use of Monte Carlo methods. Their method relies on the
use of a Gaussian approximation for the nuclear density. Abu-
Ibrahim et al. [8] evaluated the full Glauber multiple-scattering
amplitude for proton-6He scattering.

Al-Khalili, Thompson, and Tostevin [9] studied the
11Li halo structure using eikonal methods, Al-Khalili and
Tostevin [10] studied the relation of reaction cross section
to radii in the Glauber model, They also studied proton
helium halo nuclei [11] with Glauber scattering and in
Ref. [12], with Brooke, they treated 11B + 12C scattering with
non-eikonal corrections, modifying the trajectory at lower
energies. El-Gogary [13] treated cluster nuclei to evaluate the
Glauber formula. El-Gogary et al. [14] used an approximate
center-of-mass correction with a double-Gaussian form for
the density. Franco and Varma [15] treated the center-of-mass
effects to several orders and compared their results (primarily)
with total cross sections. El-Gogary et al. [16] did calculations
with an approximate center-of-mass correction and noted that
a simplified treatment of center-of-mass effects is problematic.
Horiuchi et al. [17] did a systematic study of reaction
cross sections using an improved expansion of the Glauber
formula. Zhong [18] calculated nucleus-nucleus scattering
in an α-cluster model with double-Gaussian forms for the
density. Charagi and Gupta [19] calculated 16O scattering
from several nuclei using the optical limit approximation
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(OLA). Abu-Ibrahim and Suzuki [20] used the OLA and a
phenomenological profile function to treat a large number
of nuclei. Abu-Ibraham et al. [21] calculated halo nuclei
scattering in the Glauber model. Abu-Ibrahim and Suzuki [22]
calculated nucleus-nucleus scattering at intermediate energies
using corrections to the OLA. Abu-Ibraham and Suzuki [23]
studied the profile function in heavy-ion scattering. Franco
and Nutt [24] treated short-range correlations in heavy-ion
scattering. Lenzi et al. [25,26] did a systematic study of
heavy-ion scattering in an OLA treatment of eikonal scattering.

2. Monte Carlo method

The Monte Carlo method has been used to evaluate the
eikonal amplitude on several occasions.

Zadorozhny, Uzhinsky, and Shmakov [27] were perhaps the
first to apply the eikonal Monte Carlo method but no details
are given. Merino, Novikov, and Shabelski [28] very recently
compared methods for radius extraction. One of the methods
is exact with Monte Carlo using the Metropolis algorithm [29].
Alkhazov and Lobodenko [30] calculated reaction cross
sections for halo nuclei using the Monte Carlo method.
Shmakov, Uzhinskii, and Zadorozhny [31] used Monte Carlo
techniques for the generation of inelastic diagrams. Krpic and
Shabelski [32] used the Metropolis algorithm to calculate
elastic and inelastic scattering from several nuclei using a
diagrammatic expansion. They neglected the center-of-mass
correction. Abu-Ibrahim and Suzuki [33] studied low-energy
6He-12C scattering using the optical eikonal potential evaluated
with a Monte Carlo technique.

Recently, Varga et al. [34] have combined the Monte Carlo
Green’s function method of solution of few-body problems
with Glauber theory to calculate α-α and halo-nuclei scattering
with no approximation beyond those inherent in basic eikonal
theory. No doubt this method should be used in any case in
which an exact calculation of the nuclear structure is available
but a much more common case is the scattering of heavier
nuclei where such a solution is still for the future. In this case
less ambitious approximations to the nuclear densities need
to be used. We later will show calculations comparing the
two methods and it would seem that the details (short-range
correlations) make little difference.

3. Center-of-mass correction

Of the above methods only that of Varga et al. [34] includes
the center-of-mass correction exactly. We will see that this
correction is very important, even for heavier nuclei.

Chauhan and Khan [35] treated 12C-12C elastic scattering
and found that center-of-mass effects play an important role.
They use an expansion of the profile function. Liu et al. [36]
calculated α scattering from several nuclei at 1.37 GeV. They
used an overall factor for the center-of-mass correction and
varied the phase of the nucleon-nucleon interaction.

Franco and Tekou [37] calculated the optical model version
up to fifth order. They included corrections for the center of
mass. Shukla [38] included the center-of-mass and Coulomb
effects to investigate reaction cross sections.

4. Coulomb correction

The basic Glauber method does not include the Coulomb
interaction, and a correction (often very important) must be
made for it after the calculation.

Londratyuk and Kopeliovich [39] argued that it would be
a good approximation to simply add the strong and Coulomb
phases. Glauber and Matthiae [40] and Czyz, Lesniak, and
Wolek [41] used mainly this approximation. The corrections
to this approximation were developed using various techniques
but most often were based on an optical potential. See
Ref. [42] for a recent treatment and references to the previous
work for the application to pion-nucleon scattering. Fäldt
and Pilkuhn [43] used a semiclassical method with the
Glauber model to correct for the Coulomb modification of the
trajectories. This technique has the advantage that an optical
model fit does not have to be made to the data to find the
correction factors. While they developed the method for pion-
nucleus scattering it is currently being applied to heavy-ion
elastic scattering. These two methods will be treated shortly
is some detail. Charagi and Gupta [44] treated low-energy
heavy-ion scattering in the Coulomb-modified optical limit in
two papers. Cha [45] introduced the deviation of the orbit in
the Glauber model from the nuclear potential as well as the
Coulomb potential. Charagi [46] commented on the Coulomb
correction to the Glauber model introduced by Cha [45], saying
that it failed to reproduce known reaction cross sections.
Alvi et al. [47] calculated α-nucleus scattering treating the
system by phenomenology (fitting to Ni) and showed the
Coulomb effect. Ahmad et al. [48] calculated 12C-12C elastic
scattering using the first two terms of an expansion in a
Coulomb-modified Glauber calculation.

B. Organization

The paper is organized as follows. In Sec. II we describe the
method, showing how to satisfy the center-of-mass condition
with Monte Carlo sampling. In particular, the technique for
determining an auxiliary density which results in a desired
center-of-mass single-particle density is developed. In this
section the method for making the Coulomb correction is also
presented.

In Sec. III the calculations are compared with data for 20
nuclear pairs and energies. The parameters for the auxiliary
functions are given.

In Sec. IV the results are summarized and conclusions are
drawn.

In the the appendices we present a method for the rapid
partial-wave projection of the Glauber amplitude and explain
how the variation calculation for the 4He density was done.

II. MONTE CARLO EIKONAL NUCLEUS-NUCLEUS
SCATTERING

A. The Glauber method

The eikonal theory of elastic scattering as expressed by
Glauber [49] and elaborated and studied by others [50–54]
is believed to be an accurate representation of scattering
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at high energies and forward angles. It can be applied to
calculate multiple scattering of a simple projectile on a nucleus
or collisions between nuclei, taking into account all of the
scatterings possible in this theory.

There are two major difficulties in applying this technique:
(1) as the atomic number of the scatterers increases the number
of scatterings becomes very large and (2) the representation
of the wave function (density) of the two scattering conglom-
erates raises the problem of the center of mass. The use of
Monte Carlo techniques is well suited to solve both of these
problems.

For the scattering of α particles on 4He (the largest case
treated to date for the full scattering series without using Monte
Carlo methods) there are 16 possible scatterings. By taking into
account all of the possible orders there are 216 − 1 = 65 535
terms in the multiple-scattering expansion. They are not all
independent however and, by dividing them into classes, the
calculation can be reduced [7] to 37 different types, each
characterized by a 4 × 4 matrix of zeros and ones to be
calculated and included with different weights. There remains
a 24-dimensional integral to be done for each term. By using
a Gaussian representation of the wave function of 4He, Franco
and Yin [6] and Yin et al. [7] were able to provide expressions
for these integrals and calculate the full sum.

In the present paper the Glauber expression for multiple
scattering is used directly as a product of factors without
expanding them into separate terms and the integral over
the many-body nuclear density is done with Monte Carlo
techniques, either with direct sampling or with the Metropolis
algorithm. Normally, one would be reluctant to use a Monte
Carlo method to obtain a rapidly oscillating function as the
amplitude for scattering, but in this case a Monte Carlo method
can be used to calculate the profile function (which is a smooth
function since it consists of a sum of analytic functions) and
then a standard numerical technique can be applied to perform
the last (one-dimensional) integral. The explicit development
of the method is given in Sec. II B.

The exact wave function for a nucleus at rest as a function
of the coordinates of the nucleons (if we ignore spin for
the present) would necessarily be translationally invariant in
the absence of external interaction. In order to calculate the
scattering between the two nuclei one would simply translate
the wave function to place the center of mass at the origin. Of
course, one rarely has the exact wave function available but
it is possible to introduce an approximate density which is,
indeed, translationally invariant where one can carry out this
procedure. For 4He the four-body problem can be solved using
Monte Carlo methods [2,3]. In the first instance a variational
wave function can be used to find the minimum in energy by
varying the parameters in the trial function. The trial wave
function should be translationally invariant. The square of the
wave function (the density, which is all that is needed for the
Glauber scattering calculation) is represented by a collection
of Metropolis walkers.

What has more commonly been done in practice is to
start with an approximation to the density, which is obtained
empirically from a probe which is sensitive to the single-
particle density relative to the center of mass, most often
electron scattering. One then applies some transformation to

ensure that the center of mass of the nucleus is at the origin.
Franco and Yin [6] gave a prescription and showed that,
using this formula, one could calculate with the fixed-well
assumption (for a harmonic oscillator potential) and then
apply an exact correction. To illustrate the importance of this
correction we point out that the factor by which the amplitude is
multiplied for α-α scattering at −t = 3 (GeV/c)2 is 3.6 × 107.
Clearly, a careful treatment of the center-of-mass correlation
is important. This problem is discussed at length in Sec. II E
and the MC method is applied to the evaluation of the Glauber
amplitude for α-α scattering in Sec. III A.

It is important to define what one means by a measure of the
center-of-mass correction; that is, we need to define the “zero
effect” condition. It is common in both the double-folding
model and the OLA to take the density from electron scattering
(corrected for the charge distribution of the proton) to form
a product density. Often the center-of-mass requirement
is ignored in these calculations (see however Franco and
Varma [15] for a first-order treatment). We will take this
product density as our “no effect” model and compare the
scattering from this case with scattering from a density with
the proper center-of-mass properties. We will see that ignoring
the center-of-mass effect, even for fairly heavy nuclei, is ill
advised.

B. Basic technique

The expressions for the Glauber amplitude are available
many places; see, e.g., Franco and Yin [6].

The nuclear profile function, G(b), is the central function
in the theory and is given by

G(b) =
∫ A∏

i=1

dsi

B∏
j=1

ds′
jφ

2({s})ψ2({s′})G(b, {s}, {s′}), (1)

In Eq. (1) the notation {s} represents the collection of all of
the coordinates of the projectile or target, φ({s}) denotes the
projectile ground-state wave function, and ψ({s}) denotes the
target ground-state wave function:

G(b, {s}, {s′}) ≡ 1 −
A∏

i=1

B∏
j=1

[1 − �ij (b + si − sj )]. (2)

The functions G(b, {s}, {s′}) and �ij (b + si − sj ) are functions
of the two-dimensional vector b (in the plane perpendicular to
the beam direction) and of only the components of the vectors
{s} and {s′} perpendicular to the beam. Hence the components
of these last vectors could be freely integrated over in the
density functions to provide a projected nuclear density for the
target and projectile, often called the thickness functions. For
cases in which the integrals are being calculated analytically,
this is commonly done, leading to a modified integral in only
two dimensions for each nucleon in Eq. (1).

For the Monte Carlo method a large number of realizations
of the nuclei are created and then the integral in Eq. (1)
is evaluated by averaging the function G(b, {s}, {s′}) over
this ensemble of nuclei. Since nuclei are inherently three-
dimensional objects, the models used to generate this ensemble
create three-dimensional distributions. In the remainder of the
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paper we discuss techniques for generating such ensembles.
To take the projection of the nuclear densities would entail
more work, not less, since we do not know how to directly
generate ensembles of projected nuclei. Hence we compute
what would be the projection integral in the same set of
Monte Carlo evaluations as used for the two-dimensional
integration.

The scattering amplitude is given by the two-dimensional
Fourier transform of G(b). If there is no direction defined
for the nuclear wave function (i.e., we consider only nuclei
with ground-state spin zero), there is no dependence on
the azimuthal angle of scattering, i.e., G(b) = G(b), and hence
the integral over this angle can be done trivially so that the
integral of the profile function is only over the magnitude
of b,

F (q) = ik

2π

∫
d2beiq·bG(b) = ik

∫ ∞

0
bdbJ0(qb)G(b). (3)

In Eq. (2) �ij (b + si − sj ) denotes the two-dimensional
Fourier transform of the elementary nucleon-nucleon ampli-
tude f (q), i.e.,

�ij (b) = 1

2πik

∫
d2qe−iq·bfij (q) = ge−b2/2a,

(4)
g = σ (1 − iρ)/(4πa),

where the nucleon-nucleon amplitude has been approximated
by

fij (q) = ikσ (1 − iρ)

4π
e− 1

2 aq2
, a = aR + iaI , (5)

where σ is the nucleon-nucleon total cross section and ρ

is the ratio of the real to imaginary part of the forward
amplitude. For a discussion of the imaginary part of a, aI see
Ref. [55].

We have assumed a Gaussian approximation as a function
of momentum transfer for the nucleon-nucleon amplitude. The
scattering parameters needed can be extracted from nucleon-
nucleon (NN) scattering data [56] and such a set is shown
in Fig. 1 as a function of energy (see Refs [57] and [58] for
tables of other determinations of these amplitudes). Of course,
one might expect that these amplitudes may well be modified
in the nuclear medium (see, e.g., Refs. [59–61]) but it may
be useful to make calculations with free values to see how
large the corrections are likely to be. We take the free values
used in the calculations in this paper from the partial-wave
parametrization of Arndt et al. [56]. A plot of the free values
used is shown in Fig. 1. For more details on the representation
of the amplitudes, see the following section.

C. Nucleon-nucleon amplitude

For NN free-space scattering there are essentially four
incoherent beams in the free (and unpolarized) case according
to the four possible orientations of the spins of the two colliding
nucleons. The imaginary parts of the forward elastic scattering
amplitudes give the total cross section for each of these beams.
The interference with the Coulomb interaction in the forward

FIG. 1. Nucleon-nucleon parameters taken from the work of
Arndt et al. [56]. Also shown for the average NN cross section is
the recent parametrization of Ref. [61] (dashed line).

direction can give the real parts of these amplitudes averaged
with equal weighting.

This combined amplitude is given by

A = 1
4 [M++++ + M−−−− + M+−+− + M−+−+]

= 1
2 [M++++ + M+−+−] = 1

2 [Ma + Mo], (6)

with all amplitudes weighted equally. Here the amplitudes are
labeled as “aligned” (subscript “a”) and “opposed” (subscript
“o”). In the case of nucleus-nucleus scattering the amplitude
would still consist of these two amplitudes if spin flip is
neglected. Single spin flip amplitudes are very small in the
forward direction, so they are often neglected. Since we are
considering the scattering of two spin-zero nuclei, a single
spin flip is not possible and this small amplitude must enter
twice in the calculation so that some other (correlated) nucleon
can have its spin flipped in the opposite sense such that the
total projection is again zero. These two constraints lead
one to consider that the neglect of spin flip is a reasonable
approximation.

However, even in the forward direction there is an amplitude
M+−−+ which does not vanish at zero degrees so a priori
might be expected to contribute. However, we see that this
amplitude must flip the spin of one nucleon in each of the
nuclei. The resulting spin projection must be reduced to zero
again by a second spin flip in each nucleus. This amplitude
arises primarily from one-pion exchange. The average over
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spin (and isospin) removes this amplitude from consideration,
at least in first order, and we neglect it and consider only the
amplitude coming from Eq. (6).

The total cross sections which correspond to the two terms
in Eq. (6) have been studied experimentally and their difference
shows a rapid variation [62] sometimes attributed to a dibaryon
(see, e.g., [63]). If some mechanism could be found to change
the equal weighting of the aligned and opposite amplitudes in
Eq. (6) then a change in the energy dependence of the nucleon
parameters could be expected. However, the spin projections
come from two different nuclei so it is difficult to see how
such a correlation might come about. The amplitude in Eq. (6)
does not correspond to any directly measurable differential
cross section as a function of angle. Any attempt to extract the
parameters directly from a measured differential cross section
will lead to parameters not suitable for calculations using the
Glauber expressions; the amplitude is a theoretical construct.
Each of the terms in Eq. (6) can be well represented in the
approximate form of Eq. (5) (see Fig. 2).

Listed in Table I are values of the parameters used in
the calculations presented in this paper. Also given are the
maximum values of the center-of-mass angle and −t .

FIG. 2. Angular distribution of the nucleon-nucleon amplitudes
taken from the phase-shift analysis of Arndt et al. [56]. Also shown is
the Gaussian approximation (dashed line) as used in Eq. (5) with
parameters chosen to match the value and slope in the forward
direction. The “aligned” amplitudes are shown in the upper panels
and the “opposite” amplitudes in the lower panels.

D. Nuclear profile function

Another advantage of the method is that the nuclear profile
function (NPF), G(b), is available for study (see Fig. 3). This
function contains all of the information for the scattering
since it is, essentially, the Hankel transform of the amplitude
(and since we are dealing only with spin-zero on spin-zero
scattering there is only one amplitude). Clearly, the NPF
is strongly dependent on the single-particle density and the
general shape reflects this.

It is natural to ask about other characteristics of the
nucleon distribution, such as short-, medium-, and long-
range correlations. They must manifest themselves in some
manner but how? One can get some feeling for this effect
by considering the “anatomy” of the calculation. We see in
Eq. (2) that the NPF is expressed as one minus a product.
When this product goes to zero the NPF becomes unity, which
corresponds to total absorption. When the impact parameter
b is large, only one factor (at most) in the product will differ
from unity and only the single-particle density matters. As
b becomes smaller, more factors differ from one and the
product becomes smaller in magnitude. Since the real part
of the coefficient of the exponential in the function �, g, is less
than unity over most of the range of energies treated here each
factor has modulus less than one. The imaginary part, aI , of a

is smaller than the real part, aR , and so plays a minor role in
this qualitative discussion and we treat a as real for that reason.

Just how small each factor is depends on the distance
|si − sj |; if it is small then the factor is also small. This
difference does not depend on nucleon-nucleon correlations
since si and sj are in different nuclei. However, since real g is
of the order of 0.25–0.8, no one factor can drive the product to
zero—it will take a combination of several factors. This will
require that several nucleons be located close together and the
probability of this occurring is sensitive to the correlations.
Just how close together the nucleons have to be (in the
two-dimensional space) is governed by aR . Typical values
of

√
aR are in the range of 1 fm. Repulsive correlations

pushing the nucleons outside of this range would lead to
greater transparency. Correlations shorter than this range can
be expected to have little effect.

At the same time that the modulus of the product is
decreasing it is developing a phase. Under the conditions just
outlined, the phase of each factor has the same sign so the
phase grows monotonically as each factor is included. Thus
the behavior of the NPF depends on the relative sizes of the
phase and the modulus of the product. If the phase reaches π

while the modulus of the product is still sizable then the NPF
will increase before becoming unity, as seen in Fig. 3 with
the CMC included. Further changes leading to the average
modulus becoming larger (with only modification of the phase)
could even lead to oscillations.

In an effort to get a feeling for the effective number factors
(and thus the number of times that the correction is being
applied) we calculated the profile function for values of b in
the crucial range of the surface as a function of the number
of factors (see Fig. 4). As we progress from large to small
values of b more factors are important. For large b the profile
function can be expressed as a sum of first-order terms and

024604-5



W. R. GIBBS AND J. P. DEDONDER PHYSICAL REVIEW C 86, 024604 (2012)

TABLE I. Parameters used in the calculations based on the nucleon-nucleon partial-wave amplitude analysis of Ref. [56].

Case TLab (GeV) [Ref.] TLab/A (MeV) σ (mb) ρ aR aI θ c.m.
Max (deg) −tMax [(GeV/c)2]

6He-12C 0.230 [64] 38.3 163.5 0.680 14.6 − 8.06 20 0.139
6He-12C 0.250 [65] 41.6 159.7 0.737 16.0 − 7.91 10 0.038
α-16O 0.240 [66] 60 103.2 0.953 20.8 − 6.65 12 0.051
16O-16O 1.120 [67,68] 70 86.4 1.049 23.0 − 5.87 22 1.224
α-208Pb 0.288 [69] 72 83.0 1.069 29.2 − 4.85 33 0.700
α-208Pb 0.340 [69] 85 65.0 1.169 25.7 − 4.85 30 0.686
12C-12C 1.016 [70] 85 65.0 1.169 25.7 − 4.85 18 0.560
16O-40Ca 1.503 [71] 94 60.5 1.185 26.3 − 4.56 6 0.254
16O-12C 1.503 [71] 94 60.5 1.185 26.3 − 4.56 15 0.565
α-16O 0.400 [72] 100 57.5 1.196 26.7 − 4.36 37 0.800
α-208Pb 0.480 [69] 120 47.4 1.233 28.1 − 3.70 20 0.443
12C-12C 1.449 [73] 120 47.4 1.233 28.1 − 3.70 12 0.356
12C-12C 1.620 [74] 135 43.1 1.212 28.6 − 3.84 12 0.398
α-208Pb 0.699 [69] 175 36.2 1.095 29.2 − 5.05 12 0.240
12C-12C 2.400 [73] 200 34.3 0.991 28.7 − 6.42 10 0.410
α-40Ca 1.37 [75] 343 29.7 0.435 20.5 − 12.6 12 0.414
α-12C 1.37 [76] 343 29.7 0.435 20.6 − 12.6 21 0.799
α-α 2.554 [77] 638 38.9 0.010 10.5 − 8.10 23 0.765
α-α 4.20 [78] 1050 42.5 − 0.303 8.06 − 3.25 13 0.400
α-12C 4.20 [79,80] 1050 42.5 − 0.303 8.06 − 3.25 11 0.716

the dependence on the number of factors becomes linear. Of
course, in this limit there are no CMC since only first order in
the density is involved.

E. Center-of-mass treatment

The scattering between two composite objects is treated
in terms of the coordinate connecting their centers of mass
so that the particles making up the nuclei must be centered
appropriately. This is the problem of center of mass which
must be appropriately addressed. The Monte Carlo method
can provide the solution. Consider two methods of treating the
c.m. motion. Each one provides a density in which the sum of
all of the position vectors is zero but they are not (in general)
equivalent. The first method relies on Gaussian densities and
provides a correction factor to a scattering calculation made
with an auxiliary density centered about a fixed origin.

Franco and Yin [6] used this first method, developed by
Czyz and Maximon [81] (see also Ref. [82]), which works only
when using Gaussian densities because the center of mass can
be expressed as a factor in this case. To implement this method,
a model is made in which a product of densities is assumed to
be invariant under translation and using the algebraic identity

e−Aα2R2
e−α2(r1−R)2

e−α2(r2−R)2
e−α2(r3−R)2

. . .

= e−α2r2
1 e−α2r2

2 e−α2r2
3 · · · = ρa(r1)ρa(r2)ρa(r3) . . . , (7)

where R ≡ (
∑

ri)/A is the center-of-mass coordinate and
ρa(r) is an auxiliary density with reference to a fixed origin.
The expectation value in Eq. (1) can be taken over the
auxiliary density (a calculation which is much easier) and
the expectation value of the translationally invariant density
obtained by dividing by the expectation value of the first factor
on the left.

For the density used by Franco and Yin with ρa(si) ≡
φ2(si),

|χ ({s})|2 = Nδ

(
1

A

∑
j

sj

) A∏
i=1

ρa(si)

= N

(2π )3

∫
dQ ei

∑
j Q·sj /A

A∏
i=1

ρa(si), (8)

where N is a normalization factor. The single-particle density
relative to the center of mass, such as that obtained from
electron scattering (see Refs. [83–86] for corrections), for
example, will be obtained, by integrating over all but one of
the coordinates, as

ρs(s1) ≡
∫

ds2ds3 . . . |χ ({s})|2

= N

(2π )3

∫
dQ ei

Q·s1
A ρa(s1)ρA−1(Q/A). (9)

The Fourier transform of the single-particle density (in the
c.m.) will be

ρs(q) ≡
∫

ds1 eiq·s1ρs(s1)

= N

(2π )3

∫
dQ ρa(q + Q/A)ρA−1

a (Q/A)

= A3N

(2π )3

∫
dQ ρa(q + Q)ρA−1

a (Q). (10)

Normalizing, we have

ρs(q) =
∫

dQ ρa(q + Q)ρA−1
a (Q)∫

dQ ρA
a (Q)

. (11)
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FIG. 3. The nuclear profile function for 12C-12C scattering with
(solid) and without (dashed) center-of-mass correlations (CMC). The
details of the calculation are discussed in Sec. III F.

For a Gaussian form in momentum space as Franco and Yin [6]
assumed,

ρa(p) = e−p2/4α2
, (12)

we can perform the integral on Q to find

ρs(q) = e
− (A−1)q2

4Aα2 , (13)

so that the auxiliary density has the same (Gaussian) form
as the single-particle density but with a larger rms radius:
r2
a = Ar2

s /(A − 1).
We can also calculate the transform of the full density

[Eq. (8)] in the general case as

ρs({q}) ≡
∫

ds1ds2 . . . dsA ei(q1·s1+q2·s2···+qA·sA)|χ ({s})|2

= N

(2π )3

∫
dQ

A∏
i=1

ρa(qi + Q/A)

=
∫

dQ
∏A

i=1 ρa(qi + Q)∫
dQ ρA

a (Q)
. (14)

Evaluating with a Gaussian form we have

ρs({q}) = e−[
∑

q2
i − 1

A
(
∑

qi )2]/4α2
. (15)

FIG. 4. One minus the accumulated nuclear profile function as
a function of the number of factors in the product in Eq. (2) for
40Ca-40Ca scattering. The labels on the curves are the values of b in
femtometers.

In the Monte Carlo method the algorithm leading to a density
in the center-of-mass frame is to first select the A coordinates,
u, according to A independent auxiliary densities, ηa(u),
(assumed to be isotropic). The functions ηa(u) have chosen
forms and the principal aim of this section is to develop a
method to pick the functions ηa(u) such that they result in a
specified single-particle density relative to the center of mass.
The coordinates to be used in the integration are obtained from
the set of vectors ui by

si = ui − 1

A

∑
uj , (16)

which means that the Monte Carlo densities that result from
this transformation produce (by construction) functions whose
vector coordinates sum to zero.

In summary, the procedure is to choose (isotropic) distri-
butions according to density ηa(u) for all of the nucleons in
a given nuclear configuration. The center-of-mass vector is
then computed and subtracted from each of the ui to give the
coordinates to be used in the evaluation of G(b, {s}, {s′}).

In order to choose an auxiliary function that gives a
particular center-of-mass density it is very useful to have
explicit expressions for the two functions that we need to
connect. The Fourier transform of the single-particle density
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relative to the center of mass will be given by

ηs(q) =
∫

du1du2 . . . duA

× eiq·(u1− 1
A

∑
uj )ηa(u1)ηa(u2) . . . ηa(uA)

= ηa

(
A − 1

A
q

)
ηA−1

a

( q

A

)
. (17)

To compare with the results of the previous section we can
assume a Gaussian form again, i.e., ηa(p) = e−p2/4β2

, to get

ηs(q) = e
− q2

4β2
(A−1)2

A2 e
− q2

4β2
A−1
A2 = e

− A−1
A

q2

4β2 , (18)

which (by taking α = β) gives the same result as the method
used by Franco and Yin. For the full Fourier transform we have

ηs({q}) =
∫

du1du2 . . . duA

× e
i
∑A

i=1 qi ·
(

ui− 1
A

∑A
j=1 uj

)
ηa(u1)ηa(u2) . . . ηa(uA)

=
∫

du1du2 . . . duA

× e
i
∑A

i=1 ui ·
(

qi− 1
A

∑A
j=1 qj

)
ηa(u1)ηa(u2) . . . ηa(uA)

=
A∏

i=1

ηa

⎛
⎝qi − 1

A

A∑
j=1

qj

⎞
⎠ . (19)

If we take the Gaussian form again we have

ηs({q}) = e
− ∑A

i=1

(
qi− 1

A

∑A
j=1 qj

)2
/4β2

= e
−
[∑A

i=1 q2
i − 1

A
(
∑A

i=1 qi )2
]
/4β2

. (20)

which, with α = β again, is the same result as found
previously. So we see that for Gaussian functions the two
methods give identical results.

Equation (17) is general if all nucleons have the same
density. For the case where the number of protons and neutrons
is not equal and the neutrons and protons have different
density shapes a different form holds. If ζa(q) is the Fourier
transform of the proton auxiliary function and ζs(q) is the
Fourier transform of the proton single particle in the center of
mass [and ηa(q) and ηs(a) are the corresponding functions for
the neutrons] then the functions will be related by

ζs(q) = ζa

(
A − 1

A
q

)
ζZ−1
a

(
q

A

)
ηN

a

(
q

A

)
, (21)

ηs(q) = ηa

(
A − 1

A
q

)
ηN−1

a

(
q

A

)
ζZ
a

(
q

A

)
. (22)

If the auxiliary functions for the protons and neutrons have
rms radii Rpa and Rna , respectively, the corresponding radii
for the center-of-mass densities will be related by

R2
pc = {

[(A − 1)2 + (Z − 1)]R2
pa + NR2

na

}
/A2, (23)

R2
nc = {

[(A − 1)2 + (N − 1)]R2
na + ZR2

pa

}
/A2. (24)

For the case of a given form chosen for the single-particle
density, we need to find an auxiliary density which satisfies

Eq. (17) or

ηa(q) ηA−1
a

(
q

A − 1

)
= ηs

(
Aq

A − 1

)
. (25)

One can find a solution to this equation for small q, by first
expanding both ηs(q) (assumed to be known) and ηa(q) for
small q:

ηa(q) = 1 − μq2 . . . , ηs(q) = 1 − νq2 . . . . (26)

Then we have to first order in q2

(1 − μq2)[1 − μq2/(A − 1)2](A−1)

= (1 − μq2)[1 − μq2/(A − 1)]

= 1 − μq2 A

A − 1
= 1 − νq2 A2

(A − 1)2
, (27)

so that

μ = νA

A − 1
, (28)

and the same relation holds between the rms radii in the general
(Monte Carlo) case as for the Gaussian case.

We could (in principle) solve Eq. (25) numerically on a
mesh by constructing the first few elements on the mesh (three
of them) with the expansion. Then we can continue to calculate
the remaining values on the mesh by evaluating the ith point
on the mesh with

ηa(qi) = ηs

(
Aqi

A − 1

)
/ηA−1

a

(
qi

A − 1

)
, (29)

where the value of ηa in the denominator is obtained by
interpolation from previously calculated values on the mesh.
These values would always be available since the argument is
much smaller. This process works well for a Gaussian form
but is not stable when there is a zero in the form factor.

In practice, we choose parametrized forms for ηa(q) and
vary the parameters using Eq. (17) to fit an (assumed known)
function, ηs(q). For convenience we choose functions to
represent ηa(r) which can be readily sampled directly (see,
e.g., Ref. [87]).

The density with the center-of-mass effect is distinguished
from the product density with the same single-particle radial
distribution by the fact that the distances between members of
any pair of particles is greater than it would be for a simple
product density. We can see this as follows.

For a single-particle density with independent particles the
average of the square of the distance between particles is given
by

〈(r1 − r2)2〉 = 2〈r2〉 − 2〈r1 · r2〉 = 2〈r2〉 (30)

since the average over the independent particles gives a cross
term of zero. If we include a center-of-mass condition

A∑
i=1

ri = 0 (31)
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then, replacing r2 in the cross product gives

〈r1 · r2〉 = −〈r2〉 −
A∑

i=3

〈r1 · ri〉

= −〈r2〉 − (A − 2)〈r1 · r2〉 = − 〈r2〉
A − 1

. (32)

Thus, with center-of-mass correlations

〈(r1 − r2)2〉 = 2〈r2〉 A

A − 1
. (33)

For individual nuclear configurations we have∑
i �=j (ri − rj )2

A(A − 1)
= 2A

A − 1

∑
k r2

k

A
. (34)

Thus we see that there is a correlation among pair of nucleons
arising from the c.m. corrections. This condition is realized
explicitly in the present method since the auxiliary density has
a squared radius which is a factor of A/(A − 1) larger than
the single-particle density in the center of mass and, since the
positions are independently chosen, Eq. (30) holds with the
larger square radius. Since the displacement of the density
to satisfy the center-of-mass condition does not change the
distance between nucleons, this larger interparticle distance is
preserved while the distance of individual particles from the
center of the nucleus is reduced.

With the procedure used here there is an initial density
constructed in a Monte Carlo sense and then each realization
is shifted by an amount to put the center of mass at the origin.
In a spherical density with each particle thrown independently
of the others, the rms distance between any pair of particles is√

2 times the rms radius of the nucleus. Since the shift of the
entire nucleus does not change the distance between pairs and
the initial (auxiliary) density has a larger extent than the final
density relative to the c.m. then the relative distance between
pairs in the final density will be larger than the one which would
be associated with a density constructed from independently
thrown nucleons with the shape of the center-of-mass density.
As the mass number A goes up this effect will become smaller
with the relationship for the interparticle radius squared being
R2

CMC = A/(A − 1) × R2
No CMC. Hence one might assume that

the center-of-mass effect goes to zero as A increases.
While it is true that the basic effect is becoming smaller,

the calculation of a given observable may not be. In the
case that we are treating, of multiple scattering, the number
of scatterings increases with A. Each scattering among the
nucleons depends on the relative distance between nucleons
and, while this distance is approaching that which would come
from an independent particle density, the smaller effect is
applied more times (i.e., there are more scatterings) so it is
a numerical question as to whether the effect decreases or
perhaps even increases with A. If the fundamental scattering
interaction is weak so that only the low-order scatterings are
important then one can expect that the effect decreases with
A. However, for the strong NN interaction it is possible that
the importance of the CMC to multiple scattering does not
decrease with A at all. Consider, for instance, the case of
the scattering of a nucleus with A nucleons on its twin. In
this case the number of scatterings goes as A2 although there

will be other factors which will limit the effective number of
scatterings.

F. Sampling considerations

The multidimensional integral in Eq. (1) is to be done using
a Monte Carlo method. The function to be averaged over,
[G(b)], is complex but, as we shall see, the densities can
be easily sampled. Ordinarily Monte Carlo methods are not
very accurate if one takes a Fourier transform over a binned
distribution (which we are not doing here). The integral in
Eq. (3) is done by a standard quadrature method.

It is convenient to sample from pools of configurations
of nuclei. For a variational or Monte Carlo Green’s function
method for generating the nuclei this is the natural way to
carry out the sampling process, but even if direct sampling is
being done it is a useful method. One creates Nt configurations
for the target and Np for the projectile. Then M samples are
taken in pairs, one from each pool, of all of the nucleons for a
nucleus from the same configuration. If M is large enough the
pairs will be identical for some cases. However, the number
of identical pairs will be M2/NtNp for a fraction of repeated
pairs of M/NtNp. Thus for a typical case of 1 million entries
in each pool and 10 million Monte Carlo samples the pairs
repeat only 107/1012 = 1/105 fraction of the time.

This technique is also useful for calculating the effect
of no CMC. One can simply take the coordinates for each
nucleon from a different configuration. This guarantees that
the same single-particle center-of-mass density is used but the
coordinates in each nuclear configuration are uncorrelated.

The auxiliary functions are chosen with a form which can
be easily sampled. A common form used in many of the cases
which follow is

r2ρ(r) =
∑

gnr
n bn+1

n e−bnr

n!
. (35)

Often only two terms in the sum are needed to get an adequate
representation. To sample this function one term is selected
with probability gn and then the corresponding normalized
probability function is sampled. The functions in this case can
be sampled easily by choosing r by

r = − ln
∏n+1

i=1 Xi

b
, (36)

where the sets Xi comprise independent random numbers
uniformly distributed between 0 and 1.

G. Coulomb correction

If the full amplitude with the Coulomb interaction is written
as the divergent series

f (θ ) = 1

2ik

∞∑
�=0

(2� + 1)(S� − 1)P�(cos θ ) (37)
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then we can add and subtract the (divergent) series represen-
tation of the Rutherford amplitude

fR(θ ) = 1

2ik

∞∑
�=0

(2� + 1)(e2iσ� − 1)P�(cos θ ) (38)

to find a convergent series

f (θ ) = fR(θ ) + 1

2ik

∞∑
�=0

(2� + 1)(S� − e2iσ� )P�(cos θ ). (39)

The total amplitude is now

f (θ )=fR(θ ) + 1

2ik

∞∑
�=0

(2� + 1)e2iσ� (S�e
−2iσ� −1)P�(cos θ ),

(40)

where fR(θ ) is the Rutherford amplitude and the σ� are the
Coulomb phase shifts. The amplitude without the Coulomb
interaction is written as

f0(θ ) = 1

2ik

∞∑
�=0

(2� + 1)
(
S0

� − 1
)
P�(θ ), (41)

and we can write the factor between the two S-matrix elements
as

C� ≡ S�e
−2iσ�/S0

� (42)

(see Ref. [42] and references therein). In this method the two
S-matrix elements on the right-hand side are taken from an
optical model fit with and without the Coulomb interaction.
This correction is called the “inner” Coulomb correction;
the “outer” correction corresponds to multiplication by the
Coulomb S matrix. The procedure is then to calculate C� from
Eq. (42) using for S� the result of an optical model fit with the
full Coulomb interaction and for S0

� the value from the same
optical model without the Coulomb interaction. The quantity
C� is then used as a correction factor with S0

� coming from a
partial-wave expansion of the Glauber amplitude and S� being
the Coulomb-corrected result. That is,

S� = C�e
2iσ�S0

� , (43)

where the S-matrix element on the left is the Coulomb-
corrected Glauber result and S0

� is the result from a Glauber
model calculation (without any Coulomb interaction). The
amplitude can then be calculated using Eq. (39) or (40).

Another way of getting the inner correction was given by
Fäldt and Pilkuhn [43] as a shift in the value used in the integral
over the profile function,

F (q) = ik

∫ ∞

0
bdbJ0(qb)G(b′), (44)

where

b′ =
√

b2 + η2/k2 + η/k, (45)

Here η = ZZ′αc/v is the Coulomb parameter and k is the
center-of-mass momentum. The Coulomb-corrected S-matrix
element will be given by

S� = SFP
� e2iσ� , (46)

where SFP
� is the matrix element coming from the expansion

of Eq. (44) in partial waves. For a similar method of treating
the Coulomb correction see Vitturi and Zardi [88].

In order to carry out either of these corrections it is
necessary to have the amplitude expressed as a partial-wave
sum. Since the eikonal calculation gives the amplitude as a
function of momentum transfer or angle the projection of the
amplitude onto partial waves is needed. The projection was
not made directly. By using Eq. (3) we can write

S� − 1 = −k2
∫ 1

−1
dx

∫ ∞

0
bdbP�(x)J0[q(x)b]G(b). (47)

The integral over x of P�(x)J0[q(x)b] can be carried out
first very efficiently (see Appendix A). The result was then
integrated over b with b G(b). As a check the amplitude was
then reconstructed from the S-matrix elements and compared
with the original calculation. With the method given in
Appendix A agreement was found within 0.1%.

Figure 5 compares the two methods of making the inner
correction for 16O + 16O (see Sec. III H for details). It displays
the ratio of the fully corrected amplitude to that with only the
outer correction. It is remarkable how well the two methods
agree. The disagreement beyond 16 degrees is due mainly to
the fact that the optical model is calculated with a finite charge
distribution and the method of Fäldt and Pilkuhn assumes a
point charge distribution. For other treatments of the Coulomb
correction, see Refs [89] and [90].

III. APPLICATION OF THE MONTE CARLO METHOD:
RESULTS

In this section we carry out calculations using the full
Glauber formalism with values of the parameters taken from
fits to the nucleon-nucleon amplitudes [56]. In some cases we
will vary those parameters to investigate the sensitivity to their
values. Table I summarizes the cases treated, the data sources,
and the free-space parameters used.

FIG. 5. The ratio of inner + outer corrections to outer corrections
only for the Fäldt-Pilkuhn [43] (point Coulomb) and optical model
with a realistic charge density. The full angular distributions are given
in Sec. III H.
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FIG. 6. Ratio of calculations for α-α scattering for different num-
bers of Monte Carlo evaluations showing the degree of calculational
precision obtained. The α-particle density used is the same one used
by Franco and Yin [6].

A. α-α scattering

There are some interesting points for the α-α scattering
calculation. Notice that there is no separate center-of-mass
correction factor as there was in the formulation of Franco and
Yin [6]. The Monte Carlo method calculates directly using
the many-body density with the method outlined above. As
a test of the method we repeat the calculation of Franco and
Yin [6] using their technique and the Monte Carlo method
using Gaussian densities. From the previous discussion on the
center-of-mass correction we should expect to find the same
result aside from Monte Carlo statistical errors. Figure 6 shows
the ratios of the calculations done in these two ways. It is seen
that the results are the same to about 2% even though the
absolute magnitude of the cross section changes by almost 10
orders of magnitude over the angular range considered. The
difference between the two calculations is invisible on a log
scale. For 108 Monte Carlo evaluations the calculation took
about 10 h on a standard 2.5-GHz personal computer.

The nucleon density of 4He has been somewhat of a
puzzle. The fits to electron scattering [91] with the method
of a sum of Gaussians (SOG) show a large depression in the
center of the nucleus that the Monte Carlo Green’s function
calculations do not exhibit [3]. However, the χ2 per data
point is considerably less than unity, showing that perhaps
an overfit was present in the SOG fit. By using other forms
to represent the density, acceptable fits with a significantly
smaller depression can be found. We have made a fit to
the electron-scattering data [91] with a density in which we
constrained the ratio of the density at the origin to that at the
peak to be 0.4 in order to have a density similar to that found
in Ref. [91] but with a less severe depression. That density is
shown in Fig. 7 as the dashed line. We fit this density to find
an auxiliary density given by

r2ρMSW(r) = (1 − α)N1(e−aer − e−ber )10

+α
[
0.95N2e

−(r−r0)2/a2
0 + 0.05N3e

−(r−r1)2/a2
1
]
,

(48)

FIG. 7. Comparison of three densities used for the α particle
in the calculations. The reference MSW is to McCarthy, Sick, and
Whitney [91]. The points were read from Fig. 15 in Pudliner et al. [3].

where α = 0.43 and

ae = 0.51 fm−1, be = 0.61 fm−1,

r0 = 1.28 fm, r1 = 1.8 fm, (49)

a0 = 0.1 fm, a1 = 0.3 fm.

N1, N2, and N3 are chosen to normalize each of the individual
probability densities. The calculations of Pudliner et al. [3]
give perhaps the best estimate of the 4He density and show only
a slight depression in the central region. Also shown in Fig. 7
is a fit to the Monte Carlo density of Pudliner et al. [3] (large
dots) from reading the points from the graph. The auxiliary
density for this fit is given by

r2ρPud = λ4d
15r14e−dr/14! + (1 − λ4)f 9r8e−f r/8!, (50)

where λ4 = 0.835 and the resulting density is shown in Fig. 7
(dotted line). In order to have a density with short-range
correlations included we have carried out our own variational
calculation (see Appendix B).

To test for the relative importance of the short-range
correlations and the center-of-mass correlations, we performed
the calculation as outlined in the previous section starting from
the single-particle density resulting from a density derived
from a binning of the variational result. The c.m. density from
that calculation is also shown in Fig. 7 (solid line).

The auxiliary density, ηa(r), as fit to the variational density
can be expressed as

r2ηVar(r) = (1 − α)g1(r) + αg2(r), (51)

where

g1(r) = Ngr
2e−agr

2
, g2 = Ne(e−aer − e−ber )2,

α = 0.505, ag = 0.56 fm−2, (52)

ae = 0.779 fm−1, be = 1.345 fm−1,

where Ng and Ne were chosen to normalize g1 and g2

individually. Note that the volume element, r2, is included
in each case. Since the wave function has an asymptotic limit
of the form e−κr/r then, with the volume element included,
the tail should behave as an exponential.
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FIG. 8. Calculations of α-α scattering showing the effect the
center-of-mass correlations. The dash-dot curve uses the same
Metropolis density as the solid curve but each nucleon is drawn from
a different (random) realization of the nucleus. Thus it has the same
single-particle density but the effect of the CMC is missing. The data
are from Berger et al. [77].

Figure 8 shows a test of the importance of short-range cor-
relations and center-of-mass correlations. For this illustration
only, the parameters have been chosen to give a reasonable
representation of the data, unlike most other figures presented
which use the free parameters determined from amplitude
analyses [56]. The solid curve shows the calculation with the
full variational wave function and the dashed curve shows
the results obtained with the auxiliary density used to correct
for the center of mass. The dash-dot curve shows the result
of choosing each nucleon from a different configuration of
the nucleus. In this case the single-particle density will be
identical to the other two cases but there are no CMC among
the nucleons. The principal difference between the two is that
the solid curve does not have the short-range correlations that
are in the variational wave function. Hence, at least for the
variational calculation performed here (see Appendix B), they
are not important in agreement with Ullo and Feshbach [93].

Figure 9 shows the dependence on the density used. It
is seen that the sensitivity is very small and reasonable
variations would not seem to be able to significantly improve
the agreement with the data.

Figure 10 shows a comparison of the calculation at a beam
energy of 4.2 GeV with the data of Satta et al. [78]. Also
shown are the results of a variation with the ρ parameter. This
parameter is the least well determined experimentally of the
nucleon-nucleon parameters. It is seen that the prediction is
rather poor when compared with the data and that moderate
variations of ρ are unlikely to improve the agreement.

B. α-12C scattering

The carbon auxiliary density was obtained from the
modified harmonic oscillator fit of charge density obtained
from electron scattering data [92]. The form found for the
auxiliary density is

r2η12(r) = 0.90916 h1(r) + 0.09084 h2(r), (53)

FIG. 9. α-α scattering at TLab = 4.2 GeV showing the depen-
dence on the density used. The notation MSW refers to the fit to
the electron scattering fit by McCarty, Sick, and Whitney [91] as
described in the text. The partial wave analysis (PWA) is that of
Ref. [56]. The data are from Satta et al. [78].

where

h1(r) = M1r
10e−d12r , h2(r) = M2(e−a12r − e−b12r )2, (54)

d12 = 0.7311 fm−1, a12 = 1.7488 fm−1, and b12 =
0.6429 fm−1. M1 and M2 are chosen to normalize h1 and
h2 separately.

Figure 11 shows the auxiliary density and the center-of-
mass body and charge densities which result. For the light
nuclei the auxiliary density is normally quite different from
the center-of-mass density.

Figure 12 shows the variation of the differential cross
section at 4.2 GeV with the parameter ρ. As for α-α scattering
at the same energy (Fig. 9) the moderate variations of ρ do
not improve the agreement with the data. Figure 13 shows
the prediction for α-12C scattering at 1.37 GeV kinetic energy
with a variation of the parameter aI . The agreement is no better
than that at 4.2 GeV. Variations of the other parameters give

FIG. 10. α-α scattering at 4.2 GeV showing the variation with
the parameter ρ. The data are from Satta et al. [78]. PWA means the
partial wave analysis from Ref. [56].

024604-12



MONTE CARLO EIKONAL SCATTERING PHYSICAL REVIEW C 86, 024604 (2012)

(a)

(b)

FIG. 11. (a) The fit to the 12C charge density using the auxiliary
density in Eq. (53). The electron-scattering data are from Ref. [92].
(b) The point density along with the auxiliary density. Also shown
are the points obtained from binning the radius values in the Monte
Carlo calculation, with the open circles corresponding to the auxiliary
density and the solid circle to the center-of-mass density.

similar results. Again, it seems unlikely that a modest variation
in parameters will bring the calculation in line with the data.

C. α-16O scattering

The auxiliary function for 16O was taken to have the form

r2η16(r) = 0.8646 v1(r) + 0.1354 v2(r), (55)

with

v1(r) = M1r
10e−d16r , v2(r) = M2(e−a16r − e−b16r )2, (56)

and

a16 = 2.738 fm−1, b16 = 0.2976 fm−1, d16 = 4.174 fm−1,

(57)

with

M1 = d11
16/10!

and

M2 = 2a16b16(a16 + b16)/(a16 − b16)2

chosen to normalize v1 and v2.

FIG. 12. α-12C scattering at 4.2 GeV showing the variation with
the parameter ρ. The data are from Morsch et al. [79,80]. PWA means
the partial wave analysis from Ref. [56].

Figure 14 shows the results of the α-16O calculation
compared with the data of Wakasa et al. [72] at 400 MeV.
Here the agreement at forward angles is satisfactory. Figure 15
compares the calculation at 240 MeV with the data of Lui
et al. [66]; here the agreement is fairly good (aside from a
slight normalization problem) up to about 7 degrees. After that
there is a considerable difference. The Coulomb correction is
substantial, especially at larger angles.

D. α-40Ca scattering

The auxiliary density for Ca was obtained from a point
density extracted from pion scattering [94] which is very
similar to that obtained from electron scattering [95]. The
form of the auxiliary density is

r2η40(r) = 0.740072 v1(r) + 0.259928 v2(r), (58)

FIG. 13. Comparison of α-12C scattering with data of Chaumeaux
et al. [76] showing the effect of a variation of the nucleon-nucleon
parameter aI . PWA refers to the partial wave analysis of Ref. [56].
The density for the α projectile is taken from Pudliner et al. [3] as
described in the text.
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FIG. 14. Comparison of α-16O scattering with data of Wakasa
et al. [72] showing the effect of the Coulomb correction.

with

v1(r) = M1r
10e−d40r , v2(r) = M2(e−a40r − e−b40r )2, (59)

and

a40 = 0.641 fm−1, b40 = 0.443 fm−1, d40 = 3.597 fm−1,

(60)

with M1 and M2 chosen to normalize v1 and v2.
The results of a calculation for α-40Ca scattering at

1.37 GeV are shown in Fig. 16 and compared to the data
of Alkhazov et al. [75]. The Coulomb correction plays a very
large role. There would be no agreement at all without it.
While the agreement is far from perfect, it is satisfactory for
no adjustable parameters at least for angles less than 8 degrees
(with the exception of the two forward data points which have
large errors). For other treatments of α-40Ca scattering see
Refs. [96] and [97].

E. α-208Pb scattering

The auxiliary density for 208Pb was fit to the charge density
of 208Pb so it corresponds to the proton density. It is believed
that the neutron density is different from the proton density but

FIG. 15. α-16O scattering at 240 MeV. The data are from Lui
et al. [66].

FIG. 16. α-40C scattering at 1.37 GeV compared with the data of
Alkhazov et al. [75].

a study of the effect of a different neutron density, interesting
though it might be, is beyond the scope of the present work.
Since the lead nucleus is much larger than the other nuclei
considered so far, with a significant flat portion of the density
inside the surface, the forms of the auxiliary density used for
the lighter nuclei are not appropriate for this case. Because
of the large number of nucleons, the difference between the
auxiliary density and the center-of-mass density is not very
great. For these reasons a Woods-Saxon (WS) density fit to the
charge density was used [98]. The volume element must be
included as well in the sampling, as has been done in previous
cases. While the WS density can be directly sampled, it is the
form

r2ρPb(r) ∝ r2

1 + e( r−c
a )

(61)

which is needed. This sampling was done by the method of
selection of variables [87]. A comparison was made between
variables from two samples. First, r1 is chosen according to a
linear distribution from 0 to R0; then a second value, r2, was
obtained from the WS distribution with

r2 = a ln

{
1

b[(1 + 1/b)F − 1]

}
,

where F is a random number uniformly distributed between
0 and 1 and b = e−c/a . If r2 is greater than r1 it returned as
the desired value of r . Otherwise the process is repeated. The
α-particle density used was the one fit to Pudliner et al. [3] as
discussed earlier.

Figure 17 shows the results of calculations at energies of
288, 340, 480, and 699 MeV compared with the data of Bonin
et al. [69]. The Coulomb correction plays a very large role
in determining the cross section, as might be expected. The
agreement is rather good in the forward direction but worsens
rapidly beyond a certain angle, in a fashion that is different for
each energy.
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FIG. 17. α-208Pb scattering compared with the data of Bonin et al. [69].

F. 12C-12C scattering

A comparison with the data at 1.016 GeV [70] and 1.45 and
2.4 GeV [73] has been been made by several groups [14,16,20,
22,23,25,26,48,99–101] using various methods. See also the
phase-shift analysis by Mermaz et al. [102]. We can use the
12C densities found in Sec. III B to calculate the scattering of
12C from 12C.

We have carried out a test of the size of the center-
of-mass effect in much the same way as was done for
the variational wave function in α-α scattering earlier. The
scattering calculations just presented were made by repeating
the realization (in a Monte Carlo loop) of two carbon nuclei
and then carrying out the evaluation of the necessary equations.
The calculation can also be done by first constructing a pool of
nuclei, each properly centered about the center of mass (with
one million being used in the current calculation), and then
drawing complete nuclei randomly from this pool for each
carbon nucleus. These two methods give the same result.

One can now modify the calculation, in the same manner
as before, so as to choose the 12 different vector coordinates
for each carbon nucleus from 12 different realizations in the
pool. In this way one is guaranteed to have the same single-
particle density but with uncorrelated particles. The result of
a calculation for this energy with a spherical density for 12C is
shown in Fig. 18 where it is seen that both the Coulomb and
center-of-mass corrections play a large role. The agreement is
good up to an angle of about 5 degrees [t ≈ −0.045 (GeV/c)2]
but poorer after that.

The result without center-of-mass corrections is shown as
the dashed curve. While this curve is shown as the ratio to
the Rutherford amplitude as a function of angle and Fig. 8
for helium gives the absolute cross section as a function of t ,
one can see that the effect is very similar in the two cases.
Thus, at least for this very limited sample of two cases, the
center-of-mass effect does not decrease.

Figure 3 shows the profile function for 12C for the cases
with and without CMC. One can understand the behavior to
some extent. For small values of b the many factors in the

FIG. 18. 12C-12C scattering at 1.016 GeV with and without the
center-of-mass correction. The data are from Buenerd et al. [70].
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product in Eq. (2) (144 for the case of 12C-12C scattering), a
large fraction of which have magnitude less that unity, will
cause it to be very small. This very small correction to unity
leaves the profile function at essentially one in this region of
b, and hence it is insensitive to the CMC.

On the other hand, for large b one can expand the product
in terms of single, double, triple, etc. scatterings. Since double
scattering will have two factors of the Gaussian function, triple
scattering will have three factors, etc., single scattering will
dominate for large b. Since we are holding the single-particle
density in the c.m. fixed, the CMC will have no effect in
this region. Because the large b values dominate the forward
scattering we must expect the small-angle cross section to be
insensitive to the CMC, as is observed.

Thus, it is only in a relatively small region of values of
b that the effect will be influential. From Fig. 3 this is for
3.5 < b < 5.5 fm. Since, as one decreases b from the external
region the sensitivity to the CMC will become greater as the
number of scatterings goes up until this number gets to be so
large that the product becomes very small in magnitude.

It is generally believed that carbon has a strong oblate
deformation. Lesniak and Lesniak [103] included this effect
in proton-carbon scattering using Glauber theory. While they
developed the proper, fully quantum theory, in the end they
used a semiclassical approximation, simply averaging the
amplitude over rotated densities (see also Ref. [104]). Some
recent studies (of fission and reactions [105]) have treated the
problem in the same way. As pointed out in Ref. [103], electron
scattering (at least in the single-interaction approximation)
should not depend on the deformation so the average density
remains the same as before. We assume a form for the density
symmetric about the z axis and with a distribution in the polar
angle given by

ρ(r, θ ) ∝ ρ0(r) sinn θ. (62)

This simple form is inspired by considerations from Ref. [106]
(p. 62). The paper of Svenne and Mackintosh [107] presented
arguments why 12C was known to be deformed in response
to the paper by Friar and Negele [108] who pointed out that,
with the usual form of the deformed density, the existence of
a deformation for 12C was contrary to the electron scattering
measurements since the falloff of the density in the surface
region was strongly affected. The form of Eq. (62) does not
suffer from this problem, as can be seen by taking the example
of n = 2. In this case we have

ρ(r, θ ) ∝ ρ0(r) sin2 θ ∝ 2

3
ρ0(r)[1 − P2(cos θ )]

= ρ0(r)

(
2

3
− 8π

15

∑
m

Ym
2 (θp, φp)Ym∗

2 (θa, φa)

)
, (63)

where the Legendre polynomial has been expanded in terms
of angles relative to a fixed axis. Here (θp, φp) are angles of a
given nucleon in the nucleus with respect to a fixed axis and
the angles (θa, φa) are those of the body symmetry axis relative
to the same fixed axis. With a one-body operator the second
term will give a j2(qr) transform of the density but when
the average over the direction of the body axis of the carbon

nucleus is taken it will vanish. Hence a one-body operator
probes only the “spherical part” of the density.

For n = 2 the probability in θ is given by

ρ(θ ) = 3
4 sin2 θ, (64)

which leads to

〈z2〉= 1
5 〈r2〉, 〈x2〉 = 〈y2〉 = 2

5 〈r2〉, 〈x2〉/〈z2〉 = 2. (65)

For n = 4 the probability in θ is given by

ρ(θ ) = 15
16 sin4 θ, (66)

which leads to

〈z2〉 = 1
7 〈r2〉, 〈x2〉 = 〈y2〉 = 3

7 〈r2〉, 〈x2〉/〈z2〉 = 3. (67)

These densities look more like donuts than ellipsoids of
revolution (if one assumes that this density is applied to all
the nucleons and not just the p shell). We note that α cluster
models would also lead to densities with zero at the center.
We can estimate the β2 parameter describing deformation by
using prescriptions given by Hagino [109] based on the rms
radii.

We take

γ ≡ 〈x2〉 1
2

〈z2〉 1
2

=
1 − 1

2β2

√
5

4π

1 + β2

√
5

4π

(68)

so that

β2 = 1 − γ
1
2 + γ

√
4π

5
. (69)

For n = 2, we have β2 = −0.34, and for n = 4, β2 = −0.52.
Svenne and Mackintosh [107] gave a survey of values obtained
for β2. From their list we see that the Nilsson model gives
β2 = −0.64 and the α cluster model gives β = −0.41. A little
later Vermeer et al. [110] measured the quadrupole moment of
the 2+ state from which one can infer a quadrupole moment
for the ground state of −22 ± 10 e fm2, implying a value of
β2 = −0.57 with a 50% error. In a recent calculation of 12C-
12C fusion [105] the value β2 = −0.4 was used (along with
a hexadecapole term). Thus, these forms lead to reasonable
values of the deformation.

The results for n = 2 and n = 4 are shown in Fig. 19 and
compared with data. Again it is seen that agreement with data
is good in the forward direction but deteriorates rapidly at
larger angles. The deformation plays a significant role at larger
angles.

G. 16O-12C scattering

The scattering of oxygen on carbon is shown in Fig. 20. The
effect of the correction for the Coulomb interaction is quite
large. For the same scattering the effect of the correction for
the center of mass is also shown. It is seen that the agreement at
very forward angles is very good with the Coulomb correction
playing a substantial role. While it cannot be said that the
agreement with data is good at larger angles, the calculation
follows the trend of the data quite well, which is not true if ei-
ther the Coulomb or center-of-mass correction is not included.
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FIG. 19. Comparison of three deformations of the carbon nucleus at four energies. The dashed curves correspond to a spherical nucleus
(n = 0), the solid curve to a ratio of 1.14 (n = 2), and the dash-dot curve to a ratio of 1.73 (n = 4). The data are from Buenerd et al. [70],
Hostachy et al. [73], and Ichihara et al. [74].

H. 16O-16O scattering

Using the density found earlier we calculated oxygen
scattering from oxygen at 1.120 GeV. The comparison with
the data of Nuoffer et al. [67] is shown in Fig. 21. For angles
beyond 5 degrees there is a considerable discrepancy (and even

FIG. 20. The 16O-12C scattering cross section showing the effect
of the Coulomb and center-of-mass corrections. The data are from
Roussel-Chomaz et al. [71].

more after the Coulomb correction) but inside of that angle the
agreement is quite good.

In order to test the inner Coulomb correction we made an
optical-model fit to the data [67]. A simple form was used:

Vopt(r) = − V0

1 + e(r−rR )/aR
− iW0

1 + e(r−rI )/aI
, (70)

FIG. 21. 16O-16O scattering at 1.12 GeV. The data are from
Nuoffer et al. [67] and Khoa et al. [68].

024604-17



W. R. GIBBS AND J. P. DEDONDER PHYSICAL REVIEW C 86, 024604 (2012)

FIG. 22. The 16O-40Ca scattering cross section showing the effect
of the Coulomb and c.m. corrections. The data are from Roussel-
Chomaz et al. [71].

with rR = 2r0
R(16)

1
3 and rI = 2r0

I (16)
1
3 . A uniform charge

density with a radius rq = 2. × 1.3 × (16)
1
3 was used. The

fit parameters were V0 = 150.4 MeV, r0
R = 0.784 fm, aR =

0.897 fm, W0 = 44.4 MeV, r0
I = 1.005 fm, and aI = 0.745 fm.

By calculating with and without the Coulomb interaction, a
Coulomb correction can be obtained by the method shown in
Eq. (42). Alternatively, we can make the correction with the
method of Fäldt and Pilkuhn [43] by modifying the integral
over the profile function. As seen in Fig. 5 the results are nearly
identical over most of the angular range.

I. 16O-40Ca scattering

The result of 16O-40Ca scattering is shown in Fig. 22 and
compared with data of Roussel-Chomaz et al. [71]. Again
one sees the importance of the center-of-mass and Coulomb
corrections. The agreement at forward angles is moderately
good but is considerably worse at larger angles. For another
treatment of this reaction at this energy see Ref. [111].

J. 40Ca-40Ca scattering

Figure 23 shows the cross section for 40Ca-40Ca scattering
at a kinetic energy of 3.387 GeV. There are no data to compare
with and if there were they would be dominated by pure
Coulomb interactions. In this case there are 1600 factors
in the product in Eq. (1), which, if expanded in multiple
scattering as was done in the paper by Franco and Yin [6],
would give 21600 ≈ 4 × 10481 terms. The calculation is shown
to illustrate the fact that, even for these medium-heavy nuclei,
the center-of-mass correction remains important. We see that
the effect of the CMC is not very different from the effect of
CMC found in carbon-carbon scattering and is as large as a
factor of 5. Since the basic CMC effect is the order of 1/40
in this case it is important to understand how many times it
enters in to the calculation. See Sec. II D for a discussion of
this point.

FIG. 23. The ratio of the 40Ca-40Ca cross section to the Rutherford
cross section at 3.387 GeV using the appropriate parameters from
Ref. [56] for this energy.

K. 6He-12C scattering

The Pudliner density for 6He [3] was represented by two
auxiliary functions (one for protons and one for neutrons)
following Eqs. (21) and (22). The proton auxiliary density was
given by

r2ρp(r) = 0.273776
r15b16

p e−bpr

15!
+ 0.726224

r8c9
pe−cpr

8!
,

(71)

with

bp = 14.3466 fm−1 and cp = 4.7125 fm−1, (72)

and the neutron auxiliary density by

r2ρn(r) = 0.208969
r14ene

15e−enr

14!
+ 0.791031

r2f 3
n e−fnr

2!
,

(73)

FIG. 24. 6He-12C scattering at 38.3 MeV/nucleon using the
6He density from Pudliner et al. [3]. The data are from Lapoux
et al. [64]. The experimental determination of the proton radius is
from Ref. [112].
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FIG. 25. 6He-12C scattering at 41.6 MeV/nucleon using the 6He
density from Pudliner et al. [3]. The data are from Al-Khalili
et al. [65].

where

en = 5.72753 fm−1 and fn = 1.65566 fm−1. (74)

A “shell model” correlation was (optionally) included by
coupling two j = 3

2 neutrons to zero total angular momentum,
which results in a factor in the density of

1
2 (1 + cos2 θR), (75)

where θR is the relative angle between the two valence
neutrons. This factor was carried as a weight in the Monte
Carlo calculation so that the calculations with and without
the factor can be done in the same run. Figures 24 and 25

show the results for the calculation of 6He-12C scattering.
It is seen that the effect of the shell-model correlation is
very small. The Coulomb correction plays a significant role
even for these low-Z nuclei. Perhaps a part of the reason
for this is that the correlation is only between two of the six
particles.

IV. DISCUSSION

The Glauber approximation can fail for a number of reasons
not necessarily associated with the basic assumptions. These
reasons include the following:

(i) At low energies the Fermi motion may cause significant
corrections to the fixed-nucleon approximation.

(ii) The double spin flip in the nucleon-nucleon interaction
which has been neglected may require a significant
correction if the isospin constraints are not sufficient
to eliminate it.

(iii) The single spin flip (occurring an even number of times)
may become important for sufficiently large angles.

(iv) At high energies the coherent production of mesons
constitutes an additional inelastic channel which is
beyond the Glauber approximation.

(v) At small impact parameters there should be significant
corrections to the nucleon-nucleon interactions because
of the higher nuclear densities.

(vi) Correlations from the shell model are of the same range
as those from the center of mass and may play a role as
the nuclear penetration becomes greater.

In looking over the comparisons with data presented in
the paper it is seen that often there is a forward region

TABLE II. Critical values of the angles and their equivalents in momentum transfer. Also given is the energy in the center of mass available
for coherent meson production. The last four cases have no critical values listed because all data points available have a momentum transfer
�1 fm−1. The 6He-12C cases have not been included since it is not possible to claim agreement in the forward direction without absolute data.

Case TLab (GeV) [Ref.] θC (deg) qC (fm−1) q2
C (GeV/c)2 √

s − mT − mP (GeV) Figure

α-208Pb 0.288 [69] 8 1.04 0.042 0.28 17
α-208Pb 0.340 [69] 7 0.99 0.038 0.33 17
α-208Pb 0.480 [69] 5 0.85 0.028 0.47 17
α-208Pb 0.699 [69] 4.5 0.93 0.034 0.65 17
16O-12C 1.503 [71] 4 1.02 0.041 0.64 20
16O-16O 1.120 [67,68] 5 1.28 0.064 0.55 21
16O-40Ca 1.503 [71] 2.5 1.06 0.044 1.06 22
12C-12C 1.016 [70] 4.5 0.96 0.036 0.50 18
α-16O 0.240 [36] 7 0.66 0.017 0.19 15
α-16O 0.400 [72] 7 0.89 0.031 0.32 14
12C-12C 1.449 [73] 4 1.01 0.040 0.71 19
12C-12C 1.620 [74] 3 0.80 0.025 0.80 19
12C-12C 2.400 [73] 2 0.66 0.017 1.17 19
α-40Ca 1.37 [75] 8 2.18 0.184 1.23 16
α-12C 4.20 [79,80] 2.87 12
α-12C 1.37 [76] 0.99 13
α-α 2.55 [77] 1.18 8
α-α 4.20 [78] 1.87 9
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where the prediction is moderately good (and sometimes quite
good) followed by a more-or-less sudden transition to a poor
agreement. Perhaps the best example of this is the scattering
of α particles from 208Pb (see Fig. 17). The transition is
seen to take place at 8◦ at 288 MeV, 7◦ at 340 MeV, 5◦
at 480 MeV and 4.5◦ at 699 MeV. These angles and the
corresponding momentum transfer and values of −t are shown
in Table II. All of the transition points are seen to correspond to
a momentum transfer of about 1 fm−1 [−t = 0.04(GeV/c)2].
For 16O-12C scattering (see Fig. 20) the transition angle is about
4◦, which corresponds to a momentum transfer of 1.01 fm−1.
For 16O-16O scattering (Fig. 21) the transition angle is around
5◦, corresponding to a momentum transfer of 1.28 fm−1. For
16O-40Ca scattering (Fig. 22) the transition angle is about 2.5◦,
which corresponds to a momentum transfer of 1.06 fm−1. The
remainder of the cases studied are shown in Table II as well
and show a similar effect.

Figure 26 shows that at qC = 1 fm−1 for the momentum
transfer the interior of the nucleus is sampled. So qC = 1 fm−1

does not seem to correspond to the onset of the nuclear matter
being probed.
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APPENDIX A: PARTIAL-WAVE PROJECTION

We make the partial wave projection from the formula

1

2ik

∞∑
�=0

(2�+1)(S�−1)P�(cos θ ) = ik

∫ ∞

0
bdbJ0(qb)G(b),

(A1)

where q2 = 2k2(1 − cos θ ). In order to make this projection it
is useful to have the expansion

J0(qb) =
∞∑

�=0

h�(kb)P�(cos θ ). (A2)

From Ref [113] 9.1.79 we have

J0(qb) = J 2
0 (kb) + 2

∞∑
n=1

J 2
n (kb) cos nθ. (A3)

In order to get the desired expression we need the expansion

cos nθ =
∞∑

�=0

an,�P�(cos θ ), (A4)

FIG. 26. (a) The factor of the kernel bJ0(qb) which represents the
weighting of the nuclear profile function and (b) the nuclear profile
function for α-208Pb.

which actually cuts off at � = n as we shall see. With the use
of De Moivre’s theorem one can see

cos nθ = 1

2

n∑
m=0

(
m

n

)
[im + (−i)m] sinm θ cosn−m θ

=
n∑

m=even

(
m

n

)
(−1)

m
2 sinm θ cosn−m θ, (A5)

where ( m
n ) is the binomial coefficient. With k = m/2

cos nθ = 1

2

n∑
m=0

(
m

n

)
[im + (−i)m] sinm θ cosn−m θ

=
n
2∑

k=0

(
2k

n

)
(−1)k(sin2 θ )k cosn−2k θ

=
n
2∑

k=0

(
2k

n

)
(−1)k(1 − cos2 θ )k cosn−2k θ

=
n
2∑

k=0

k∑
j=0

(
2k

n

)
(−1)k(−1)j

(
j

k

)
cosn−2k+2j θ.

With m = n − 2k + 2j so that m = n, n − 2, n − 4, . . .
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cos nθ = 1

2

n∑
m=0

(
m

n

)
[im + (−i)m] sinm θ cosn−m θ

=
∑ (

n − m − 2j

n

)
(−1)

n−m
2

(
j

n−m
2 − j

)
cosm θ

=
∑

cn,m cosm θ.

Thus we see that cos nθ can be expanded in powers of cos θ

with powers of the same parity as n with maximum power n.
We can now use the integral of a Legendre polynomial over a
power of x (Ref. [113] 8.14.15),∫ 1

−1
P�(x)xmdx = π

1
2 2−m�(1 + m)

�
(
1 + 1

2m − 1
2�

)
�

(
1
2� + 1

2m + 3
2

) = dm,�.

(A6)

Note that this integral is zero if � and m are not of the same
parity or if � > m.

We can write the expression for the an,� as

an,� =
(

� + 1

2

) ∑
��m�n,m−n even

cn,mdm,�. (A7)

This expression was coded and the coefficients were calculated
in this way; it works but the terms for different powers of cos θ

get very large and cancel in the sum so, even with double
precision, one is limited to n of the order of 35 for small
values of �, which is not enough for our problem. The values
for n = � and other values of � close to n are always calculated
correctly. A useful check is

n∑
�=0

an,� = 1, (A8)

which follows from Eq. (A4) with θ = 0.
However, there is a much easier way to get the coefficients

needed. Using the trigonometric identity

cos nθ = 2 cos(n − 1)θ cos θ − cos(n − 2)θ (A9)

and the recursion relation for the Legendre polynomials,

xP�(x) = �P�−1(x) + (� + 1)P�+1(x)

2� + 1
, (A10)

we find∫ π

0
cos nθP�(cos θ ) sin θdθ ≡ bn,�

= 2

2� + 1
[�bn−1,�−1 + (� + 1)bn−1,�+1] − bn−2,�. (A11)

Since an,� = 2�+1
2 bn,� we have

an,� = 2�an−1,�−1

2� − 1
+ 2(� + 1)an−1,�+1

2� + 3
− an−2,� (A12)

with the conditions

a0,0 = 1, a1,1 = 1, (A13)

and

an,� = 0 (A14)

if n and � are not of the same parity or if � > n. All values of
these coefficients can be quickly calculated using the recursion
relation (A12) without any numerical problem. Using these
values then we obtain

h0(kb) = J 2
0 (kb) + 2

∞∑
n=1

J 2
n (kb)an,0, (A15)

h�(kb) = 2
∞∑

n=�

J 2
n (kb)an,�, � > 0. (A16)

J0(x) and J1(x) are calculated to one part in 107 and the
recursion relation for Bessel functions is used for fixed b

to obtain the higher values of n. Just beyond n = bk, the
magnitude of Jn(x) decreases rapidly and the recursion relation
fails shortly thereafter. The recursion is cut off when J 2

n (x) is
less than 10−6.

The functions h�(kb) have some interesting and potentially
useful properties. For example, starting from Eq. (A2) with∫ ∞

0
J0(qb)J0(q ′b)bdb = δ(2)(q − q ′)

= δ(q − q ′)
q

= 2δ(q2 − q ′2) = 1

k2
δ(x − x ′) (A17)

one can show that∫ ∞

0
h�(y)h�′(y)ydy = 2� + 1

2
δ�,�′ . (A18)

Once the functions h�(bk) have been found, the process can
be reversed; i.e., we can find the nuclear profile function for
any given set of matrix elements. First from the inverse Hankel
transform we have

G(b) = 1

ik

∫ ∞

0
F (q)J0(qb)qdq. (A19)

Since the amplitude is assumed to fall off rapidly we can
replace the upper limit with a finite, but large, one, namely 2k

so that

G(b) ≈ 1

ik

∫ 2k

0
F (q)J0(qb)qdq. (A20)

Changing the integration variable to u ≡ q2 we have

G(b) ≈ 1

2ik

∫ 4k2

0
F (

√
u)J0(qb)du. (A21)

Now changing the integration variable to x = cos θ we have

G(b) ≈ 2k2

2ik

∫ 1

−1
A(x)J0(q(x)b)dx, (A22)

where A(x) = F [q(x)] and

A(x) = 1

2ik

∞∑
�=0

(2� + 1)(S� − 1)P�(x). (A23)

Using Eq. (A2) we have

G(b) ≈ −
∞∑

�=0

(S� − 1)h�(kb). (A24)
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APPENDIX B: VARIATIONAL DENSITY FOR 4He

One can solve for the 4He wave function by Monte
Carlo Green’s function methods [2,3]. In this case either
the walkers represent a probability proportional to the wave
function itself (hence the walkers do not give the density
needed for our scattering problem) or, if one uses importance
sampling, then the walkers represent the product of the
trial wave function and the true wave function and thus
are more suitable for representing the density. In the work
here we will use a variational trial wave function where
the walkers represent directly the density to calculate α-α
scattering.

Varga et al. [34] performed Monte Carlo calculations using
a Metropolis sampling of a 4He wave function obtained
with Green’s function Monte Carlo methods. We will make
a comparison between the method given previously and a
simplified version of this type of calculation based on the
variational algorithm.

The variational method operates with the estimator of the
energy given by

ET =
∫

dRψ∗
T (R)(T + V )ψT (R)∫
dRψ∗

T (R)ψT (R)

=
∫

dRρ(R)
(

T ψT (R)
ψT (R) + V

)
∫

dRρ(R)
, (B1)

where R represents the set of coordinates which describe
the system. Using the Metropolis algorithm to represent the
density, it is automatically normalized. The trial wave function
is assumed to depend on some number of parameters and,
upon varying these parameters the minimum energy achieved
is guaranteed to be greater than or equal to the true ground
state energy of the system. The trial wave function normally
is expected to give a good representation of the true wave
function but there is no guarantee of that.

In order to calculate with a realistic wave function we use a
trial wave function which results from the following variational
calculation for 4He. Since the true wave function must be
translationally invariant it can depend only on the six relative
coordinates, rij = ri − rj .

We choose the form

ψ(r1, r2, r3, r4) =
∏
j>i

f (rij ), (B2)

where rij = |rij | and the function f (r) is arbitrary at this point.
It will be chosen with a number of parameters to be selected
to minimize the energy. We can evaluate the kinetic energy

needed as
4∑

i=1

∇2
i ψ(r1, r2, r3, r4)

ψ(r1, r2, r3, r4)
= 2

∑
j>i

(
f ′′(rij )

f (rij )
+ 2

f ′(rij )

rij f (rij )

)

+ 2
∑

[i,j,k]

rij · rik

f ′(rij )f ′(rik)

rij rikf (rij )f (rik)
.

(B3)

The values of the three indices in the last sum are [123], [124],

[134], [213], [214], [234], [312], [314], [324], [412], [413],
and [423]. They can be obtained with nested loops,

{i = 1, 4[j = 1, 3; j �= i(k = j + 1, 4; k �= i)]}. (B4)

With such a form it is relatively easy to calculate the kinetic
energy since one only needs to be able to calculate the function
f and its first and second derivatives. The derivatives can be
calculated numerically if need be.

We took for the form of f such that

f (r) = (1 − e−cr )
e−ar

b + r
. (B5)

The first factor vanishes at the origin and provides the effect
of a (very mild) repulsive correlation. The rest of the function
has the proper asymptotic form with the constant b avoiding
the singularity at the origin.

We used a modified version [87] of the Malfliet-Tjon [114]
potentials since we are neglecting spin in this calculation.
The variational calculation overbinds 4He by about 7 MeV
(35 instead of 28 MeV) so we increased the strength of the
repulsive part of the modified Malfliet-Tjon potentials (by 6%)
in order to have a more realistic binding.

The variational calculation for the energy was carried out
using 100 000 walkers. It was found that the energy was not
very sensitive to the parameter b so it was fixed at 1.0 fm.
Then, for various fixed values of c, the energy was calculated
as a function of a. For the fixed values of b and c the rms
radius is a unique function of a. We used a = 0.203 fm−1 and
c = 1.0 fm−1. The rms radius is a crucial parameter in the
scattering and we obtained a value of 1.44 fm. The calculation
was repeated 10 times to give a collection of one million
walkers to use in the scattering calculations involving the α

particle.
The coordinates needed for the scattering calculation were

taken from the Metropolis algorithm every 2000 steps to be
certain that each realization was independent. One million
realizations of the helium density were calculated and written
out to files. When the scattering was calculated, the coordinates
of each nucleus were drawn from a nuclear representation
chosen randomly from the pool of one million possible nuclear
realizations.
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