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Second order phase transitions from octupole-nondeformed to octupole-deformed shape in the
alternating parity bands of nuclei around 240Pu based on data
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Background: Shape phase transitions in finite quantal systems are very interesting phenomena of general physical
interest. There is a very restricted number of the examples of nuclei demonstrating this phenomenon.
Purpose: Based on experimental excitation spectra, there is a second order phase transition in the alternating
parity bands of some actinide nuclei.
Method: The mathematical techniques of supersymmetric quantum mechanics, two-center octupole wave
functions ansatz, and the Landau theory of phase transitions are used to analyze the experimental data on
alternating parity bands.
Results: The potential energy of the octupole collective motion is determined and analyzed for all observed
values of the angular momentum of the alternating parity band states in 232Th, 238U, and 240Pu.
Conclusion: It is shown that as a function of increasing angular momentum there is a second order phase
transition from the octupole-nondeformed to the octupole-deformed shape in the considered nuclei.
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I. INTRODUCTION

Quantum phase transitions in an algebraic nuclear model,
the interacting boson model (IBM), were studied in Refs. [1,2].
In recent years quantum phase transition phenomena in atomic
nuclei came to the forefront of nuclear structure physics
[3–11]. Mainly, the phase transitions among spherical, axially
deformed, and γ -soft limits of nuclear structure have been
analyzed. Of course, shape-transitional nuclei always attracted
attention, but it was a difficult task to treat them. A possibility
to analyze phase transition phenomena in nuclei in detail came
with the formulation of the IBM. Its application has shown
that, depending on the values of the control parameters, first
and second order phase transitions occur. A consideration
of the phase transition phenomena is closely related to the
introduction by Iachello of the critical point symmetries in
the collective Bohr-Mottelson model [12,13], which gave us
simplified models for nuclei at the critical point. The model
to describe the octupole motion at the critical point has been
considered in Refs. [14–16].

In most considered cases the focus was on the quadrupole
deformation and the role of the control parameters (i.e., the
parameters of the IBM Hamiltonian), which are functions
of the numbers of protons and neutrons in the nucleus. In
the present paper we present and analyze an example of
the second order phase transition in nuclei related to the
octupole deformation, and the control parameter is the angular
momentum. This is different from the study in Ref. [17] of the
same shape phase transition as a function of neutron number
but similar to one described in Ref. [18] for the quadrupole
deformation. We mention that the situation described in this
paper is different from the so-called excited state quantum
phase transition [19,20]. We consider below a phase transition
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in the alternating parity bands from the reflection-symmetric
to the reflection-asymmetric shape, or in other words, from
octupole-nondeformed to octupole-deformed shape [21]. It
was already indicated qualitatively [22–27] that the octupole
deformation seems to stabilize with increasing angular mo-
mentum.

A confirmation of the existence of the second order phase
transition in nuclei is very important and of general interest.
The second order phase transition in the quadrupole shape of
nuclei is closely related to the realization of the E(5) critical-
point symmetry [28,29]. The properties of many even-even
nuclei have been examined in order to find examples displaying
the characteristics of the E(5) critical-point symmetry of the
shape transition from the spherical vibrator to the triaxial soft
rotor. Several examples of nuclei have been suggested [28,29]
as candidates with the properties close to those predicted by
the E(5) symmetry.

It is the aim of the present paper to show, based on
the experimental data, that an evolution of the reflection
asymmetry in the alternating parity bands with increasing
angular momentum gives a very clear example of a second
order phase transition in nuclei.

In the consideration below we use a model which describes
the collective octupole excitations of nuclei based on the
assumption that the most important degree of freedom is β30,
which keeps axial symmetry. We thus assume a softness of the
β30 mode, in contrast to the other octupole modes, which do
not keep the axial symmetry. In the framework of this model,
using the method suggested in Ref. [30], we have obtained an
analytical expression for the collective potential as a function
of β30. The shape of this potential is completely determined by
the experimental data on the parity splitting in the alternating
parity band for all considered values of the angular momentum.
It is shown below that although for the low values of the angular
momentum I the potential energy has a minimum at β30 = 0,
nevertheless, at some value of I = Icrit the minimum at β30 = 0
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disappears and two minima at nonzero value of β30 develop. It
is shown below that this is a second order phase transition from
reflection-symmetric to reflection-asymmetric shape, which is
governed by the angular momentum. The important fact is that
we determine the potential for several values of the angular
momentum smaller and larger than the critical value of I . This
give us the possibility of seeing an evolution of the potential
along a sufficiently large interval of the values of the angular
momentum, which is the control parameter. Every step of this
evolution is determined by data.

The paper is organized in the following way. In Sec. II
we determine for all values of the angular momentum the
collective potential describing the octupole motion based on
the experimental data on parity splitting. In Sec. III, using this
potential and applying the Landau theory of phase transitions,
we analyze the phase transition phenomena in the alternating
parity bands of 232Th, 238U, and 240Pu.

II. DESCRIPTION OF THE MODEL

The Hamiltonian of the model used can be presented as

HI = − h̄2

2B

d2

dβ2
30

+ VI (β30), (1)

where the subscript I indicates that the shape of the potential
depends on the angular momentum I . It is assumed here that
the quadrupole deformation is rigid. This model has common
features with the algebraic model suggested in Ref. [31] and
the dinuclear system model [32]. The excitation spectra of
these models are characterized by the same set of states (if the
number of bosons in Ref. [31] is smaller than their maximum
possible number).

In Ref. [30] we did not suggest any parametrizations of
VI but followed the procedure given in the supersymmetric
quantum mechanics [33] to obtain a shape of the potential. The
experimental data on the parity splitting in the ground state
alternating parity bands are used to determine the potential
VI completely. The parity splitting is determined as the
difference between the energies of the negative and the positive
parity states of the same Hamiltonian. Since in our case the
Hamiltonian is given for the fixed value of I , the parity
splitting is calculated as a difference between the energies
of the negative and the positive parity states for the same I .
However, at every value of I in the K = 0 band there is only
one state with the fixed parity π = (−1)I . Thus the energy
of the state with the opposite parity but the same I can be
introduced only by interpolation using the energies of the states
neighboring I and having the parity (−1)I+1. For even I the
interpolated energy of the unphysical negative parity state is
determined using the experimental energies of the negative
parity states with the angular momenta (I − 1) and (I + 1).
For odd I the interpolated energy of the unphysical positive
parity state is determined using the experimental energies of
the positive parity states with the angular momenta (I − 1)
and (I + 1).

We consider making the following ansatz for the positive
parity wave function. Since this wave function has no nodes
(because it describes the lowest states for every I ), we assume

that it can be presented by the following expression:

�I (β30) =
(

Bω

πh̄

) 1
4
{

2

[
1 + exp

(
−Bω

h̄
β2

m(I )

)]}−1/2

×
(

exp

{
−Bω

2h̄
[β30 − βm(I )]2

}

+ exp

{
−Bω

2h̄
[β30 + βm(I )]2

})
, (2)

which is a sum of two Gaussians centered at β30 = ±βm(I )
whose width is determined by the parameter ω. Let us rewrite
the expression (2) as

�I (β30) =
(

Bω

πh̄

) 1
4 {

2
[
1 + exp

(−s2
3 (I )

)]}−1/2

×
(

exp

{
−1

2
s2

3 (I )[β30/βm(I ) − 1]2

}

+ exp

{
−1

2
s2

3 (I )[β30/βm(I ) + 1]2

})
, (3)

where

s3(I ) ≡
√

Bω

h̄
βm(I ). (4)

We see from Eq. (3) that �I is a function of the variable
[β30/βm(I )] and depends only on one parameter s3(I ). As
shown in the appendix, the potential VI and the total
Hamiltonian H being expressed in terms of the dynamical
variable [β30/βm(I )] depend on two parameters: a dimensional
parameter h̄ω and the nondimensional parameter s3(I ). In
order to show the wave function �I and the potential VI

depending on β30 we need the value of βm(I ), which can
be obtained from Eq. (4) if the value of the mass coefficient
B is known. To determine B we need experimental data on
B(E1). The value of B was determined in this way for 240Pu in
Ref. [30], and in Figs. 1–3 the potential and the wave functions
are shown depending on the variable β30. We mention that the
experimental data on B(E1) are known to have large errors.

Let us clarify the physical meaning of the parameter s3(I ).
Since the maximum of the wave function (2) is located at
β30 = ±βm we can say that βm is the most probable value of
|β30|. Therefore we can consider this quantity as an effective
octupole deformation, although this quantity does not coincide
with the position of the minimum of the potential VI (β30).
The quantity

√
h̄/Bω characterizes the width of the Gaussians

in Eq. (3). Thus, s3(I ) is a ratio of the effective octupole
deformation in the wave function to the width of a distribution
of the octupole deformation. We call s3(I ) an octupole softness
parameter. The values of this parameter distinguish well the
cases of the rigid octupole deformation and the soft octupole
motion. If the width of the Gaussian is going to zero (i.e.,
the wave function has very narrow maxima at β30 = ±βm),
s3(I ) → ∞. However, if the width is large compared to βm,
s3(I ) → 0.

Following the procedure of the supersymmetric quantum
mechanics, we substitute the wave function (3) into the
Schrödinger equation with the Hamiltonian (1) and obtain the
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following relation for the potential VI (β30):

VI = h̄2

2B

d2�I

dβ2
30

/�I + E∗
I , (5)

which gives us

VI (β30) = h̄ω

2

{
−1 + s2

3 (I )
[
1 + β2

30/β
2
m(I )

] − 2s2
3 (I )

β30

βm(I )

exp
[
s2

3 (I )β30/βm(I )
] − exp

[ − s2
3 (I )β30/βm(I )

]
exp

[
s2

3 (I )β30/βm(I )
] + exp

[−s2
3 (I )β30/βm(I )

]
}

+ E∗
I , (6)

where for even I the quantity E∗
I is the experimental excitation

energy of the lowest state with angular momentum I . For odd
I this energy is determined by interpolation using the energies
of the neighboring even-I states. We assume that E∗(I ) and its
derivative are the continuous functions of I . As in the case of
the wave function the shape of the potential (6) is determined
completely by one parameter, namely, s3(I ) only. In Ref. [30]
it was shown, based on the results of calculations of the parity
splitting �E(I ), that the quantity (4) can be parameterized by
a linear function of the angular momentum

s3(I ) = c0 + c1 · I, (7)

where c0 and c1 are the fit parameters. They are determined
so as to get the better description of the angular momentum
dependence of the parity splitting �E(I ). The values of these
parameters, the experimental and the calculated values of
the parity splitting �E(I ) for 232Th, 238U, and 240Pu, are
presented in Tables I–III. As described above, the experimental
values of the parity splitting �E(I ) are determined using the
experimental energies Eexp(I ) of the positive and the negative
parity states of the ground state alternating parity band. We
determine the parity splitting as

1
2�E(I ) = 1

2 (−1)I [Einter(I ) − Eexp(I )], (8)
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FIG. 1. The potential VI as a function of β30 and the yrast state
wave function calculated for I = 0 with the parameters fixed for
240Pu. The potential energy is counted from the ground state energy
[see Eq. (5)]. The horizontal lines inside the potential well indicate the
energies of the lowest (solid line) and the first excited (dashed line)
states in this potential. The parity splitting is equal to the difference
of the energies of these states.

and the average energy as

Eav(I ) = 1
2 [Einter(I ) + Eexp(I )], (9)

where Einter(I ) is the interpolated energy. The details of
interpolation used here are described in Refs. [30,34]. The
alternative interpolation, which uses the staggering index, has
been suggested in Ref. [24].

To obtain the numerical values of βm we need the value
of the mass coefficient B. This mass coefficient is known
for 240Pu [30], where we have found from a considera-
tion of B(E1)/B(E2) that h̄2/B is approximately equal to
1/496 MeV. Taking this value and the value of h̄ω for 240Pu,
we obtain that approximately s3(I ) = √

3βm(I ). There is no
experimental data on the B(E1)/B(E2) ratio between the
states of the ground state alternating parity band in 232Th, and
in the case of 238U there is experimental information only on
decay of the 7−

1 state, which is insufficient to get information
about the angular momentum dependence of B(E1). For
this reason we cannot determine the mass coefficient B for
these nuclei. However, the knowledge of B is not needed to
determine the shape of the potential and the critical value of
the angular momentum. The last quantity is determined by
Eq. (21). Without knowledge of B we obtain the potential as
a function of β30/βm(I ) but not as a function of β30. Thus
the scale of β30 used to present the potential depends on the
angular momentum. However, the value of Icrit for which the
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FIG. 2. The potential VI as a function of β30 and the yrast state
wave function calculated for I = 12 with the parameters fixed for
240Pu. The potential energy is counted from the excitation energy of
the 12+

1 state of 240Pu.
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FIG. 3. The potential VI as a function of β30 and the yrast state
wave function calculated for I = 24 with the parameters fixed for
240Pu. The potential energy is counted from the excitation energy of
the 24+

1 state of 240Pu.

minimum of the potential at β30 = 0 disappears is determined
without knowledge of B.

The results for 240Pu are given for completeness in
Table III. They have been presented in Ref. [30]. However, we
show them here since 240Pu is a nucleus which is investigated
better than others. The calculations of �E(I ) are performed
using the mathematical technique of the supersymmetric
quantum mechanics, as was done in Ref. [30].

�E(I ) is given by the expression

�E(I ) = h̄ωf [s3(I )], (10)

where the function f (s3) is determined numerically.
The fact that the experimental data on the parity splitting

indicate mainly a linear dependence of s3(I ) on the angular
momentum can be explained qualitatively in the following
way. The quantity s3(I ) in any case is an increasing function
of I . As seen from Eqs. (6) and (4), the potential VI increases
with angular momentum not faster than s2

3 . Indeed, for small
s3 we have

VI (β30) = h̄ω

2

(
−1 + s2

3 (I ) + Bω

h̄
β2

30 − 2s2
3 (I )

Bω

h̄
β2

30

)
.

(11)

For large s3 we can approximate Eq. (6) by the following
expression:

VI (β30) = h̄ω

2

(
−1 + s2

3 (I ) + Bω

h̄
β2

30−2s3(I )

√
Bω

h̄
|β30|

)
.

(12)

Since the potential energy increases with angular momentum
approximately proportionally to I (I + 1), it is natural to expect
a linear dependence of s3(I ) on I .

As seen from the results presented in Tables I–III, they
are in a good agreement with the experimental data up to
sufficiently high values of the angular momentum I . However,
at very high values of I a disagreement is clearly seen between
the experimental results and the calculated values. In the

TABLE I. The calculated and the experimental values of �E(I )
for 232Th. The experimental data are taken from Refs. [35,36]. The
following values of the parameters are used: h̄ω = 0.717 MeV, c0 =
0.122, and c1 = 0.040.

232Th
�E(I ) (keV)

I Exp Cal

1 698 698
2 689 688
3 676 676
4 661 662
5 643 646
6 624 629
7 604 610
8 584 590
9 563 569
10 543 547
11 521 525
12 501 502
13 479 478
14 458 455
15 435 432
16 412 408
17 388 385
18 364 363
19 339 342
20 315 320
21 289 299
22 263 279
23 237 260
24 210 242
25 184 224

cases of 232Th and 240 Pu at highest observed values of the
angular momentum, the experimental values of �E(I ) are
lower than the calculated values. However, in the case of
238U, the experimental values of �E(I ) at higher values of
I are larger than calculated values. An explanation of this
phenomena has been suggested in Ref. [39]. At low I the
parity splitting shifts the positive parity states down. This
is due either to the absence of the barrier at β30 = 0 or
to the large probability of a penetration of the barrier that
separates two physically equivalent, symmetrically located
minima in the nuclear collective potential, depending on the
reflection-asymmetric deformation. With an increase in I , the
height of the barrier increases also and the barrier penetration
probability decreases. Thus, the parity splitting is going to
zero. However, at sufficiently high values of I the Coriolis
interaction becomes important, producing an alignment in the
angular momentum of the intrinsic excitation along the axis
of the collective rotation [40–46]. Because of this alignment
the same value of the total angular momentum can be obtained
with the smaller value of the collective rotational momentum.
A decrease of the collective rotational momentum leads to a
decrease of the barrier height. Then the barrier penetration
probability increases, thus recreating a parity splitting. If the
aligned single-particle configuration has an even average parity
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TABLE II. The calculated and the experimental values of �E(I )
for 238U. The experimental data are taken from Ref. [37]. The
following values of the parameters are used: h̄ω = 0.683 MeV,
c0 = 0.12, and c1 = 0.0462.

238U
�E(I ) (keV)

I Exp Cal

1 665 664
2 656 653
3 642 639
4 625 622
5 605 604
6 584 584
7 560 562
8 535 539
9 509 514
10 484 489
11 457 463
12 432 438
13 407 412
14 384 386
15 361 361
16 340 337
17 320 313
18 303 290
19 287 268
20 274 247
21 263 227
22 255 208
23 248 190
24 245 174
25 242 159
26 241 145
27 239 132
28 235 121

then the parity splitting does not change the sign. However, an
interval of the values of I for which �E(I ) is not equal to zero
becomes larger. If the aligned single-particle configuration has
an odd average parity then for even values of I the collective
wave function should be odd with respect to the transformation
β30 → −β30 and vice verse in order to have the total parity of
the state equal to (−1)I . As a result, the negative parity states
will be shifted down by the parity splitting, in contrast to the
situation at low I . However, this effect is not treated in this
paper.

Thus, based on the experimental data on the parity splitting,
we have determined the parameters c0 and c1 for several nuclei.
Therefore, we have completely determined the potential for
these nuclei at all observed values of the angular momentum.
This give us a possibility to investigate the phase transition
phenomena in the alternating parity bands of these nuclei.

III. DESCRIPTION OF THE PHASE TRANSITION IN THE
ALTERNATING PARITY BANDS

In Figs. 1–3 the octupole potentials determined for 240Pu
for three values of the angular momentum, namely, I = 0,

TABLE III. The calculated and the experimental values of �E(I )
for 240Pu. The experimental data are taken from Ref. [38]. The
following values of the parameters are used: h̄ω = 0.585 MeV,
c0 = 0.04, and c1 = 0.055.

240Pu
�E(I ) (keV)

I Exp Cal

1 583 580
2 575 572
3 563 561
4 548 547
5 531 530
6 511 510
7 488 489
8 465 466
9 440 441
10 415 416
11 388 390
12 363 363
13 337 337
14 311 311
15 286 286
16 262 262
17 238 239
18 216 217
19 194 196
20 173 177
21 152 159
22 134 143
23 115 128
24 98 115
25 81 103
26 66 93
27 51 84
28 38 76
29 22 70
30 8 65

12, and 24 are shown. Similar results are obtained for other
nuclei. However, we concentrate below on 240Pu, which is
investigated experimentally better than other nuclei. The parity
splitting given in Tables I–III is equal to the difference between
the energies of the first excited and the lowest states in these
potentials. It is shown, for example, by two horizontal lines in
Fig. 1. Thus the value of E∗

I given in Eq. (5) is unimportant
for the calculations of the parity splitting.

It is seen that at I = 0 the potential VI (β30) has a form
of the harmonic oscillator with the minimum at β30 = 0.
At I = 24 it is a two-minima potential which describes a
reflection-asymmetric shape of the nucleus. At I = 12 we
have a potential corresponding to transition from reflection-
symmetric to reflection-asymmetric shape. Although at this
value of I a minimum of the potential is located β30 = 0. Thus,
with increasing angular momentum the shape phase transition
takes place in the alternating parity band.

Let us consider this transition in detail, applying the Landau
theory of phase transitions [47,48]. In our case the role of the
free energy in the Landau theory is played by the potential VI
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taken at the minimum, β30 is an order parameter, and I is a
control parameter. We do not use a Taylor expansion of the
potential VI in the order parameter β30 since we have an exact
analytical expression for this function given by Eq. (6). The
next step is the determination of the equilibrium value of the
order parameter β30, which is the position of the minimum of
the potential. This value of (β30)min is a function of the control
parameter I . Then we investigate a behavior of the potential
and its derivatives at the minimum of the potential.

The position of the minimum of the potential VI (β30),
that is, the equilibrium value of the order parameter β30, is
determined by the condition

0 = dVI (β30)

dβ30

∣∣∣∣
β30=(β30)min

= h̄ω · s2
3 (I )

(β30)min

βm(I )2

×
(

1 − (β30)min

βm(I )
tanh

[
s2

3 (I )(β30)min/βm(I )
]

− s2
3 (I ){

cosh
[
s2

3 (I )(β30)min/βm(I )
]}2

)
. (13)

Let us consider a solution of Eq. (13). This equation is a
product of the two terms, namely, (β30)min and the expression
in parentheses. Because of this the equation has two solutions.
The first one is (β30)min = 0. The second one is given by the
root of the following equation:(

1 − (β30)min

βm(I )
tanh

[
s2

3 (I )(β30)min/βm(I )
]

− s2
3 (I ){

cosh
[
s2

3 (I )(β30)min/βm(I )
]}2

)
= 0. (14)

The minimum of VI at β30 = 0 takes place only if s3(I ) <
1√
2

when the second derivative of VI (β30) over β30 at β30 =
0 is positive. If s3(I ) > 1√

2
then at β30 = 0 potential has a

maximum and the minimum is smoothly shifted to nonzero
value of β30. This value is determined by the numerical solution
of Eq. (14).

If s3(I ) is larger but very close to 1√
2

the root of Eq. (14) is
given approximately as

(β30)min = βm(I )

√
3

2s6
3 (I )

(
s2

3 (I ) − 1

2

)
. (15)

Let us find the value of the potential VI at the minimum. If
s3(I ) < 1√

2
the minimum of the potential is located at β30 = 0

and it follows from Eq. (6) that

VI [(β30)min] ≡ VI (min)

= 1

2
h̄ω

(−1 + s2
3 (I )

) + E∗
I , s3(I ) <

1√
2
. (16)

For s3(I ) > 1√
2

but close to 1√
2

VI (min) ≈ 1

2
h̄ω

{
−1 + s2

3 (I ) − 3

s4
3 (I )

[
s2

3 (I ) − 1

2

]2
}

+ E∗
I ,

s3(I ) >
1√
2
. (17)

In Eq. (17) the terms of the higher order in [s2
3 (I ) − 1

2 ]2 are
omitted. Remember that according to Eq. (7) s3(I ) is a linear
function of I . Comparing Eqs. (16) and (17) we see that
VI (min) is a continuous function of I at s3(I )= 1√

2
. Taking

the first order derivatives of the expressions (16) and (17) we
see that both derivatives coincide at s3 = 1√

2
. However, there

is a discontinuity of the second order derivative over I at
s3(I )= 1√

2
. Indeed, for s3(I ) < 1√

2

d2VI (min)

dI 2
= h̄ωc2

1 + d2E∗
I

dI 2
, s3(I ) <

1√
2
. (18)

For s3(I ) > 1√
2

d2VI (min)

dI 2
= h̄ωc2

1

{
1 − 12

s2
3 (I )

+ 42

s4
3 (I )

[
s2

3 (I ) − 1

2

]

− 30

s6
3 (I )

[
s2

3 (I ) − 1

2

]2

+ · · ·
}

+ d2E∗
I

dI 2
,

s3(I ) >
1√
2
. (19)

At the critical point s3(I ) = 1√
2

the expressions (18) and (18)

differ by the term −12h̄ωc2
1/s

2
3 (I ). Thus, we have a second

order phase transition. This is a transition from reflection-
symmetric to reflection-asymmetric shape in the alternating
parity band at the value of the angular momentum.

Let us introducing a special notation for the critical value
of s3, which is equal, as shown above, to 1√

2

s3,crit = 1√
2
. (20)

The corresponding critical value of the angular momentum
Icrit is determined according to Eq. (7) by the relation

c0 + c1 · Icrit = 1√
2
. (21)
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FIG. 4. Exact dependence of (β30)min on the angular momentum
calculated for 240Pu using Eq. (13) (solid line) and an approximate
description of (β30)min by a square root function valid around I = Icrit

(dashed line) given by Eq. (22).
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TABLE IV. The calculated values of the critical angular momen-
tum Icrit and the parameters c0, c1, and h̄ω.

Nucleus Icrit c0 c1 h̄ω (MeV)

232Th 14.6 0.122 0.0400 0.717
238U 12.7 0.120 0.0462 0.683
240Pu 12.1 0.040 0.055 0.595

Now we can rewrite expression (15) in the following way:

(β30)min = βm(Icrit)(12
√

2c1(I − Icrit))
1/2. (22)

In this derivation the linear relation between s3 and I given
by Eq. (7) is used. Equation (22) holds in the vicinity of the
critical point. We see that the critical exponent is equal to 1/2.

An exact dependence of (β30)min on the value of the
angular momentum obtained numerically from Eq. (14) is
shown in Fig. 4 for 240Pu. An approximate dependence of
(β30)min described by Eq. (22) is also shown in this figure for
comparison. We see that the approximate expression holds in
some interval of the values of I above Icrit. We see in Fig. 4
that (β30)min is equal to zero for all values of the angular
momentum below I = Icrit. However, at I = Icrit there is a
cusp in the dependence of (β30)min on I and (β30)min increases
smoothly for higher values of I . Similar results are obtained
for the other considered nuclei.

As mentioned in connection with the Hamiltonian (1), it is
assumed that the quadrupole deformation is rigid. This restricts
our consideration to the quadrupole well-deformed nuclei.

Due to the fact that the measurements extend to high values
of I , the control parameter, namely the angular momentum,
takes several values below and above its critical value. This
allows us to explore the critical point and its neighborhood in
great detail as shown in Fig. 4.

Thus, s3,crit plays the role of that value of s3(I ) at which
appears the reflection-asymmetric deformation. Remember
that the parameters c0 and c1 are determined for all considered
nuclei by the experimental data on parity splitting �E(I ).

The values of Icrit determined for 232Th, 238U, and 240Pu are
shown in Table IV. We put also in this table the values of the
parameters c0, c1, and h̄ω in order to see their evolution with
nucleus.

Since our analysis of the phase transition is semiclassical, it
is not strange that the relation (21) gives noninteger values for
Icrit. Coming back to Tables I–III, we see that for all considered
nuclei there are at least five values of I larger than Icrit for
which we have a good description of the parity splitting. Parity
splitting is also well described for I smaller than Icrit. So,

we can see an evolution of the potential from the reflection-
symmetric to the reflection-asymmetric cases going through
the phase transition point along a sufficiently large interval of
the values of the angular momentum.

IV. SUMMARY

In summary, we have shown that the experimental data
on the spectra of the ground state alternating parity bands
of several actinides indicate a second order phase transition
from reflection-symmetric to reflection-asymmetric shapes in
these bands. The phase transition takes place at some value
of the angular momentum, which in our consideration plays
the role of the control parameter. Our approach is based on
the assumption that the main role in the description of the
properties of the alternating parity bands is played by the
octupole mode, preserving the axial symmetry. It is shown that
this approach provides a good description of the experimental
data on parity splitting for all values below and several values
above the critical value of I . So, we have a possibility to see
an evolution of the potential depending on the order parameter
β30 at the sufficiently large interval of the values of the angular
momentum. This allows us to explore the critical point and its
neighborhood in great detail.
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APPENDIX

In this appendix we present the expression for the total
Hamiltonian expressed in terms of the dynamical variable
β30/βm(I ):

HI = 1

2
h̄ω

(
− 1

s2
3 (I )

d2

d[β30/βm(I )]2

+ 1

s2
3 (I )

d2�I [s3(I ), β30/βm(I )]

d[β30/βm(I )]2

× 1

�I [s3(I ), β30/βm(I )]

)
+ E∗

I . (A1)
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