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Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction
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We study the Li isotopes systematically in terms of the tensor-optimized shell model (TOSM) by using a
bare nucleon-nucleon interaction as the AV8′ interaction. The short-range correlation is treated in the unitary
correlation operator method (UCOM). Using the TOSM + UCOM approach, we investigate the role of the
tensor force on each spectrum of the Li isotopes. It is found that the tensor force produces quite a characteristic
effect on various states in each spectrum and those spectra are affected considerably by the tensor force. The
energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of the last neutron, in 5Li is caused by
opposite roles of the tensor correlation. In 6Li, the spin-triplet state in the LS coupling configuration is favored
energetically by the tensor force in comparison with jj coupling shell-model states. In 7,8,9Li, the low-lying states
containing extra neutrons in the p3/2 orbit are favored energetically due to the large tensor contribution to allow
the excitation from the 0s, orbit to the p1/2 orbit by the tensor force. Those three nuclei show the jj coupling
character in their ground states which is different from 6Li.
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I. INTRODUCTION

It is an important subject in nuclear physics to understand
nuclear structure from the viewpoint of the nucleon-nucleon
(NN ) interaction. The NN interaction has strong tensor forces
at long and intermediate distances caused by pion exchange
and strong central repulsion at short distance caused by quark
dynamics. It is important to investigate the nuclear structure
by treating these characteristics of the NN interaction [1–3].
Recently, it became possible to calculate for nuclei up to
mass around A ∼ 12 using a NN interaction with the Green’s
function Monte Carlo method (GFMC) [4,5]. At present, this
method requires extreme computational time to be applied
for heavier nuclei. It is desired to develop a new method to
calculate nuclear structure with large nucleon numbers by
taking care of the characteristic features of the NN interaction.

The presence of the tensor force in the NN interaction
induces d-wave components in a nucleus, in particular,
for proton-neutron (pn) pairs as the deuteron. The d-wave
component in the deuteron makes the system bound via the
large s-d coupling of the tensor force. This d-wave component
is also found to be spatially compact as compared with
the s-wave component due to large momentum characters
brought by the tensor force [6]. This effect originates from the
pseudoscalar nature of the one-pion exchange. It is reported
experimentally that a large fraction of pn pairs is observed
as compared with pp or nn pairs in light nuclei [7,8]. This
enhancement of pn pairs is hard to reproduce theoretically
in a simple shell model (mean-field picture) [8] except for a
rigorous method such as the one of GFMC [9], which treats

*myo@ge.oit.ac.jp
†aumeya@nit.ac.jp
‡toki@rcnp.osaka-u.ac.jp
§k-ikeda@postman.riken.go.jp

the tensor force explicitly. It is important to make efforts to
study high-momentum components caused by the tensor force
in finite nuclei [10].

There are two important developments in performing
nuclear structure calculations in heavy nuclei by including
the necessary dynamics induced by the bare NN interaction.
One development is to find out that the strong tensor force is
of intermediate range and we are able to express the tensor
correlation in a reasonable shell-model space [11–13]. We
name this method as tensor-optimized shell model (TOSM).
The other is the unitary correlation operator method (UCOM)
to treat the short-range correlation caused by the short-range
repulsion [14–16]. We shall combine these two methods,
TOSM and UCOM, to describe nuclei using a bare NN

interaction. In the TOSM part, the wave function is constructed
in terms of the shell-model basis states with full optimization
of two-particle–two-hole (2p2h) states. There is no truncation
of the particle states within the 2p2h space in TOSM,
where the spatial shrinkage of the particle states is essential
to obtain convergence of the tensor contribution involving
high-momentum components [17–19]. This treatment of the
bare tensor force in TOSM corresponds to the one-pair
approximation correlated by the tensor force [19–21]. In a
few-body framework, the validity of TOSM was confirmed by
taking only the D-wave component connected with the S-wave
state directly by the tensor force for the s-shell nuclei [21].
Their calculation reproduces more than 90% of the tensor
contribution, and this result justifies the description of the
tensor correlation in TOSM. The explicit inclusion of 2p2h
states in the extended mean-field model for heavy nuclei has
been formulated by Ogawa et al. as an extended Brueckner
Hartree-Fock theory [22].

So far, we obtained various successful results of TOSM for
the investigation of the tensor correlations in He isotopes.
In 4He, we showed the selectivity of the (p1/2)2(s1/2)−2

configuration in the 2p2h space with the pn pair induced by
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the tensor force, and this correlation was recognized as the
deuteronlike state [12]. This specific 2p2h excitation plays
a decisive role in reproducing the spectra of neutron-rich He
isotopes [13,23,24]. It is found that the p3/2 occupation of extra
neutrons increases the tensor correlation of nuclei from 5He
to 8He, while the p1/2 occupation of extra neutrons decreases
the tensor correlation of those nuclei due to the Pauli blocking
between the specific 2p2h excitations by the tensor force in 4He
and the motions of the extra p1/2 neutrons. This configuration
dependence of the tensor correlation produces the right amount
of splitting energy between the p3/2- and p1/2-dominant states
in the He isotopes.

In this paper, we use the TOSM + UCOM for the study of
the Li isotopes from 5Li to 9Li, and discuss their structures
focusing on the role of the tensor force on the excitation
energies and configurations of those nuclei. Before the present
analysis, for neutron-rich 10Li and 11Li, we performed the
coupled two- and three-body cluster model analyses assuming
the 9Li core described using the simplified TOSM wave
function, respectively [6,25,26]. The cluster model for two
nuclei precisely describes the neutron wave functions in a
loosely bound state around 9Li, such as a neutron halo structure
in 11Li. Similar to the case of the He isotopes, we have shown
that 9Li has the amount of the selected excitation from the
0s orbit to the 0p1/2 orbit due to the tensor force, and the
p1/2 occupations of the last one and two neutrons in 10Li
and 11Li are blocked by this tensor correlation in 9Li. As
a result, the 1s occupation of the last neutrons is relatively
enhanced in the two nuclei, and the virtual s state in 10Li,
and the large s-wave mixing and a neutron halo formation in
11Li, are naturally explained. On the basis of these successful
results for two nuclei, in the present study we perform a full
microscopic analysis by using the TOSM + UCOM approach
using the NN interaction for the Li isotopes. We investigate the
systematic role of the tensor force in 5−9Li. It is interesting to
see the effect of tensor force on the structures of 5,6Li [27,28].
In 6Li, the isospin T = 0 and T = 1 states coexist in the low
excitation energy region. The influence of the tensor force on
two kinds of states in 6Li is important to understand the isospin
dependence of 6Li in relation with the tensor correlation. In
heavier Li isotopes, the contribution of the tensor force is
investigated in the ground and excited states. We also see the
high-momentum behavior of the kinetic energy in each state in
relation with the tensor correlation. The present subject of Li
isotopes becomes a foundation of the nuclear structure study
using TOSM + UCOM and also of the previous study of 11Li
and 10Li structures [25,26].

In Sec. II, we explain the method of the TOSM + UCOM
approach. In Sec. III, we show the level structures of Li
isotopes and discuss their characteristics in relation with the
tensor force. A summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Tensor-optimized shell model (TOSM)

We explain the tensor-optimized shell model (TOSM)
for open-shell nuclei. We begin with writing a many-body

Hamiltonian for an A-body system as

H =
A∑
i

Ti − Tc.m. +
A∑

i<j

Vij , (1)

Vij = vC
ij + vT

ij + vLS
ij + vClmb

ij . (2)

Here, Ti is the kinetic energy of each nucleon with Tc.m. being
the center-of-mass kinetic energy. We take a bare interaction
Vij such as AV8′ [5] consisting of central vC

ij , tensor vT
ij , and

spin-orbit vLS
ij terms, and the Coulomb term vClmb

ij . We obtain
the many-body wave function � by solving the Schrödinger
equation H� = E�. In our previous works for 4He and few-
body systems, we found that the tensor force can be described
by taking 2p2h excitations with large momentum components
in the shell-model framework [12,21].

We prepare first a standard shell-model state for an open-
shell Li nucleus with A nucleons in order to introduce the
TOSM for open-shell nuclei. The standard shell-model state
�S is written as

�S =
∑
kS

AkS
|(0s)4(0p)A−4; kS〉. (3)

Here, the p shell is the valence shell and the index kS is used to
distinguish various shell-model components. The spirit of the
TOSM is that the tensor force works strongly for two nucleons
in the standard shell-model state and excites two nucleons to
various two-particle states with high-momentum components.
Hence, we limit configurations up to two-particle–two-hole
excitations from the standard shell-model state.

We extend therefore first the standard shell-model state
by allowing two particles in the s shell to excite into the p

shell. We name these extended shell-model states as |0p0h; k0〉
states, since no particle is excited into shell-model orbits
outside of the sp shells. We write the extended shell-model
states as

|0p0h; k0〉 = |(0s)ns (0p)np ; k0〉, (4)

with the constraints ns + np = A and 2 � ns � 4. k0 distin-
guishes various sp shell configurations. We take now all the
necessary high momentum components brought by the strong
tensor force. These components are included by exciting two
nucleons from the sp shells to higher shells and therefore
limit these configurations to 2p2h states from the standard
shell-model state �S . Hence, we have

|2p2h; k2〉 = |(0s)ns (0p)np (higher)2; k2〉, (5)

with the constraints ns + np = A − 2 and 2 � ns � 4. We
introduce quantum numbers k2 to distinguish various 2p2h
states, which amount to a large number of configurations. Here,
“higher” indicates higher shells outside of the sp shells, which
are treated as particle states. Hence, we use the notation of
2p2h states to specify that two particles are in higher shells
outside of the sp shells. We allow also 1p1h excitations for
shell-model consistency:

|1p1h; k1〉 = |(0s)ns (0p)np (higher)1; k1〉, (6)

with the constraints ns + np = A − 1 and 2 � ns � 4. These
1p1h states are able to include high momentum components
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and improve the 0p0h wave functions in the presence of
strong tensor correlation. Altogether, we write the TOSM wave
function � for open-shell nuclei as

� =
∑
k0

Ak0 |0p0h; k0〉 +
∑
k1

Ak1 |1p1h; k1〉

+
∑
k2

Ak2 |2p2h; k2〉. (7)

Here, all the amplitudes {Ak0 , Ak1 , Ak2} are variational coeffi-
cients to be fixed by the energy minimization.

We write now the details of the radial wave functions. The
0p0h states are shell-model states and are expressed in terms
of harmonic oscillator wave functions. Hence, the 0s and 0p

shell-model wave functions are used to express the radial wave
functions, whose length parameters are taken independently
as variational parameters. The 1p1h and 2p2h states involve
particle states with high-momentum components. The hole
states correspond to the shell-model states in the sp shells.
The particle wave functions have to contain high-momentum
components to express the specific characters of the tensor
force with all the possible angular momenta until the total
energy converges.

For particle states, we employ Gaussian wave functions
to express single-particle states in higher orbits in order to
describe high-momentum properties due to the tensor force
[29,30]. We prefer the Gaussian wave functions over the shell-
model states in order to effectively include the necessary high-
momentum components [12]. When we superpose a sufficient
number of Gaussian wave functions, the radial components
of the particle states can be fully expressed. Gaussian basis
states should be orthogonalized to the hole states and among
themselves. This condition is imposed by using the Gram-
Schmidt orthonormalization. In order to use the nonorthogonal
Gaussian basis functions in the shell-model framework, we
construct the following orthonormalized single-particle basis
function ψn

α using a linear combination of Gaussian bases {φα}
with length parameter bα,ν :

ψn
α (r) =

Nα∑
ν=1

dn
α,ν φα(r, bα,ν), (8)

〈
ψn

α

∣∣ψn′
α′

〉 = δn,n′ δα,α′ , for n = 1, . . . ,Nα, (9)

where Nα is a number of basis functions for the orbit α, and
ν is an index to distinguish the bases with Gaussian length
of bα,ν . The explicit form of the Gaussian basis function is
written as

φα(r, bα,ν) = Nl(bα,ν)rle−(r/bα,ν )2/2
[
Yl(r̂), χσ

1/2

]
j
, (10)

Nl(bα,ν) =
[

2 b−(2l+3)
α,ν


(l + 3/2)

] 1
2

, (11)

where l and j are the orbital and total angular momenta of
the basis states, respectively. The weight coefficients {dn

α,ν}
are determined to satisfy the overlap condition in Eq. (9).
This is done by using the Gram-Schmidt orthonormalization.
Following this procedure, we obtain the new single-particle
basis states {ψn

α } in Eq. (8) used in TOSM. The particle states
in 1p1h and 2p2h states are prepared to specify the basis wave

functions, whose amplitudes are determined by the variational
principle.

We note that we may use another method to obtain {ψn
α }

by solving the eigenvalue problem of the norm matrix of
the Gaussian basis set in Eq. (10) with the dimension Nα .
This method gives different coefficients {dn

α,ν} from those
of the Gram-Schmidt method. However, these two methods
of making the orthonormalized single-particle basis states
provide equivalent variational solutions for the total TOSM
wave function � in Eq. (7), because we start from the same
Gaussian basis functions in Eq. (10) with the same number Nα

of Gaussian basis states. Therefore, the TOSM solution does
not depend on the construction of the orthonormal basis states
when we start from the Gaussian basis functions.

We construct Gaussian basis functions of particle states
to be orthogonal to the occupied states. For the 1s orbit in
the particle states, we prepare an extended 1s basis function
[11,12], which is orthogonal to the 0s state and possesses a
length parameter b1s,ν that can differ from b0s of the 0s state.
In the extended 1s basis functions, the polynomial part is
changed from the usual 1s basis states to satisfy the conditions
of normalization and orthogonality to the 0s state [11]. For
the 1p orbits, we take the same method as used for the 1s

case. In the numerical calculation, we prepare ten Gaussian
basis functions at most with various range parameters to get a
convergence of the energy and Hamiltonian components.

We note here that when we write probabilities and occupa-
tion numbers of each orbit in various states in the numerical
sections, those numbers are given by the summation of all the
orthogonal orbits with the same spin having different radial
behaviors due to the fact these wave functions are constructed
by the orthonormalization. For hole states, we do not have to
sum up their numbers because the hole states are described by
the single harmonic oscillator basis states.

We take care of the center-of-mass excitations by using
the well tested method of introducing a Hamiltonian of
center-of-mass motion in the many-body Hamiltonian, known
as the Lawson method [31]. In the present study, we take the
value of h̄ω for the center-of-mass motion as the averaged
one used in the 0s and 0p orbits in the 0p0h states with the
weight of the occupation numbers in each orbit [13]. Adding
this center-of-mass Hamiltonian as the Lagrange multiplier to
the original Hamiltonian in Eq. (1), we can effectively project
out only the lowest harmonic oscillator (HO) state for the
center-of-mass motion.

The variation of the energy expectation value with respect
to the total wave function � in Eq. (7) is given by

δ
〈�|H |�〉
〈�|�〉 = 0, (12)

which leads to the following equations:
∂〈�|H − E|�〉

∂bα,ν

= 0, (13)

∂〈�|H − E|�〉
∂Aki

= 0 for i = 0, 1, 2. (14)

The total energy is represented by E. We solve two variational
equations in Eqs. (13) and (14) in the following steps. First,
fixing the length parameters bα,ν and the partial waves of
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the basis states up to Lmax, we solve the linear equation for
{Aki

} as an eigenvalue problem for H . We thereby obtain the
eigenvalues E, which are functions of {bα,ν} and Lmax. Next,
we try to adopt various sets of the length parameters {bα,ν}
and increase Lmax in order to find a better solution which
minimizes the total energy E. In TOSM, we can describe the
spatial shrinkage of particle states with an appropriate radial
form in the individual configuration, which is important to
describe the tensor correlation [11], as seen in the deuteron.

B. Unitary correlation operator method (UCOM)

We briefly explain UCOM for the short-range central
correlation [14–16], in which the following unitary operator
C is introduced:

C = exp

(
− i

∑
i<j

gij

)
. (15)

We express the correlated wave function � in terms of a simple
wave function  as � = C. The transformed Schrödinger
equation becomes Ĥ = E where the transformed Hamil-
tonian is given as Ĥ = C†HC. The operator C is in principle
a many-body operator. In the case of short-range correlation,
we are able to truncate the modified operators at the level of
two-body operators [14].

Two-body Hermite operator g in Eq. (15) is defined as

g = 1
2 {prs(r) + s(r)pr}, (16)

where the operator pr is the radial component of the relative
momentum and is conjugate to the relative coordinate r . The
function s(r) expresses the amount of the shift of the relative
wave function at the relative coordinate r for every nucleon
pair in the nuclei. We use the TOSM basis states to describe .

In UCOM, the function s(r) is determined variationally to
minimize the total energy of the system. We parametrize s(r)
in the same manner as proposed by Feldmeier and Neff [14,15]
for four channels of spin-isospin pairs. The detailed forms of
s(r) and their parametrization are explained in the previous
paper [13]. In the present analysis, we use these s(r) functions
commonly for every states of the Li isotopes. To simplify the
numerical calculation, we adopt the ordinary UCOM for the
central correlation part instead of the S-UCOM in this analysis.

III. NUMERICAL RESULTS

A. 4He

We explain first the results of 4He calculated by using
TOSM + UCOM. We then discuss how the structures of 5−9Li
behave by comparing with the properties of 4He. We show
results of 4He using the AV8′ interaction, which consists of
central, LS and tensor terms. The AV8′ interaction is used in
the calculation given by Kamada et al., where the Coulomb
term is ignored [2]. The total energy of 4He is obtained as
−22.30 MeV in TOSM + UCOM. The convergence of the
solutions of 4He has already been confirmed in the previous
works [12,13]. The energy components of 4He are discussed
in the previous paper [13].

TABLE I. Probabilities of various configurations in 4He with
TOSM + UCOM using the AV8′ interaction, where the two sub-
scripts 00 and 10 are the spin-isospin quantum numbers.

(0s)4
00 84.14

(0s)−2
10 (0p1/2)2

10 2.32

(0s)−2
10 [(1s1/2)(0d3/2)]10 2.20

(0s)−2
10 [(0p3/2)(0f5/2)]10 1.82

(0s)−2
10 [(0p1/2)(0p3/2)]10 1.21

Remaining part 8.31

The dominant configurations of 4He in TOSM are listed in
Table I with their probabilities. The specific 2p2h states such
as (0s)−2

10 (0p1/2)2
10 show large probabilities and are essential

to produce the tensor correlation in 4He. The selectivity
of those 2p2h configurations can be understood from the
coupling by the tensor operator which changes both the orbital
angular momentum and spin by 2 with the opposite direction
of their z components [11,17]. In addition, the 2p2h state
with (0s)−2

10 [(1s1/2)(0d3/2)]10 is also favored by the tensor
interaction. It is found that the dominant 2p2h states commonly
correspond to the excitations of a pn pair. Those features of
the 2p2h excitations play an important role in determining the
structures of 5–9Li, as will be discussed later.

For comparison, we show the results with the Minnesota
(MN) NN interaction, which does not have the tensor force.
The MN interaction consists of the central and LS parts with
u parameter being 0.95 [32,33]. We use set III of the MN
interaction for the LS force. TOSM has been confirmed to
reproduce the binding energy and the radius of 4He obtained
by few-body stochastic variational method (SVM) approach
[13,34,35]. It is obtained that the (0s)4 configuration is by
far dominant in the 4He wave function by 96.6%. Other 2p2h
configurations have a probability less than a percent. This
comparison makes the role of the tensor force clear on the
energy spectra of the p-shell nuclei for the case of the AV8′
interaction.

We also list the occupation numbers of nucleons in 4He
using AV8′ in Table II. It is shown that the p1/2 orbit has the
largest contribution among the particle states according to the
large 2p2h mixing including the p1/2 component. In the MN
case, it is found that the component of the 0s orbit is larger than
the AV8′ case and the enhancement of the p1/2 orbit is not ob-
tained. These results mean that the tensor force brings the spe-
cific excitations from the s shell to the p and sd shells in 4He.

B. Energy spectra of the Li isotopes

We show the calculated results of the Li isotopes using
TOSM + UCOM with the AV8′ interaction, where Lmax is

TABLE II. Occupation numbers in each orbit of 4He using AV8′

and Minnesota (MN) interactions.

4He(J π ) 0s1/2 p1/2 p3/2 1s1/2 d3/2 d5/2

AV8′ 3.77 0.06 0.04 0.03 0.04 0.01
MN 3.94 0.01 0.03 0.01 0.004 0.006
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FIG. 1. Excitation energies of Li isotopes with TOSM + UCOM
using AV8′.

taken as 10 to get sufficient convergence. We show the
excitation spectra of 5–9Li in Fig. 1. We see quite a good
correspondence to the experimental spectra. Similar to this
result, we obtain good results for the excitation energies in
the He isotopes as shown in Fig. 2, the details of which were
discussed in Ref. [13]. In Fig. 1, the resulting level spacing
of the Li isotopes in TOSM + UCOM is good, but slightly
more compact than the experimental spectra. For example,
in 9Li, the energy difference between the lowest 3/2− and
1/2− states in TOSM + UCOM is small in comparison with
the experiment. These characteristics are commonly obtained
in the GFMC calculation [38]. We will discuss in detail all
the level structures of the Li isotopes in the next subsection.
The additional genuine three-body interaction can be one of
the components to reproduce the experimental situation [4].
As for total binding energies, our results underestimate them
in He and Li isotopes and their amounts become larger for the
neutron-rich side.

To see the interaction dependence, the energy spectra using
the MN interaction are shown in Fig. 3. In the MN case, the
excitation energies are split in two regions in comparison with
the experiments. One of the reasons is the too-large splitting
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FIG. 2. Excitation energies of He isotopes using AV8′ with
TOSM + UCOM.
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FIG. 3. Excitation energies of the Li isotopes using the Minnesota
(MN) interaction with TOSM.

energy between p3/2 and p1/2 components mainly given by
the LS interaction. When we adjust the MN interaction, such
as by changing the u parameter and the strength of the LS

interaction, to fit the LS splitting energy of 5Li, it is still
difficult to reproduce the whole trend of the energies of
the ground and excited states of Li isotopes consistently. A
large difference between the AV8′ and MN interactions is the
tensor force. A comparison of the energy spectra of the two
interactions indicates the effect of the tensor force, which has
a large impact on the excitation energy spectra of the He and
Li isotopes.

We show total energies of the Li isotopes as shown in
Fig. 5. The experimental total energies become lower than that
of 4He as the neutron number increases. On the other hand, the
calculated results go up in energy with the neutron number.
Hence in total energies, we lack some attractions, the amount
of which increase with the mass number. This mass-dependent
attraction was already seen in the case of the He isotopes. In
the previous analysis of the He isotopes [13], we have already
discussed the reasons of underbinding, which can contribute
to the bulk part of the binding energies:

(i) higher configurations beyond the 2p2h states in TOSM,
such as the 4p4h states to include the two kinds of the
2p2h excitations with isospin T = 0 and T = 1 pairs
simultaneously;

(ii) the genuine three-body interaction; and
(iii) the improvement of the correlation function form of

R+(r) in UCOM.

We have estimated these three effects on the binding energies
of He isotopes such as 6He and 8He and found that we can
obtain sufficient binding energies for He isotopes, which are
comparable with the experimental values [13]. In the present
study, from the results of energy spectra in Figs. 1 and 2, we
focus on the discussion of the structure differences between
individual energy levels of the Li isotopes. We show also the
matter radii of 6,7,8,9Li in TOSM + UCOM in Table III, which
agree with experiments. We include the results of He isotopes
in addition to the Li case in Fig. 4 and find the whole trend
on the matter radii observed in the He and Li isotopes is very
good.
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TABLE III. Matter radii of Li isotopes in comparison with the
experiments. Units are in fm.

TOSM Experiment

Ref. [36] Ref. [37]

6Li 2.22 2.35(3) 2.44(7)
7Li 2.32 2.35(3)
8Li 2.42 2.38(2) 2.50(6)
9Li 2.46 2.32(2) 2.44(6)

C. Energy components and configurations

1. 5Li

We discuss in detail the structures of each energy level
of the Li isotopes obtained by using the TOSM + UCOM
framework with the AV8′ NN interaction. In Fig. 1, we show
the energy spectrum of 5Li as compared with experiment,
where the energy difference of the spin-orbit partner states is
obtained as �E = 1.7 MeV. It is noted that, in the present
calculation, the continuum effect of the last unbound proton is
not included because of the bound state approximation. It is
naively expected that the inclusion of the continuum state of a
last proton can reduce the splitting energy of 5Li because of the
spatial extension of the proton wave function in the asymptotic
region. There is also a discussion of the effect of the genuine
three-body interaction on the splitting energy in the 4He + n

scattering [42].
In Table IV, we compare various energy components in the

3/2− and 1/2− states of 5Li measured from those of 4He. We
discuss the double roles of the tensor force on these spin-orbit
partner states. From Table IV, it is found that the tensor energy
of the 3/2− state is attractive, while it is very weak for 1/2−.
The larger contribution of the tensor force in 3/2− results in the
enhancement of the kinetic energy because of the involvement
of high-momentum components brought by the tensor force.
For 1/2−, on the other hand, the energy gain from the tensor
force is small and the enhancement of the kinetic energy is
small. These differences are related to the large mixing of the
p1/2 component in 4He as shown in Table I. In 5Li, when the
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last proton occupies the p3/2 orbit, the tensor correlation in 4He
is not much reduced. On top the p3/2 state has an additional
tensor contribution because of the tensor correlation between
the p3/2 proton and the neutrons in the s shell. In the case of
the p1/2 occupation, this proton blocks the spatially compact
component of the p1/2 proton in the 4He part because of the
small degeneracy of the p1/2 orbit. This dynamics produces
the Pauli blocking and reduces the total binding energy of 5Li.
As a result, the last proton occupied in the p1/2 orbit should
be orthogonal to the excited p1/2 orbit in 4He and the tensor
force does not gain the energy in 5Li(1/2−). Those different
couplings of the tensor force are essential to explain the energy
components in two states of 5Li and results in the LS splitting
energy as a net value [13,43–45].

2. 6Li

In Fig. 1, we show the energy spectrum of 6Li as compared
with experiment. We see the ground state has a spin parity of
Jπ = 1+, while states with T = 1 are closer to the 1+ state as
compared to experiment. In order to understand the reason of
the calculated results, we show energy components in Table V
measured from the energy components in 4He. It is found that
the 1+ ground state mostly exhausts the tensor energy. This
is because of the deuteronlike correlations of the valence pn

pair in addition to that in the 4He part. Corresponding to this

TABLE IV. Various energy components in 5Li measured from
those of the 4He ground state. Units are in MeV.

J π Kinetic Central Tensor LS

3/2− 10.96 −2.00 −3.07 −1.74
1/2− 5.90 0.30 −0.41 0.03
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TABLE V. Various energy components in 6Li measured from
those of the 4He ground state. Units are in MeV.

J π (T ) Kinetic Central Tensor LS

1+
1 (0) 28.29 −9.76 −11.81 −2.28

3+ (0) 27.57 −8.75 −8.75 −3.35
2+ (0) 25.90 −8.08 −8.69 −1.29
1+

2 (0) 23.96 −6.63 −6.44 −1.32

0+ (1) 25.72 −13.35 −4.12 −2.29
2+ (1) 30.50 −12.00 −6.64 −3.07

fact, the kinetic energy of the 1+
1 state shows the largest value

among the isospin T = 0 state of 6Li. The 2+ and 3+ states
with T = 0 almost show similar energies for the central and
tensor energy components. For the two isospin T = 1 states,
corresponding to the isobaric analog states of 6He, the tensor
energies are mostly much smaller than the T = 0 states of 6Li.
This is naturally understood from the viewpoint of the isospin
dependence of the tensor force. In the T = 1 states of 6Li, the
4He part contains the pn pair excitation with T = 0 from the
0s shell by the tensor force, but the outer pn pair in the 0p shell
with a T = 1 state shows a small amount of the excitation due
to the weak tensor force in the T = 1 channel. The 2+ state
with T = 1 gains a larger tensor energy than those of 0+ state
and shows a larger kinetic energy.

For energy levels of 6Li in comparison with experiment, the
TOSM results give a small energy difference between T = 0
and T = 1 states as shown in Fig. 1. This can be related with the
clustering effect of the α + d structure of 6Li with T = 0. The
TOSM wave function is expanded in terms of the shell-model
basis states and, hence, it is naively difficult to describe the tail
component of the spatially extended clustering states, such
as the 3α state in the excited states of 12C [46]. Similarly,
6Li with the T = 0 states is considered to need the clustering
component of α + d in addition to the shell-model-like one
[27,28]. The lack of the cluster components loses some amount
of the binding energy of 6Li in TOSM. On the other hand the
T = 1 states do not corresponds to the α + d clustering state,
so that TOSM can describe those T = 1 states, similar to the
6He case. This structure difference between T = 0 and T = 1
states can explain the small energy difference between those
states of 6Li in TOSM. When we increase the strength of the
tensor force artificially by about 5% in order to see the effect of
tensor force on the T = 0 and T = 1 states in 6Li, the energy
gain of the 1+ (T = 0) state is 3.1 MeV, which is larger than
2.7 MeV of the 0+ (T = 1) state. This fact implies that the
T = 0 states in 6Li contain the tensor correlation much more
due to the presence of the outer pn pair with the T = 0 channel.
The full inclusion of the α + d component in addition to the
TOSM basis states would be one of the ways to explain the
experimental energy difference between the T = 0 and T = 1
states of 6Li.

We list the dominant configurations of 6Li in Table VI.
For comparison of the 1+

1 and 1+
2 states, it is found that

the 1+
1 state does not have the large component of the

(0p1/2)2 configuration of a pn pair, while the 1+
2 state has this

configuration by 23%. This difference in the configurations

TABLE VI. Dominant configurations of 6Li(J π (T )) with their
squared amplitudes (AJ

k )2 using the AV8′ interaction.

1+
1 (0) 1+

2 (0)

(0s)4(0p1/2)(0p3/2) 0.43 (0s)4(0p3/2)2 0.30
(0s)4(0p3/2)2 0.38 (0s)4(0p1/2)(0p3/2) 0.29

(0s)4(0p1/2)2 0.23

2+(0) 3+(0)
(0s)4(0p1/2)(0p3/2) 0.82 (0s)4(0p3/2)2 0.82

0+(1) 2+(1)
(0s)4(0p3/2)2 0.72 (0s)4(0p3/2)2 0.74
(0s)4(0p1/2)2 0.11 (0s)4(0p1/2)(0p3/2) 0.11

explains the tensor energies in two states shown in Table V.
Owing to the Pauli blocking between the pn pair in the 0p

shell and another pair excited from the 0s shell, the 1+
2 suffers

the large blocking effect due to the presence of the (0p1/2)2

configuration, which reduces the tensor contribution in this
state. The same state dependence of the tensor correlation is
mentioned for 5Li.

We also compare the dominant configurations of 6Li
using AV8′ and MN interactions. The MN case is shown in
Table VII. In the 1+ ground state, the difference in the
results of two interactions is clearly seen: the (0p1/2)(0p3/2)
configuration in the 0p shell of 6Li is enhanced in the
AV8′ case rather than the MN one. This configuration is a
characteristic feature of the LS coupling scheme. We discuss
the relation between this configuration and the tensor force.
The (0p1/2)(0p3/2) configuration of pn in 6Li involves 89%
of the spin triplet (S = 1) component, while the (0p3/2)2

configuration involves 44%. The S = 1 component in the wave
function is important to activate the tensor force and is related
to the deuteronlike component in the pn pair. It is found that
the (0p1/2)(0p3/2) configuration in 6Li is favored to increase
the tensor energy in the wave function. Contrastingly, in the
MN case, there is no explicit tensor force and the (0p3/2)2

configuration becomes dominant, which can be understood
naively from the jj coupling scheme. It is experimentally
interesting to observe the amount of the mixings of p1/2 and
p3/2 orbits in 6Li.

We list the occupation numbers of 6Li up to the sd shell in
Table VIII using AV8′. It is found that the occupation numbers
in the 0s shell and the sd shell show almost common values

TABLE VII. Dominant configurations of 6Li(J π (T )) using the
Minnesota interaction.

1+
1 (0) 1+

2 (0)

(0s)4(0p3/2)2 0.56 (0s)4(0p1/2)(0p3/2) 0.43
(0s)4(0p1/2)(0p3/2) 0.29 (0s)4(0p3/2)2 0.19

(0s)4(0p1/2)2 0.11

2+(0) 3+(0)
(0s)4(0p1/2)(0p3/2) 0.83 (0s)4(0p3/2)2 0.88

0+(1) 2+(1)
(0s)4(0p3/2)2 0.82 (0s)4(0p3/2)2 0.77
(0s)4(0p1/2)2 0.04 (0s)4(0p1/2)(0p3/2) 0.09
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TABLE VIII. Occupation numbers in each orbit of 6Li using the
AV8′ interaction.

J π , T 0s1/2 0p1/2 0p3/2 1s1/2 d3/2 d5/2

1+
1 , 0 3.74 0.53 1.42 0.04 0.05 0.04

1+
2 , 0 3.74 0.89 1.08 0.05 0.05 0.04

2+, 0 3.75 0.97 0.98 0.04 0.05 0.04
3+, 0 3.74 0.03 1.94 0.05 0.05 0.03

0+, 1 3.73 0.28 1.70 0.04 0.05 0.03
2+, 1 3.74 0.15 1.83 0.04 0.05 0.03

among the 6Li states, and the 0p- shell contributions depend
on the states. For comparison, we also list the MN case in
Table IX. It is found that the 0s components in each state of
6Li using AV8′ are larger than in the MN case. This is similar
to the 4He results shown in Table II. Those results mean that
the tensor force brings the excitation of the nucleon from the
0s orbit to higher orbits such as p1/2 in 6Li. This tendency can
be commonly seen in every state of 6Li. Among the sd-shell
components of 6Li, it is found that the d3/2 component is the
largest one in most of the states using AV8′. This aspect cannot
be seen in the MN case shown in Table IX, which shows the
normal order of the jj coupling scheme. This difference comes
from the tensor force, which selectively excites the nucleon
in the 0p3/2 orbit in the hole state to the d3/2 orbit in the
particle state, both of which have the same j quantum number.
This reason is schematically explained in Fig. 6, in which the
direction of the coupled orbital angular momentum and that
of the coupled spin should be opposite in the tensor operator.
Considering the transition from the (0p3/2)2 configuration by
the tensor force, one of the favored components is naively
estimated to be the (0d3/2)2 one with the distribution of l1 =
l2 = 2, where there are some fragments of the orbital angular
momentum distribution of two nucleons in the particle states.

The same selectivity of the tensor coupling can be seen
in the case of the 0s1/2-0p1/2 combination in 4He. These
specific couplings can be seen from the viewpoint of the pionic
correlation in the particle-hole representation. The pion has a
spin-parity of 0−. Hence, hole configurations with positive or
negative parity are favorably excited to particle configurations
with opposite parity with the same total spin due to the
pion exchange. The selectivity of the tensor force can be
seen as the selectivity of the pion exchange [6,17,23]. It is
extremely interesting to observe experimentally the relatively
large mixing of the d3/2 orbit among the sd shells in 6Li.

TABLE IX. Occupation numbers in each orbit of 6Li using the
MN interaction.

J π , T 0s1/2 0p1/2 0p3/2 1s1/2 d3/2 d5/2

1+
1 , 0 3.85 0.37 1.60 0.03 0.03 0.04

1+
2 , 0 3.83 0.76 1.08 0.05 0.04 0.06

2+, 0 3.85 0.94 0.99 0.03 0.04 0.04
3+, 0 3.89 0.02 1.92 0.04 0.01 0.04

0+, 1 3.85 0.12 1.85 0.03 0.02 0.05
2+, 1 3.85 0.12 1.84 0.04 0.02 0.04

(p3/2)2 (d3/2)2ΔL=2
ΔS=2

l1=l2=1
1

2
l1=l2=2

0
VT

s1 s2 s1 s2

FIG. 6. Schematic figure to explain the selectivity of the tensor
coupling of two nucleons from the (p3/2)2 configuration to the
(d3/2)2 one.

3. 7,8,9Li

For 7Li, various energy components are shown in
Table X measured from the 4He components. From the
comparison of the components in each state, it is found that
the 1/2−

1 and 3/2− states show a similar structure, having large
tensor contributions and also larger kinetic energy than those
of other states.

For comparison between the dominant configurations of
3/2−

1 and 3/2−
2 states from Table XI, the 3/2−

1 state does not
have the 0p1/2 orbit dominantly and this property increases the
tensor contribution via the excitation of the pn pair from the 0s

shell. On the other hand, the 3/2−
2 state has the 0p1/2 orbit in

the most dominant configuration and this configuration blocks
the excitation of the pn pair from the 0s shell and cannot
increase the tensor contribution in comparison with the 3/2−

1
state.

For comparison between the 1/2−
1 and 1/2−

2 states, the
1/2−

1 state dominantly has the nn pair of the 0p3/2 orbit with
the T = 1 component, and the 1/2−

2 state dominantly has the
pn pair of the 0p3/2 orbit with T = 0. The latter configuration
in the 1/2−

2 state blocks the excitation of the pn pair from the
0s shell to the 0p3/2 orbit by some amount, which reduces the
tensor contribution. These configurations in two 1/2− states
determine the different tensor contributions in two states. From
those analyses, it is found that the nucleons occupied in the
0p shell in the lowest configuration play an important role in
explaining the tensor contribution in each state of 7Li.

For 8Li, various energy components are shown in Table XII
measured from the 4He components. The dominant configura-
tions are listed in Table XIII. In 8Li, the 2+ state is the ground

TABLE X. Various energy components in 7Li measured from
those of the 4He ground state. Units are in MeV.

J π Kinetic Central Tensor LS

1/2−
1 53.59 −28.75 −16.45 −2.56

1/2−
2 46.85 −18.76 −13.48 −2.44

3/2−
1 53.77 −29.46 −15.62 −3.24

3/2−
2 46.95 −18.15 −14.66 −2.26

5/2−
1 50.63 −22.95 −14.74 −2.40

5/2−
2 49.35 −19.56 −14.10 −4.54

5/2−
3 46.45 −17.58 −13.02 −2.64

7/2−
1 52.74 −24.96 −13.99 −4.11

7/2−
2 47.54 −18.02 −12.82 −3.76
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TABLE XI. Dominant configurations of 7Li(J π (T )) with their
squared amplitudes (AJ

k )2. Two subscripts are the spin-isospin
quantum numbers.

1/2−
1 1/2−

2

(0s)4(0p3/2)2
01(0p1/2) 0.50 (0s)4(0p3/2)2

10(0p1/2) 0.47
(0s)4(0p3/2)3 0.19 (0s)4(0p3/2)3 0.17
(0s)4(0p3/2)2

10(0p1/2) 0.07 (0s)4(0p3/2)2
01(0p1/2) 0.09

3/2−
1 3/2−

2

(0s)4(0p3/2)3 0.48 (0s)4(0p3/2)2
21(0p1/2) 0.55

(0s)4(0p3/2)(0p1/2)2
01 0.15 (0s)4(0p3/2)2

10(0p1/2) 0.13
(0s)4(0p3/2)2

21(0p1/2) 0.10 (0s)4(0p3/2)(0p1/2)2
01 0.10

5/2−
1 5/2−

2

(0s)4(0p3/2)2
21(0p1/2) 0.64 (0s)4(0p3/2)3 0.61

(0s)4(0p3/2)(0p1/2)2
10 0.09 (0s)4(0p3/2)2

30(0p1/2) 0.12
(0s)4(0p3/2)2

30(0p1/2) 0.06 (0s)4(0p3/2)(0p1/2)2
10 0.05

5/2−
3

(0s)4(0p3/2)2
30(0p1/2) 0.60

(0s)4(0p3/2)3 0.11
(0s)4(0p3/2)2

21(0p1/2) 0.06

7/2−
1 7/2−

2

(0s)4(0p3/2)3 0.53 (0s)4(0p3/2)2
30(0p1/2) 0.53

(0s)4(0p3/2)2
30(0p1/2) 0.29 (0s)4(0p3/2)3 0.29

state and has the largest tensor contribution in this nucleus.
This property can be understood from the tensor correlation: T
he 2+ state dominantly has the (0p3/2)4 configuration instead
of using the 0p1/2 orbit. This allows the selected excitation
from the 0s orbit to the 0p1/2 one in the 4He part and increases
the tensor correlation in this state, relatively, in comparison
with the other states of 8Li. The 3+ state also shows a similar
result of the larger tensor contribution.

For 9Li, various energy components are shown in Table XIV
and the dominant configurations are listed in Table XV. This
nucleus is important in relation to the structures of more
neutron-rich systems of 10Li and 11Li and the breaking of the
0p-shell magicity in that region. From Table XV, in the ground
3/2−

1 state, the nucleons in the 0p shell are dominated by the
(0p3/2)5 configuration, which is a subclosed configuration for
neutron part. Two neutrons among them can be excited into

TABLE XII. Various energy components in 8Li measured from
those of the 4He ground state. Units are in MeV.

J π Kinetic Central Tensor LS

0+ 62.47 −34.15 −14.30 −1.07
1+

1 64.04 −34.21 −14.71 −3.51
1+

2 62.35 −33.64 −13.11 −2.18
1+

3 61.69 −31.86 −13.17 −1.89
1+

4 59.58 −29.30 −11.59 −2.88
2+

1 72.08 −38.69 −19.30 −4.69
2+

2 69.67 −36.53 −16.41 −3.10
2+

3 69.23 −37.16 −14.08 −3.71
3+ 70.02 −36.65 −15.68 −4.86
4+ 62.91 −31.11 −12.43 −3.32

TABLE XIII. Dominant configurations of 8Li(J π (T )) with their
squared amplitudes (AJ

k )2. Two subscripts are the spin-isospin
quantum numbers.

0+ 4+

(0s)4(0p3/2)2
01(0p1/2)2

01 0.61 (0s)4(0p3/2)4 0.81
(0s)4(0p3/2)3(0p1/2) 0.20

1+
1 1+

2

(0s)4(0p3/2)3
3/2,3/2(0p1/2) 0.32 (0s)4(0p3/2)3

3/2,1/2(0p1/2) 0.50

(0s)4(0p3/2)4 0.25 (0s)4(0p3/2)3
3/2,3/2(0p1/2) 0.11

(0s)4(0p3/2)3
3/2,1/2(0p1/2) 0.14 (0s)4(0p3/2)2

10(0p1/2)2
01 0.09

1+
3 1+

4

(0s)4(0p3/2)2
01(0p1/2)2

10 0.27 (0s)4(0p3/2)4 0.27
(0s)4(0p3/2)3

3/2,1/2(0p1/2) 0.23 (0s)4(0p3/2)2
01(0p1/2)2

10 0.23

(0s)4(0p3/2)3
3/2,3/2(0p1/2) 0.14 (0s)4(0p3/2)3

3/2,3/2(0p1/2) 0.16

(0s)4(0p3/2)2
10(0p1/2)2

01 0.13 (0s)4(0p3/2)2
10(0p1/2)2

01 0.06

2+
1 2+

2

(0s)4(0p3/2)4 0.41 (0s)4(0p3/2)3
3/2,3/2(0p1/2) 0.35

(0s)4(0p3/2)3
3/2,3/2(0p1/2) 0.15 (0s)4(0p3/2)3

3/2,1/2(0p1/2) 0.28

(0s)4(0p3/2)2
21(0p1/2)2

01 0.14 (0s)4(0p3/2)2
21(0p1/2)2

10 0.08

2+
3 3+

(0s)4(0p3/2)3
3/2,1/2(0p1/2) 0.39 (0s)4(0p3/2)4 0.53

(0s)4(0p3/2)3
3/2,3/2(0p1/2) 0.20 (0s)4(0p3/2)2

30(0p1/2)2
01 0.15

(0s)4(0p3/2)4 0.16 (0s)4(0p3/2)3
5/2,1/2(0p1/2) 0.12

the 0p1/2 orbit by about 26%, which is the neutron pairing
correlation in the 0p shell. This situation of the 3/2−

1 state can
allow the excitation of the pn pair from 0s shell, which emerges
from the tensor correlation in 9Li. In our previous work, we
have used this idea to explain the breaking of the neutron
magicity at N = 8 in 11Li and also the inversion phenomena of
p-sd shells in 10Li. In that work, the 2p2h excitations from the
neutron subclosed configuration of 9Li are taken into account
as the pn and nn pair excitations. It is also found that the main
component of the excited 3/2−

2 state can correspond to the
pairing excited one with respect to the ground 3/2−

1 state.
Seeing the whole structures from 6Li to 9Li, it is found that

their ground states possess the largest tensor energies, in which
the configurations of the 0p shell are constructed to activate the
two kinds of excitations by the tensor force; one is from the 0s

orbit to the p1/2 orbit and the other is from 0p shell to a higher
shell such as the sd shell. In their ground states, the 0p1/2

component in its most dominant configurations is included
only in 6Li. Other heavier systems contain the (0p3/2)A−4

configuration largely, which is the jj -like one, to increase the

TABLE XIV. Various energy components in 9Li measured from
those of the 4He ground state. Units are in MeV.

J π Kinetic Central Tensor LS

1/2− 90.78 −52.00 −20.08 −4.52
3/2−

1 91.49 −53.35 −18.62 −5.72
3/2−

2 89.76 −50.40 −19.24 −3.15
5/2− 90.66 −51.47 −18.42 −4.20
7/2− 90.05 −49.00 −17.68 −5.19
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TABLE XV. Dominant configurations of 9Li(J π (T )) with their
squared amplitudes (AJ

k )2. Two subscripts are the spin-isospin
quantum numbers.

1/2−

(0s)4(0p3/2)4
02(0p1/2) 0.67

(0s)4(0p3/2)2
01(0p1/2)3 0.11

3/2−
1

(0s)4(0p3/2)5 0.46
(0s)4(0p3/2)3

3/2,1/2(0p1/2)2
01 0.19

(0s)4(0p3/2)3
3/2,3/2(0p1/2)2

01 0.07

3/2−
2

(0s)4(0p3/2)3
3/2,3/2(0p1/2)2

01 0.38

(0s)4(0p3/2)4
11(0p1/2) 0.27

(0s)4(0p3/2)3
3/2,3/2(0p1/2)2

10 0.08

5/2− 7/2−

(0s)4(0p3/2)4
21(0p1/2) 0.57 (0s)4(0p3/2)4

31(0p1/2) 0.80
(0s)4(0p3/2)3

5/2,1/2(0p1/2)2
01 0.13

tensor correlation from the 0s orbit to the 0p1/2 orbit. From this
result, the 6Li nucleus is a specific one and this is considered
to be related to the α + d component in this nucleus, as was
mentioned.

IV. SUMMARY

We have developed a method to describe nuclei with
bare NN interaction on the basis of the tensor-optimized
shell model with the unitary correlation operator method,
TOSM + UCOM. We have treated the tensor force in terms
of TOSM, in which 2p2h states are fully optimized to
describe the deuteronlike tensor correlation. The short-range
repulsion in the NN interaction is treated by using the central
correlation part of UCOM. We have shown the reliability of
TOSM + UCOM using the AV8′ interaction to investigate the
structures of the Li isotopes. It is found that the excitation
energy spectra are quite consistent with the experimental
spectra. When we employ the effective Minnesota interaction
consisting of only the central and LS parts, the excitation
energy spectra show quite a large deviation from experiment.

It has been found that 4He contains a relatively large amount
of the pn pair in the p1/2 orbit due to the tensor force.

This characteristics of the tensor force produces the state
dependence in the Li isotopes. In 5Li, the 3/2− state gains
more tensor energy than the 1/2− case. The enhancement
of the kinetic energy is also observed in the 3/2− state of
5Li, which is brought by the tensor force. As a result, the
tensor force dynamically produces the state dependence in 5Li
and contributes to the LS splitting energy in 5Li. In 6Li, the
tensor force also makes the large mixing of the spin-triplet
component in the configuration of the last pn pair in the
ground state, which shows the LS coupling scheme. This
component increases the tensor energy and is related to the
α + d clustering configuration in 6Li. This characteristics
cannot be seen in the Minnesota interaction without the
tensor force, which shows rather the conventional jj -coupling
scheme. In 7,8,9Li, the jj -like configurations, which include
more 0p3/2 states than the 0p1/2 states, can gain the tensor
energy, because of the allowance of the pn-pair excitation
from the 0s orbit to the 0p1/2 orbit in the 4He core part. As a
conclusion of the roles of the tensor force in the Li isotopes,
the tensor energy depends on the configurations of nucleons
occupied mainly in the 0p shell in each state. This property is
related to the amount of the excitation of the pn pair from the
0s shell by the tensor force.

The amount of the high-momentum component also de-
pends on the tensor energy in each state. Observation of the
high-momentum component experimentally in finite nuclei is
desired in order to confirm the existence of the strong tensor
correlation [7,10].

The tensor force would play important roles in various
physical quantities such as charge radii, quadrupole and
magnetic moments [47], in addition to the energy spectra.
In our previous study of 11Li, we discuss those quantities of
11Li in detail [25,26]. It is interesting to discuss the effect of
the tensor force on these quantities in other Li isotopes using
the TOSM + UCOM method.
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