
PHYSICAL REVIEW C 86, 024317 (2012)

Relativistic energy density functional description of shape transitions in superheavy nuclei
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Relativistic energy density functionals (REDF) provide a complete and accurate global description of nuclear
structure phenomena. A modern semiempirical functional, adjusted to the nuclear matter equation of state and
to empirical masses of deformed nuclei, is applied to studies of shapes of superheavy nuclei. The theoretical
framework is tested in a comparison of calculated masses, quadrupole deformations, and potential energy barriers
to available data on actinide isotopes. Self-consistent mean-field calculations predict a variety of spherical, axial,
and triaxial shapes of long-lived superheavy nuclei, and their α-decay energies and half-lives are compared to
data. A microscopic, REDF-based, quadrupole collective Hamiltonian model is used to study the effect of explicit
treatment of collective correlations in the calculation of Qα values and half-lives.
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I. INTRODUCTION

For many years theoretical studies of superheavy nuclei
(SHN) were mostly based on the traditional macroscopic-
microscopic approach [1–5], but since the late 1990s the
framework of self-consistent mean-field models, based on
realistic effective internucleon interactions or energy density
functionals, has systematically been applied to the structure
of SHN [5–23]. Binding energies, deformations, α-decay en-
ergies and half-lives, fission barriers and spontaneous-fission
half-lives, fission isomers, and single-nucleon shell structure
of SHN have successfully been described using self-consistent
mean-field (SCMF) models based on the Gogny effective
interaction, the Skyrme energy functional, and relativistic
meson-exchange effective Lagrangians.

The advantages of using SCMF models include the intuitive
interpretation of results in terms of single-particle states and
intrinsic shapes, calculations performed in the full-model
space of occupied states, and the universality that enables
their applications to all nuclei throughout the periodic chart.
The latter feature is especially important for extrapolations
to regions of exotic, short-lived nuclei far from stability for
which few, if any, data are available. In addition, the SCMF
approach can be extended beyond the static mean-field level
to explicitly include collective correlations and, thus, perform
detailed calculations of excitation spectra and transition rates.

During the past decade, important experimental results
on the mass limit of the nuclear chart have been obtained
using compound nucleus reactions between the 48Ca beam
and actinide targets. A number of isotopes of new elements
with the atomic number Z = 113–118 have been discovered,
and new isotopes of Z = 110 and 112 [24–31]. The decay
energies and the resulting half-lives provide evidence of a
significant increase of stability with increasing neutron number
in this region of SHN. Theoretical studies predict that SHN
in this region should display rapid shape transitions, from
prolate, through spherical, to oblate-deformed ground states
[5,6,10,13,17,32]. These nuclei, therefore, present an ideal
testing ground for structure models attempting to predict

the location of an “island of stability” for SHN around
N = 184.

In this work we apply the framework of relativistic energy
density functionals (REDF) to an illustrative study of shape
transitions and shape coexistence in SHN with Z = 110–120.
There are several advantages in using functionals with manifest
covariance and, in the context of this study, the most important
is the natural inclusion of the nucleon spin degree of freedom
and the resulting nuclear spin-orbit potential, which emerges
automatically with the empirical strength. Our aim is to test the
recently introduced functional DD-PC1 [33] in self-consistent
relativistic Hartree-Bogoliubov (RHB) calculations of energy
surfaces (axial, triaxial, octupole), α-decay energies, and
half-lives of SHN, in comparison to available data and previous
theoretical studies. Section II introduces the general frame-
work of REDFs and, in particular, the functional DD-PC1 that
will be used in illustrative calculations throughout this work.
The functional is tested in calculations of binding energies,
ground-state quadrupole deformations, fission barriers, fission
isomers, and Qα values for even-even actinide nuclei. In
Sec. III, we apply the RHB framework based on the functional
DD-PC1 and a separable pairing interaction in a description of
triaxially deformed shapes and shape transitions of even-even
superheavy nuclei. A microscopic, REDF-based, quadrupole
collective Hamiltonian model is used to study the effect of
explicit treatment of collective correlations. Qα values and
half-lives for two chains of odd-even and odd-odd superheavy
systems are computed using a simple blocking approxima-
tion in axially symmetric self-consistent RHB calculations.
Section IV summarizes the results and presents an outlook for
future studies.

II. THE RELATIVISTIC ENERGY DENSITY
FUNCTIONAL DD-PC1

Relativistic energy density functionals (REDF) provide
an accurate, reliable, and consistent description of nuclear
structure phenomena. Semiempirical functionals, adjusted to
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a microscopic nuclear matter equation of state and to bulk
properties of finite nuclei, are applied to studies of arbitrarily
heavy nuclei, exotic nuclei far from stability, and even systems
at the nucleon drip-lines. REDF-based structure models have
been developed that go beyond the mean-field approximation
and include collective correlations related to restoration of
broken symmetries and to fluctuations of collective variables.

Although it originates in the effective interaction between
nucleons, a generic density functional is not necessarily related
to any given nucleon-nucleon potential and, in fact, some of
the most successful modern functionals are entirely empirical.
Until recently the standard procedure of fine-tuning global
nuclear density functionals was to perform a least-squares
adjustment of a small set of free parameters simultaneously
to empirical properties of symmetric and asymmetric nuclear
matter and to selected ground-state data of about ten spherical
closed-shell nuclei. A new generation of semimicroscopic and
fully microscopic functionals is currently being developed that
will, on the one hand, establish a link with the underlying
theory of strong interactions and, on the other hand, provide
accurate predictions for a wealth of new data on short-lived
nuclei far from stability. To obtain unique parametrizations,
these functionals will have to be adjusted to a larger data set of
ground-state properties, including both spherical and deformed
nuclei [34,35].

For a relativistic nuclear energy density functional the
basic building blocks are densities and currents bilinear in the
Dirac spinor field ψ of the nucleon: ψ̄Oτ�ψ , Oτ ∈ {1, τi},
� ∈ {1, γμ, γ5, γ5γμ, σμν}. τi are the isospin Pauli matrices
and � generically denotes the Dirac matrices. The isoscalar
and isovector four-currents and scalar density are defined
as expectation values of the corresponding operators in the
nuclear ground state. The nuclear ground state is determined by
the self-consistent solution of relativistic Kohn-Sham single-
nucleon equations. To derive those equations it is useful to
construct an interaction Lagrangian with four-fermion (con-
tact) interaction terms in the various isospace-space channels:
isoscalar-scalar (ψ̄ψ)2, isoscalar-vector (ψ̄γμψ)(ψ̄γ μψ),
isovector-scalar (ψ̄ �τψ) · (ψ̄ �τψ), isovector-vector (ψ̄ �τγμψ) ·
(ψ̄ �τγ μψ). A general Lagrangian can be written as a
power series in the currents ψ̄Oτ�ψ and their derivatives,
with higher-order terms representing in-medium many-body
correlations.

In Ref. [33] a Lagrangian was considered that includes
second-order interaction terms, with many-body correlations
encoded in density-dependent strength functions. A set of 10
constants, which control the strength and density dependence
of the interaction Lagrangian, was fine-tuned in a multistep
parameter fit exclusively to the experimental masses of 64
axially deformed nuclei in the regions A ≈ 150−180 and
A ≈ 230−250. The resulting functional DD-PC1 has been
further tested in calculations of binding energies, charge radii,
deformation parameters, neutron skin thickness, and excitation
energies of giant monopole and dipole resonances. The corre-
sponding nuclear matter equation of state is characterized by
the following properties at the saturation point: nucleon density
ρsat = 0.152 fm−3, volume energy av = −16.06 MeV, surface
energy as = 17.498 MeV, symmetry energy a4 = 33 MeV, and
the nuclear matter compression modulus Knm = 230 MeV.

For a quantitative description of open-shell nuclei it is
necessary to consider also pairing correlations. The relativistic
Hartee-Bogoliubov (RHB) framework [36] provides a unified
description of particle-hole (ph) and particle-particle (pp)
correlations on a mean-field level by combining two average
potentials: the self-consistent mean field that encloses all the
long range ph correlations, and a pairing field 
̂ that sums up
the pp-correlations. In this work we perform axially symmetric
and triaxial calculations based on the RHB framework with the
ph effective interaction derived from the DD-PC1 functional.
A pairing force separable in momentum space: 〈k|V 1S0 |k′〉 =
−Gp(k)p(k′) is used in the pp channel. By assuming a simple
Gaussian ansatz p(k) = e−a2k2

, the two parameters G and a

were adjusted to reproduce the density dependence of the gap
at the Fermi surface in nuclear matter, calculated with a Gogny
force. For the D1S parameterization [37] of the Gogny force
the following values were determined: G = −728 MeVfm3

and a = 0.644 fm [38]. When transformed from momentum
to coordinate space, the force takes the form

V (r1, r2, r ′
1, r ′

2) = Gδ(R − R′)P (r)P (r ′) 1
2 (1 − P σ ) , (1)

where R = 1
2 (r1 + r2) and r = r1 − r2 denote the center-

of-mass and the relative coordinates, and P (r) is the Fourier
transform of p(k): P (r) = 1/(4πa2)3/2e−r 2/4a2

. The pairing
force has finite range and, because of the presence of the factor
δ(R − R′), it preserves translational invariance. Even though
δ(R − R′) implies that this force is not completely separable
in coordinate space, the corresponding antisymmetrized pp
matrix elements can be represented as a sum of a finite number
of separable terms in the basis of a 3D harmonic oscillator [39].
The force Eq. (1) reproduces pairing properties of spherical
and deformed nuclei calculated with the original Gogny force,
but with the important advantage that the computational cost
is greatly reduced.

The Dirac-Hartree-Bogoliubov equations [36] are solved by
expanding the nucleon spinors in the basis of a 3D harmonic
oscillator in Cartesian coordinates. In this way both axial and
triaxial nuclear shapes can be described. The map of the
energy surface as a function of the quadrupole deformation
is obtained by imposing constraints on the axial and triaxial
quadrupole moments. The method of quadratic constraint uses
an unrestricted variation of the function

〈Ĥ 〉 +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)2, (2)

where 〈Ĥ 〉 is the total energy, and 〈Q̂2μ〉 denotes the
expectation value of the mass quadrupole operators:

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2. (3)

q2μ is the constrained value of the multipole moment, and C2μ

is the corresponding stiffness constant.
To illustrate the accuracy of the DD-PC1 functional in

the calculation of ground-state properties of heavy nuclei, in
Fig. 1 we plot the results of self-consistent 3D RHB calcu-
lations for several isotopic chains in the actinide region: Th,
U, Pu, Cm, Cf, Fm, and No. The deviations of the calculated
binding energies from data [40] show an excellent agreement
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FIG. 1. (Color online) Absolute deviations of the self-consistent
RHB ground-state binding energies from the experimental values
[40], for the isotopic chains of Th, U, Pu, Cm, Cf, Fm, and No (upper
panel). In the lower panel the calculated ground-state axial quadrupole
moments are shown in comparison to data [41] (open symbols).

between theory and experiment: the absolute difference be-
tween calculated and experimental binding energies is less than
1 MeV in all cases. An important result is also that the mass
residuals do not display any notable dependence on the mass
(neutron) number. The calculated ground-state quadrupole Q20

moments are compared to available data [41] in the lower
panel of Fig. 1. One notices that the values predicted by the
DD-PC1 functional reproduce in detail the isotopic trend of the
empirical moments in the Th, U, Pu, and Cm sequences and are
in very good agreement with the quadrupole moments of the Cf
isotopes.

The “double-humped” fission barriers of actinide nuclei
provide an important test for nuclear energy density func-
tionals. In the review of self-consistent mean-field models
for nuclear structure [15], which also contains an extensive
list of references to previous studies of fission barriers using
mean-field-based models, Bender et al. compared paths in
the deformation energy landscape of 240Pu obtained with
various Skyrme, Gogny and relativistic mean-field (RMF)
interactions. In general, relaxing constraints on symmetries
lowers the fission barriers. The predicted shapes are triaxial
and reflection-symmetric at the first barrier, and predominantly
axial and reflection-asymmetric at the second barrier. The
systematics of axially symmetric fission barriers in Th, U,
Pu, Cm, and Cf nuclei, as well as for superheavy elements
Z = 108–120, using several Skyrme and RMF mean-field
interactions, was investigated in Ref. [42]. The fission barriers
of 26 even-Z nuclei with Z = 90–102, up to and beyond
the second saddle point, were calculated in Ref. [43] with
the constrained Hartree-Fock approach based on the Skyrme
effective interaction SkM∗. The fission barriers of 240Pu
beyond the second saddle point were also explored using
the axially quadrupole constrained RMF model with the PK1

effective interaction [44]. In a very recent optimization of
the new Skyrme density functional UNEDF1 [35], excitation
energies of fission isomers in 236,238U, 240Pu, and 242Cm, were
added to the data set used to adjust the parameters of the
functional. Compared to the original functional UNEDF0 [34],
the inclusion of the new data allowed an improved description
of fission properties of actinide nuclei. The effect of triaxial
deformation on fission barriers in the actinide region was
recently also explored in a systematic calculation of Ref. [45],
based on the RMF + BCS framework. The potential energy
surfaces of actinide nuclei in the (β20, β22, β30) deformation
space (triaxial + octupole) were analyzed in the newest
self-consistent mean-field plus BCS calculation based on
relativistic energy density functionals [46]. This study has
shown the importance of the simultaneous treatment of triaxial
and octupole shapes along the entire fission path.

The fission barriers calculated in the present work are
shown in Fig. 2, where we plot the potential energy curves of
236,238U, 240Pu, and 242Cm, as functions of the axial quadrupole
deformation parameter β20. The deformation parameters are
related to the multipole moments by the relation

βλμ = 4π

3ARλ
〈Qλμ〉. (4)

To be able to analyze the outer barrier heights considering
reflection-asymmetric (octupole) shapes, the results displayed
in this figure have been obtained in a self-consistent RMF
plus BCS calculation that includes either triaxial shapes
or axially symmetric but reflection-asymmetric shapes. The
interaction in the particle-hole channel is determined by the
relativistic functional DD-PC1, and a density-independent
δ force is the effective interaction in the particle-particle
channel. The pairing strength constants Vn and Vp are from
Ref. [47], where they were adjusted, together with the
parameters of the relativistic functional PC-F1, to ground-state
observables (binding energies, charge and diffraction radii,
surface thickness, and pairing gaps) of spherical nuclei, with
pairing correlations treated in the BCS approximation. In many
cases the functionals PC-F1 [47] and DD-PC1 predict similar
results for ground-state properties (cf., for instance, Ref. [48]),
and reproduce the empirical pairing gaps. Thus, we assume
that, without any further adjustment, the same pairing strength
parameters can be used in RMF + BCS calculations with the
functional DD-PC1.

The solid (black) curves correspond to binding energies
calculated with the constraint on the axial quadrupole moment,
assuming axial and reflection symmetry. The absolute minima
of these curves determine the energy scale (zero energy). The
dot-dashed (blue) curves denote paths of minimal energy in
calculations that break axial symmetry with constraints on
quadrupole axial Q20 and triaxial Q22 moments. Finally, the
dashed (green) curves are paths of minimal energy obtained in
axially symmetric calculations that break reflection symmetry
(constraints on the quadrupole moment Q20 and the octupole
moment Q30). The red squares, lines, and circles denote the
experimental values for the inner barrier height, the excitation
energy of the fission isomer, and the height of the outer barrier,
respectively. The data are from Ref. [49].
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FIG. 2. (Color online) Constrained energy curves of 236,238U, 240Pu, and 242Cm, as functions of the axial quadrupole deformation parameter.
Results of self-consistent axially and reflection-symmetric, triaxial, and axially reflection-asymmetric RMF + BCS calculations are denoted by
solid (black), dot-dashed (blue), and dashed (green) curves, respectively. The red squares, lines, and circles denote the experimental values for
the inner barrier height, the excitation energy of the fission isomer, and the height of the outer barrier, respectively. The data are from Ref. [49].

The excitation energies of fission isomers are fairly well
reproduced by the axially symmetric and reflection symmetric
calculation, but the paths constrained by these symmetries
overestimate the height of the inner and outer barriers.
The inclusion of triaxial shapes lowers the inner barrier by
≈2 MeV, that is, the axially symmetric barriers in the region
β20 ≈ 0.5 are bypassed through the triaxial region, bringing the
height of the barriers much closer to the empirical values. As
shown in the figure, the inclusion of octupole shapes (axial,
reflection-asymmetric calculations) is essential to reproduce
the height of the outer barrier in actinide nuclei. A very good
agreement with data is obtained by following paths through
shapes with nonvanishing octupole moments. With the present
implementation of the model we could not simultaneously
calculate both octupole and triaxial shapes. Such a study
was recently performed in the RMF + BCS framework by
Bing-Nan Lu and collaborators [46]. It was shown that not
only the inner barrier, but also the reflection-asymmetric outer
barrier is lowered by the inclusion of triaxial deformations. The
effect on the outer barrier is of the order of 0.5–1 MeV, and
it accounts for 10% to 20% of the barrier height. Considering
that the functional DD-PC1 was adjusted only to the binding
energies of the absolute axial minima (masses) of deformed
nuclei, the results shown in Fig. 2 reproduce the experimental
values surprisingly well and, therefore, appear to be very
promising for its extrapolation to the region of superheavy
nuclei. We note here that, except for the results of Fig. 2, all the
other calculations reported in this work have been performed

in the RHB framework using the functional DD-PC1 and the
separable pairing interaction Eq. (1).

Figure 3 illustrates the accuracy of the functional DD-PC1
in the axially symmetric RHB calculation of Qα values, that is,
energies of α particles emitted by even-even actinide nuclei.
The calculated values are plotted in comparison to data [40].
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FIG. 3. (Color online) Qα values for even-even actinide chains
obtained in a self-consistent axially symmetric RHB calculations
using the functional DD-PC1 and the separable pairing interaction
Eq. (1). The theoretical values (filled symbols) are connected by lines
and compared to data (open symbols) [40].
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FIG. 4. (Color online) Self-consistent RHB axially symmetric energy curves of isotopes in the α-decay chains of 298120 and 300120, as
functions of the quadrupole deformation parameter.

Even in this simple calculation that assumes axial symmetry,
the model reproduces the empirical trend of Qα values. The
few cases for which we find a somewhat larger deviation

from data most probably point to a more complex potential
energy surface, possibly including shape coexistence. It is
interesting to note that on the quantitative level the theoretical
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results are very similar to those obtained in the self-consistent
nonrelativistic Hartree-Fock-Bogoliubov calculation based on
the Skyrme functional SLy4 [13,17].

Summarizing this section, it has been shown that self-
consistent mean-field calculations based on the relativistic
energy density functional DD-PC1 predict binding energies,
ground-state quadrupole deformations, fission barriers, fission
isomers, and Qα values for even-even actinide nuclei in very
good agreement with data. In the next section we apply the
RHB framework based on the functional DD-PC1 and the
separable pairing interaction Eq. (1) to an illustrative study of
deformed shapes and shape transitions of superheavy nuclei.

III. SHAPE TRANSITIONS IN SUPERHEAVY NUCLEI

In a very recent study of fission barriers and fission
paths in even-even superheavy nuclei with Z = 112–120 [23],

DD-PC1 was used, together with two other relativistic energy
density functionals, in a systematic RMF + BCS calculation
of potential energy surfaces, including triaxial and octupole
shapes. It was shown that low-Z and low-N nuclei in this
region are characterized by axially symmetric inner fission
barriers. With the increase of Z and/or N , in some of these
nuclei several competing fission paths appear in the region of
the inner barrier. Allowing for triaxial shapes lowers the outer
fission barrier by 1.5–3 MeV, and in many nuclei the lowering
induced by triaxiality is even more important than the one
caused by octupole deformation.

The variation of ground-state shapes is governed by the
evolution of shell structure of single-nucleon orbitals. In
very heavy deformed nuclei, in particular, the density of
single-nucleon states close to the Fermi level is rather large,
and even small variations in the shell structure predicted by
different effective interactions can lead to markedly distinct
equilibrium deformations. To illustrate the rapid change of

FIG. 5. (Color online) Self-consistent RHB triaxial energy maps of the even-even isotopes in the α-decay chain of 298120 in the β-γ plane
(0 � γ � 60◦). Energies are normalized with respect to the binding energy of the absolute minimum.
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FIG. 6. (Color online) Same as described in the caption to Fig. 5 but for the the α-decay chain of 300120.

equilibrium shapes for the heaviest nuclear systems, Fig. 4
displays the results of self-consistent axially symmetric
RHB calculations of isotopes in the α-decay chains of
two superheavy nuclei, 298120 and 300120, respectively. The
quadrupole energy curves are plotted as functions of the
deformation parameter β20. Lighter systems around Z = 110
are characterized by well-developed prolate minima around
β20 ≈ 0.2, whereas intermediate nuclei display both oblate
and prolate minima at small deformation, and the heaviest
isotopes appear to be slightly oblate. Another characteristic
of the energy curves is the shift of the saddle point to
smaller deformations with the increase in the mass number,
while the barriers become wider. Since the prolate and oblate
minima can be connected through triaxial shapes without a
barrier, these energy curves show the importance of performing
more realistic calculations, including triaxial, and for large
deformations, octupole shapes.

This is shown in Figs. 5 and 6, where we plot the
corresponding triaxial RHB energy surfaces in the β-γ plane
(0 � γ � 60◦) for isotopes in the α-decay chains of 298120
and 300120, respectively. In both chains the heaviest systems
display soft oblate axial shapes with minima that extend
from the spherical configuration to |β20| ≈ 0.4 (Z = 120)
and |β20| ≈ 0.3 (Z = 118). We do not have to consider the
deep prolate minima at β20 > 0.5 because the inclusion of
reflection asymmetric shape degrees of freedom (octupole
deformation) drastically reduces or removes completely the
outer barrier. A low outer barrier implies a high probability for
spontaneous fission, such that the prolate superdeformed states
are not stable against fission [50]. In contrast to the actinides
shown in Fig. 2, superheavy nuclei are actually characterized
by a “single-humped” fission barrier. As already noted, in
the present implementation of the model triaxial and octupole
deformations cannot be taken into account simultaneously.
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FIG. 7. (Color online) Qα values for the α-decay chains of 298120 (a) and 300120 (b). The theoretical values are calculated as the difference
between the mean-field minima of the parent and daughter nuclei (blue diamonds) and as the difference between the energies of the 0+ ground
states of the quadrupole collective Hamiltonian (red circles). The data (squares) are from Ref. [24].

Reflection asymmetric shape degrees of freedom, however,
play no role at small and moderate deformations that charac-
terize ground-state configurations of the superheavy systems
considered here. The intermediate nuclei with Z = 116 are
essentially spherical but soft both in β and γ , whereas
prolate deformed mean-field minima develop in the lighter
systems with Z = 114, Z = 112, and Z = 110. The predicted
evolution of shapes is consistent with results obtained using the
self-consistent Hartree-Fock-Bogoliubov framework based on
Skyrme functionals [6,10,17].

The two main decay modes in this region are α emission
and spontaneous fission. The theoretical α-decay energies,
denoted by (blue) diamonds in Fig. 7, are calculated as the
difference between the absolute minima of the energy maps
of the parent and daughter nuclei, shown in Figs. 5 and 6.
For the mean-field ground state we take the minimum with
the highest barrier with respect to fission, that is, we do not
consider superdeformed minima with very low fission barriers.
The theoretical Qα values are shown in comparison to available
data for the α-decay properties of superheavy nuclei [24]. The
trend of the data is obviously reproduced by the calculations,
and the largest difference between theoretical and experimental
values is less than 1 MeV. This is a rather good result,
considering that equilibrium nuclear shapes change rapidly in

the two α-decay chains and that the calculation is performed
on the mean-field level. In general, the level of agreement
with experiment is similar to the one found in the case of
actinide nuclei (cf. Fig. 3), but not quite the same as that
obtained using the macro-micro model specially adapted to
heaviest nuclei (HN) [5,51–53]. It is interesting, though, that
our prediction both for the α-decay energy and half-life of the
A = 298 isotope of the new element Z = 120 are consistent
with those of the HN macro-micro model [53].

Alpha-decay half-lives are calculated using a simple five-
parameter phenomenological Viola-Seaborg-type formula
[5,54]. The parameters of this formula were adjusted to
experimental half-lives and Qα values of more than 200
nuclei with Z = 84–111 and N = 128–161 [54]. Using the
theoretical Qα values plotted in Fig. 7 as input, the resulting
half-lives are compared to available data [24] in Fig. 8. A rather
good agreement with experiment is obtained for both decay
chains.

The theoretical values denoted by (blue) diamonds in
Figs. 7 and 8 correspond to transitions between the self-
consistent mean-field minima on the triaxial RHB energy
surfaces shown in Figs. 5 and 6. Such a calculation does
not explicitly take into account collective correlations related
to symmetry restoration and to fluctuations in the collective
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FIG. 8. (Color online) Half-lives for the α-decay chains of 298120 (a) and 300120 (b). The theoretical values are calculated from a
phenomenological Viola-Seaborg-type formula [5,54], using the Qα values from Fig. 7. Diamonds correspond to values of Qα calculated from
mean-field RHB solutions, whereas circles denote half-lives computed using Qα values determined by the 0+ ground states of the quadrupole
collective Hamiltonian. The data (squares) are from Ref. [24].
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FIG. 9. (Color online) Qα values (a) and half-lives (b) for the α-decay chain of 287115 and for the nucleus 293117.

coordinates β and γ . Physical transitions occur, of course, not
between mean-field minima but between states with definite
angular momentum. In cases in which both the initial and
final states have similar deformation this will not make a large
difference for the Qα values, because collective correlations
are implicitly taken into account in energy density functionals
through the adjustment of parameters to ground-state prop-
erties (masses). The difference, however, can be larger in
cases when the equilibrium shapes of the parent and daughter
nucleus correspond to rather different deformations, because
the collective correlation energy generally increases with
deformation. For this reason we have also used a recent imple-
mentation of the collective Hamiltonian based on relativistic
energy density functionals [55], to calculate α-transition
energies between ground states of even-even nuclei (0+ → 0+
transitions). Starting from self-consistent single-nucleon or-
bitals, the corresponding occupation probabilities and energies
at each point on the energy surfaces shown in Figs. 5 and 6, the
mass parameters and the moments of inertia of the collective
Hamiltonian are calculated as functions of the deformations
β and γ . The diagonalization of the Hamiltonian yields
excitation energies and collective wave functions that can
be used to calculate various observables. The (red) circles in
Figs. 7 and 8 denote the Qα values and half-lives, respectively,
computed for transitions 0+

g.s. → 0+
g.s. between eigenstates of

the collective Hamiltonian. The differences with respect to
mean-field values are not large, especially for the heaviest,
weakly oblate deformed or spherical systems. For the lighter

prolate and more deformed nuclei, the differences can be as
large as the deviations from experimental values.

In Figs. 9 and 10 we plot the Qα values and half-lives
for a chain of odd-even and odd-odd superheavy systems,
respectively, in comparison with available data [24,26]. The
Qα values are computed as energy differences between mean-
field axial RHB minima of parent and daughter nuclei. The
minima are determined in the blocking approximation for the
odd proton (odd-even nuclei) and the odd proton and odd
neutron (odd-odd nuclei). The equilibrium deformations are
determined from the axial energy minima of the corresponding
even-even systems, and the equilibrium odd-even (odd-odd)
configuration is the one that minimizes the RHB total energy
of the odd-even (odd-odd) system by blocking the odd-proton
(odd-proton and odd-neutron) Nilsson orbitals. Because one
needs to block several Nilsson orbitals in order to find the
energy minimum, the calculation for odd-even and odd-odd
superheavy nuclei is restricted to configurations with axial
symmetry. Also in this case the model reproduces the mass
dependence of Qα values and half-lives, and only for the
heaviest nuclei with Z = 115 and Z = 117 we find significant
differences with respect to data. The half-lives are calculated
with the Viola-Seaborg-type formula of Refs. [5,54], which
takes into account the effect of the odd nucleons by reducing
the transition energy with respect to Qα by the average
excitation energy of the daughter nucleus. This correction
is necessary when considering ground-state to ground-state
Qα values, because the half-life is determined by the most
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FIG. 10. (Color online) Same as described in the caption to Fig. 9 but for the α-decay chain of 288115 and for the nucleus 294117.
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FIG. 11. (Color online) Calculated proton (left) and neutron
(right) density distributions of 284112, 292116, and 300120, as functions
of the distance from the center of the nucleus. The dot-dashed and
dashed curves correspond to the distribution profiles ρ(z, 0) along
the z axis and ρ(0, r⊥) along the r⊥ axis, respectively. The solid
curves denote the corresponding density distributions ρ(r) calculated
assuming spherical shapes.

probable transition and this occurs between states with the
same structure (same quantum numbers for odd-even and
odd-odd nuclei). We note that a somewhat better agreement
with data for 293117 and 294117 was obtained using the HN
macro-micro model that includes a more realistic deformation
space [52]. From the energy surfaces shown in Figs. 5 and 6,
one notes that the corresponding even-even systems are soft
both in β and γ and, therefore, pronounced effects of core

polarization can be expected in the odd-even and odd-odd
nuclei. The detailed structure of these soft nuclei cannot, of
course, be reproduced by the simple blocking approximation
assuming axially symmetric shapes, as used in the present
calculation. Nevertheless, the level of agreement with data
on the Qα values and half-lives for odd-even and odd-odd
nuclei reflects the underlying structure and ordering of proton
and neutron quasiparticle states predicted by the functional
DD-PC1 and the separable pairing interaction.

The evolution of density distributions with proton and/or
neutron number presents an interesting topic for self-consistent
studies based on EDF. For superheavy nuclei, in particular, the
influence of the central depression in the density distribution on
the stability of spherical systems was studied [56,57]. Since
high-j orbitals are localized mostly near the surface of the
nucleus, whereas low-j orbitals near the center, the filling of
the single-nucleon orbitals with the increase of proton and/or
neutron number can affect the evolution of the radial density
profile. It was shown that a large central depression leads to
the spherical shell gaps at Z = 120 and N = 172, whereas
a more even density profile favors N = 184 and leads to
the appearance of a Z = 126 shell gap [56]. However, as it
was also shown in Ref. [57], even small deformations have
considerable effect of the density distributions. Similar results
are also obtained in the present study. As an illustration, in
Fig. 11 we plot the proton and neutron density profiles for three
characteristic cases in the α-decay chain of 300120: the prolate
284112 (β ≈ 0.15), the nearly spherical 292116 (β ≈ 0.08),
and the oblate 300120 (β ≈ −0.25). The density profiles are
plotted as functions of the distance from the center of the
nucleus. The solid curves are obtained assuming spherical
shapes and, in this case, one notices a pronounced central
depression of proton and neutron densities for all three nuclei.
Allowing for axial deformation can have a significant effect
on the density profiles. The dot-dashed and dashed curves in
Fig. 11 correspond to the distribution profiles ρ(z, 0) along the
z axis and ρ(0, r⊥) along the r⊥ axis, respectively. In all three
nuclei the central depression is reduced by deformation. The
effect is not significant in the nearly spherical 292116, and in
this nucleus both the proton and neutron densities display a
weak central depression. The effect of deformation is much
more pronounced in the prolate 284112 and oblate 300120 in
which, especially for the neutrons, the spherical concavity
virtually disappears. It will, of course, be interesting to study
the evolution of central depressions in the density profiles of
less neutron-deficient superheavy nuclei.

IV. SUMMARY AND OUTLOOK

The framework of relativistic nuclear EDFs has been
applied to a study of deformation effects and shapes of
superheavy nuclei. The microscopic self-consistent calculation
is based on the EDF DD-PC1 [33] and a separable pairing
interaction, used in the relativistic Hartree-Bogoliubov (RHB)
model.

In addition to the equation of state of symmetric
and asymmetric nuclear matter, the functional DD-PC1
was adjusted exclusively to the experimental masses of
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64 axially deformed nuclei in the regions A ≈ 150–180 and
A ≈ 230–250. It is, therefore, interesting to note that, in
constrained self-consistent calculations that include axially
symmetric, triaxial, and reflection-asymmetric shapes, this
functional reproduces not only the empirical masses, Qα

values, and equilibrium quadrupole deformations of actinide
nuclei, but also the heights of the first and second fission
barriers, as well as excitation energies of fission isomers. This
is an important result as many modern functionals or effective
interactions, used in studies of superheavy nuclei, are specifi-
cally adjusted to data on fission barriers and fission isomers.

After testing the theoretical framework in the actinide
region, we have performed a self-consistent RHB calculation
of triaxial shapes for two α-decay chains of superheavy
nuclei, starting from 298120 and 300120. In both chains the
heaviest systems display soft oblate axial shapes with minima
that extend from the spherical configuration to |β20| ≈ 0.4
(Z = 120) and |β20| ≈ 0.3 (Z = 118). The intermediate nuclei
with Z = 116 are essentially spherical but soft both in β and γ ,
whereas prolate deformed mean-field minima develop in the
lighter systems with Z = 114, Z = 112, and Z = 110. The
theoretical Qα values reproduce the trend of the data, with
the largest difference between theoretical and experimental
values of less than 1 MeV. α-Decay half-lives are calculated
using a five-parameter phenomenological Viola-Seaborg-type
formula, and a good agreement with experiment is obtained
for both decay chains. The Qα values and half-lives for two
chains of odd-even and odd-odd superheavy systems have been
computed using a simple blocking approximation in axially
symmetric self-consistent RHB calculations. The theoretical
values are in rather good agreement with the experimental
Qα and half-lives, and only for the heaviest nuclei with
Z = 115 and Z = 117 we find significant differences, most
probably caused by the restriction to axially symmetric
shapes.

For the two chains of even-even superheavy nuclei we
have also explicitly considered collective correlations related
to symmetry restoration and fluctuations in the quadrupole
collective coordinates. These correlations are implicitly taken
into account when adjusting energy density functionals to
binding energies, but their explicit treatment could be impor-
tant in cases when the initial and final states of an α-decay
have markedly different deformations or shapes. Using a
collective quadrupole Hamiltonian based on REDFs, we have
calculated α-transition energies between ground states of
even-even nuclei (0+ → 0+ transitions), rather than between
mean-field minima. The resulting Qα values and half-lives
do not significantly differ from the corresponding mean-field
values, except for lighter prolate and more deformed nuclei,
for which the differences can be as large as the deviations from
experimental values.

Together with the recent RMF + BCS study of fission bar-
riers and fission paths of Ref. [23], this work has demonstrated
the potential of the new class of semiempirical REDFs for
studies of shape coexistence and triaxiality in the heaviest
nuclear system, including the explicit treatment of collective
correlations using a microscopic collective Hamiltonian. This
opens the possibility for a more detailed analysis of this
region of SHN, including all presently known nuclides with
Z = 110–118, as well as spectroscopic studies of nuclei with
Z > 100.
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[55] T. Nikšić, Z. P. Li, D. Vretenar, L. Próchniak, J. Meng, and
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