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Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem
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A new approach for solving the Bethe ansatz (Gaudin-Richardson) equations of the standard pairing problem
is established based on the Heine-Stieltjes correspondence. For k pairs of valence nucleons on n different single-
particle levels, it is found that solutions of the Bethe ansatz equations can be obtained from one (k + 1) × (k + 1)
and one (n − 1) × (k + 1) matrices, which are associated with the extended Heine-Stieltjes and Van Vleck
polynomials, respectively. Since the coefficients in these polynomials are free from divergence with variations in
contrast to the original Bethe ansatz equations, the approach provides an efficient and systematic way to solve
the problem, which by extension, can also be used to solve a large class of Gaudin-type quantum many-body
problems, including an efficient angular momentum projection method for multiparticle systems.
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I. INTRODUCTION

It is well known that the pairing force, similar to that in the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductors
[1], is a key residual interaction of the nuclear shell model that
is required to reproduce ground state and low-energy spec-
troscopic features of nuclei, in particular, binding energies,
excitation spectra, low-lying collective states, odd-even stag-
gering effects, single-particle occupancies, electromagnetic
transition rates, transfer reaction amplitudes, level densities,
moments of inertia, and so on [2–4]. Unlike electrons in solids,
drawbacks of the application of BCS theory and its extensions
to nuclei can be pronounced due to the fact that the number
of valence nucleons under the influence of the pairing force is
too few to be treated by such particle-number nonconservation
(quasiparticle) approximations [5,6].

An exact solution of the standard pairing problem was
first obtained by Richardson and is now referred to as
the Richardson-Gaudin method [7,8]. Recently, extensions
of the Richardson-Gaudin theory have also been made by using
the Bethe ansatz methodology [9–13]. Its advantage lies in the
fact that the huge matrix in the Fock subspace is reduced to a set
of equations, called Bethe ansatz equations (BAEs), such that
the number of these equations equals exactly the number of
pairs of the valence particles involved. However, less attention
has been paid to the Richardson solutions of the pairing
problem in realistic applications mainly because the nonlinear
BAEs involved are very difficult to be solved numerically,
especially for large-size systems. While considerable efforts in
designing algorithms to obtain solutions have revealed promis-
ing results [14–19], including an advantageous polynomial
technique for a shell of two levels [12], an efficient procedure
for solving the general problem obviously seems still unclear.
Thus, a simple and clear approach to the problem is in demand.

In the present study, we suggest a new approach for
solving the standard pairing problem. In particular, we derive
polynomial solutions of the second-order Fuchsian equation.
This, in turn, transforms the problem to one that involves the
handling of only two matrix equations and hence, makes exact
pairing solutions feasible even when more energy levels or
heavy nuclei are considered.

II. POLYNOMIAL SOLUTIONS TO THE
EXACT PAIRING PROBLEM

The Hamiltonian of the standard pairing model is given by

Ĥ =
∑

j

εj n̂j − G
∑
jj ′

S+
j S−

j ′ , (1)

where the sums run over given j levels of total number
n, G > 0 is the overall pairing strength, εj are nonde-
generate single-particle energies, n̂j = ∑

m a
†
jmajm is the

number operator for valence particles in the j th level, and
S+

j = ∑
m>0(−)j−ma

†
jma

†
j−m (S−

j = (S+
j )†) are pair creation

(annihilation) operators. The formalism is first presented for
an even number of particles that are all paired (seniority-zero
case), while the generalization to an additional odd unpaired
particle is discussed in relation to the pairing eigenenergies.

According to the Richardson-Gaudin method, k-pair eigen-
states of Eq. (1) can be written as

|k; x〉 = S+(x1)S+(x2) · · · S+(xk)|0〉, (2)

where |0〉 is the pairing vacuum state satisfying S−
j |0〉 = 0

for all j , and S+(xi) = ∑
j S+

j /(xi − 2εj ), in which xi (i =
1, 2, . . . , k) are spectral parameters to be determined. It can
then be verified by using the corresponding eigenequation that
Eq. (2) is the eigenstates of Eq. (1) only when the spectral
parameters xi satisfy the following set of BAEs:

1 − 2G
∑

j

ρj

xi − 2εj

− 2G

k∑
i ′ = 1
(�=i)

1

xi − xi ′
= 0, (3)

where the first sum runs over all j levels and ρj = −�j/2
with �j = j + 1/2. For each x(ξ ) solution, the corresponding
eigenenergy is given by E

(ξ )
k = ∑k

i=1 x
(ξ )
i .

As shown by Heine and Stieltjes, there is a one-to-
one correspondence between every set of the BAEs and a
set of orthogonal polynomials, called the extended Heine-
Stieltjes polynomials. Roots of these BAEs are zeros of the
polynomials, which can be interpreted as stable equilibrium
positions in the two-dimensional complex plane for a set
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of free unit charges in an external electrostatic field [20].
This link between Richardson’s BCS pairing model for nuclei
and the corresponding electrostatic problem was established
in Ref. [21] based on an earlier unpublished preprint of
Gaudin, which was then made clearer in Ref. [22]. A much
more general approach to the pairing model was shown in
Refs. [23,24]. According to Heine-Stieltjes correspondence,
for nonzero pairing strength G, the polynomials y(x) with
zeros corresponding to the solutions of Eq. (3) should satisfy
the following second-order Fuchsian equation:

A(x)y ′′(x) + B(x)y ′(x) − V (x)y(x) = 0. (4)

Here, A(x) = ∏
j (x − 2εj ) is a polynomial of degree n, the

polynomial B(x) is given as

B(x)/A(x) =
∑

j

2ρj

x − 2εj

− 1

G
, (5)

where the sum runs over all j levels and V (x) are called Van
Vleck polynomials [20] of degree n − 1, which are determined
according to Eq. (4). In the original electrostatic analog
considered by Heine and Stieltjes [20], the parameters {ρj }
that specify fixed charges should all be positive for no external
electrostatic field, 1/G → 0. Therefore, the polynomials y(x)
with negative {ρj } and 1/G �= 0 are called extended Heine-
Stieltjes polynomials. They approach the original Heine-
Stieltjes polynomials with negative {ρj } in the G → ∞ limit.

In search for polynomial solutions of (4), we write

y(x) =
k∑

j=0

ajx
j , V (x) =

n−1∑
j=0

bjx
j , (6)

where {aj } and {bj } are the expansion coefficients to be
determined. Substitution of Eq. (6) into Eq. (4) yields two
matrix equations. Namely, the condition that the coefficients
in front of xi (i = 0, . . . , k) must be zero yields a (k + 1) ×
(k + 1) matrix F with Fv = b0v, where the eigenvector v of F
is simply given by the expansion coefficients v = {a0, . . . , ak}.
In addition, the condition that the coefficients in front of
xi (i = k + 1, . . . , n + k − 1) must be zero yields another
(n − 1) × (k + 1) upper-triangular matrix P with Pv = 0,
which provides a unique solution for bi (i = 1, . . . , n − 1)
in terms of {aj }. Entries of the two matrices are all linear in
the coefficients {b1, b2, . . . , bn−1}. Matrices F and P can be
easily constructed, for which a simple MATHEMATICA code is
available [25].

A. Eigenvalues of the standard pairing model Hamiltonian:
Pairing energies

Let the single-particle energies satisfy the interlacing
condition ε1 < · · · < εn. Real parts of zeros of y(x) satisfy
the interlacing condition, −∞ < Re(x1) < Re(x2) < · · · <

Re(xk) < +∞, where Re(xi) lies in one of the n + 1 intervals
(−∞, ε1), (ε1, ε2), . . . , (εn−1, εn), and (εn,+∞). It should be
noted that many Re(xi) of adjacent zeros may lie within the
same interval. When G → ∞, there will be only n intervals
with (−∞, ε1) being removed.

The number of different such allowed configurations gives
the possible solutions of y(x) and the corresponding V (x).
The number of solutions of y(x), excluding those with sum of
zeros of y(x) complex, should equal to the number of levels
produced by the standard pairing model, which is given by

η(n, k) =
−2ρ1∑
p1=0

· · ·
−2ρn∑
pn=0

δq,k , (7)

where q = ∑n
i=1 pi . When ρi = −1/2 for any i, which

corresponds to the case of the Nilsson mean-field plus pairing
model, η(n, k) = ( n

k ).
Furthermore, if we set ak = 1 in y(x), the coefficient ak−1

becomes equal to the negative sum of the y(x) zeros. Hence,
for each set of solutions, ak−1 yields the corresponding energy,

ak−1 = −
k∑

i=1

xi = −Ek. (8)

Therefore, the solution corresponding to the largest real ak−1 is
that for the ground state of the system; the one corresponding
to the next largest real ak−1 is that of the first excited state;
and so on. In the standard pairing model, the solution with
the same ak−1 is unique except complex conjugation and
permutations within {xi}. This is helpful for simplifying the
calculation process, especially when only a few low-lying
states are needed.

For odd-A systems, one of the particles in a system does
not form a pair and blocks the level it occupies. When
the j ′-th level is blocked, its space dimensionality becomes
ρj ′ = −(�j ′ − 1)/2. This together with k = A−1

2 for A total
number of particles enter into Eq. (3), and hence, into Eq. (4).
Pairing solutions, x(ξ ), ξ = 1, . . . , η(n, k), are thus obtained
for the A − 1 system with the j ′-th level blocked. The
corresponding energy of the ground state is thereby given as
E

(1)
k = ∑k

i=1 x
(1)
i + εj ′ .

In contrast to the original BAEs of Eq. (3), the coefficients
{aj } and {bj } in F, P, and v are free from divergence with
variations, and, hence, one can use any standard recursive
or iteration method to solve the problem with arbitrary initial
values of these coefficients. Because solving the eigenequation
Fv = b0v, in which F is a (k + 1) × (k + 1) matrix, is the
only CPU time-consuming operation involved, the CPU time
needed in the process should always be reasonable for most
realistic applications in nuclear physics. For example, on a
2 × 2.8 GHz CPU / 4 GB RAM desktop computer with Mac
OS X, a single solution for n = 10 levels can be calculated by
using MATHEMATICA v.8.0.4 in 0.32 seconds for k = 5, in 0.59 s
for k = 10, and in 13.39 s for k = 40, which scales roughly as
k2. Similarly, a reasonable trend is observed with increasing
number of levels, namely, for five pairs, the execution time is
1.24 s for n = 15 and 3.07 s for n = 20 levels.

B. Solutions and pairing energies for 110Sn

To demonstrate the new approach, we consider a simple
example of k = 5 pairs in the fifth harmonic oscillator (HO)
shell, 1g7/2, 2d5/2, 2d3/2, 3s1/2, and 1h11/2, which is relevant,
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TABLE I. First five sets of solutions to the extended Heine-
Stieltjes polynomials Eq. (4) and the corresponding eigenenergies (in
arbitrary units) of the standard pairing model Hamiltonian (1) in the
case of k = 5 pairs in the fifth major shell with n = 5 single-particle
levels, 1g7/2, 2d5/2, 2d3/2, 3s1/2, and 1h11/2. The single-particle
energies used are εi = i, and the overall pairing strength G = 0.5.

Zeros of the polynomials
∑5

i=1 xi

x1 = −1.4993, x2 = −1.1412 − 2.1396ı, −3.6158
x3 = −1.1412 + 2.1396ı, x4 = 0.0829 − 4.5018ı,

x5 = 0.0829 + 4.5018ı

x1 = −0.5078 − 1.0411ı, x2 = −0.5078 + 1.0411ı, 3.0299
x3 = 0.5469 − 3.3066ı, x4 = 0.5469 + 3.3066ı,

x5 = 2.9517
x1 = −0.9234 − 1.0718ı, x2 = −0.9234 + 1.0718ı, 3.5444
x3 = 0.0573 − 3.3613ı, x4 = 0.0573 + 3.3613ı,

x5 = 5.2767
x1 = −1.1244 − 1.0987ı, x2 = −1.1244 + 1.0987ı, 4.8379
x3 = −0.1739 − 3.4422ı, x4 = −0.1739 + 3.4422ı,

x5 = 7.4346
x1 = −1.2032 − 1.1109ı, x2 = −1.2032 + 1.1109ı, 5.77020
x3 = −0.2619 − 3.4804ı, x4 = −0.2619 + 3.4804ı,

x5 = 8.7004

for example, for applications to the tin isotopes, in this case
110Sn, as well as to 154Sm if the sixth shell is considered [18].
While these cases are difficult to be solved by employing
directly the nonlinear BAEs (3), the η(5, 5) = 71 solutions
y(x) for 110Sn are easily obtained in the present polynomial
approach. We set single-particle energies to be of an equal
spacing with εi = i, and the overall pairing strength G = 0.5.
First five sets of zeros of the corresponding polynomials y(x)
and ak−1 coefficients are listed in Table I.

We note that the use of B(x) in Eq. (4) [and not B(x)/A(x)
of Eq. (5)] removes the singularities of the original BAEs (3)
and, hence, results such as xi = 2εj , may appear among the
solutions of Eq. (4). Additionally, in low-precision calculations
we made for 110Sn, we found some unphysical solutions with
complex ak−1 that had to be discarded. This also resulted in
a total number of solutions greater than η(n, k) and therefore
it is recommended that calculations explicitly include a check
for singularities and make use of high precision. As very little
is known about the polynomials with negative charges, further
analytical studies are also essential.

C. Angular momentum projection method

As shown in our previous study [26], a new angular
momentum projection method for multi-particle systems can
be established based on the BAEs similar to Eq. (3). In
fact, for n single-particle levels with angular momentum ji

(i = 1, 2, . . . , n), the multiparticle state with total angular
momentum J = ∑

i ji − k can be written as

|η, J,M = J 〉 = J−(x1)J−(x2) · · · J−(xk)|h.w.〉, (9)

where η is a quantum number needed to resolve the multi-
occurrence of J , |h.w.〉 is the highest weight single-particle

product state with |j1,m1 = j1, · · · , jn,mn = jn〉, and

J−(x) =
n∑

i=1

1

x − 2εi

J−
i , (10)

where J−
i is the angular momentum lowering operator acting

only on the ith single-particle state |ji,mi〉, and εi (i =
1, 2, . . . , n) can be any set of unequal numbers [26]. The
condition that J+|η, J,M = J 〉 = 0, where J+ is the total
angular momentum raising operator, yields the same BAEs of
Eq. (3) with the replacement of ρi by −ji in the G → ∞ limit.
Therefore, once the solutions of Eq. (3) in the G → ∞ limit
are obtained, the resultant sets of {xi} determine multiparticle
states with a good angular momentum J . The number of these
sets is exactly equal to the number of occurrence of J for the
given system. In this case, the polynomials y(x) that satisfy
Eq. (4) become the original Heine-Stieltjes polynomials. This
angular momentum projection is certainly much simpler than
the projection operator technique [3] and that based on the
permutation group method [27].

III. PAIRING GAPS FOR MEDIUM-MASS NUCLEI

The empirical like-particle pairing gap can be estimated by
the third derivative of binding energies, BE, with respect to the
number of valence like-particles [28], which for neutrons is

�nn ≡ 1
4 (BE(Z,N − 2) − 3BE(Z,N − 1) + 3BE(Z,N)

−BE(Z,N + 1)). (11)

This isolates the like-particle pairing interaction of the N th
and (N − 1)st neutrons for an even-even (Z,N − 2)-core
and removes the average contribution of additional one- and
two-body interactions (equivalently, the N and N2 energy
dependence).

To determine neutron pairing energies, the filter (11)
is applied to the lowest pairing energies for Ca, Ni, and
Sm isotopes, using two pairing approaches, namely, the
polynomial approach presented here, referred as “HS pairing”,
and the BCS scheme (“BCS pairing”) [1,5]. While other terms
in the nuclear Hamiltonian may be important for reproducing
binding energies, such as the average mean field (e.g., −5.86N

for Ca isotopes, −8.57N for Ni isotopes, and −5.80N for
Sm isotopes) as well as the average two-body interaction
∼N (N − 1)/2, these contributions are filtered out by Eq. (11)
and hence, as expected, are irrelevant for pairing gap estimates.

To obtain BCS solutions, we solve the two BCS nonlinear
equations [1,5] for a Lagrange multiplier λ and a “gap”
parameter �, using the (“nonshifted”) single-particle energies
that enter in Eq. (1). The pairing energies are then calculated as,
E = 2

∑
j εj v

2
j�j − �2

G
− G

∑
j �jv

4
j with probability am-

plitudes, v2
j = 1

2 {1 − (εj − λ)[(εj − λ)2 + �2]−
1
2 }. For odd-

A systems, the BCS equations are solved (and hence E

obtained) for k = A−1
2 pairs and with �j ′ − 1 for the j ′

level blocked by the odd particle. The lowest energy of an
odd-A system is approximated by the quasiparticle excitation,
E + [(εj

′ − λ)2 + �2]
1
2 .

For all applications, we employ the particle-hole formalism,
which treats pairs of holes when more than half of the model
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space is occupied. In this case, the single-particle energies used
in Eq. (1) are replaced by −εj .

To compare both pairing theories and how they agree with
the experiment [29], we use the root-mean-square deviation
measure, σ =√∑N

μ=1(thμ−expμ)2/N , where thμ are theoretical
predictions, expμ are the corresponding experimental values,
and N is the total number of nuclei considered.

A. Ca isotopes

Calculations for Ca isotopes are performed for a 40Ca core
and a model space of five j levels, f5/2,7/2, p1/2,3/2, g9/2. The
single-particle energies (s.p.e.) used in Eq. (1) are

ε7/2 = −2.50 MeV, ε3/2 = −0.56 MeV,

ε5/2 = 0.08 MeV, ε1/2 = 1.11 MeV, (12)

ε9/2 = 1.95 MeV.

These estimates are obtained from the 40Ca and 41Ca binding
energies [29] and the 41Ca energy spectrum [30]. The average
single-particle energy (εavg = −5.86 MeV) is then subtracted
to yield the set in Eq. (12). For the odd-A systems, the levels
blocked by the odd particle are obtained from the experiment
as follows: f7/2 (43−47Ca), p3/2 (49−53Ca), f5/2 (55−57Ca), and
p1/2 (59Ca).

For pairing strength G = 16/A MeV, pairing gaps (11)
obtained using the present approach are found to reproduce the
experimental data remarkably well (Fig. 1, left and Table II).
This holds even for a small number of pairs and is a
remarkable result given the simplicity of the Hamiltonian and
the approximation for the single-particle energies, which are
assumed not to vary with the particle number. The outcome
also agrees with the BCS scheme, which, however, if kept
simple and without invoking the number projection method
yields wave functions that do not preserve the number of
particles.

TABLE II. Root-mean-square deviations σ (in MeV) of the
theoretical pairing gaps as compared to the experimental values [29]
for the 42−49Ca, 58−77Ni, and 146−153Sm isotopes.

Isotopes σ (MeV)

“HS pairing” “BCS pairing”

42−49Ca 0.155 0.210
58−77Ni 0.079 0.137
146−153Sm 0.364

B. Ni isotopes

Calculations for Ni isotopes are performed for a 56Ni core
and a model space of four j -levels, f5/2, p1/2,3/2, g9/2. The
single-particle energies used in Eq. (1) are

ε3/2 = −1.68 MeV, ε5/2 = −0.91 MeV,
(13)

ε1/2 = −0.57 MeV, ε9/2 = 1.33 MeV.

They are obtained from the 56Ni and 57Ni binding energies [29]
and the 57Ni energy spectrum [31]. The average single-particle
energy (εavg = −8.57 MeV) is subtracted from the s.p.e.’s
experimentally deduced to yield Eq. (13). For odd-A systems,
the levels blocked by the odd particle are obtained from
the experiment as following, p3/2 (57−61Ni), p1/2 (63Ni),
f5/2 (65Ni), p1/2 (67Ni), and g9/2 (69−77Ni). As there are no
experimental values for 75Ni and 77Ni, the lowest energy
obtained by the theory is used, which predicts the level g9/2 as
the most probable to be occupied by the odd particle in both
cases.

We find that a paring strength of G = 23/A yields a close
reproduction of experiment. Even in the case of complex
systems like the isotopes of Ni, the pairing energies (11)
calculated using the present approach closely follow the
experimental trend (Fig. 1, right) and yield better results than
the BCS scheme (Table II).

FIG. 1. (Color online) Pairing gaps in MeV as calculated in the present study (“HS pairing”) and using the BCS approach (“BCS pairing”),
and compared to experiment [29] for (a) Ca isotopes, 42Ca to 49Ca, using five j levels, f5/2,7/2, p1/2,3/2, g9/2, and G = 16/A MeV, and (b) Ni
isotopes, 58Ni to 77Ni, using four j shells, f5/2, p1/2,3/2, g9/2 and G = 23/A MeV.
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FIG. 2. (Color online) Pairing gaps in MeV as calculated in the
present study (“HS pairing”) and using the BCS approach (“BCS
pairing”), and compared to experiment [29] for Sm isotopes, 146Sm
to 153Sm, using six j levels in the pf hi shell and G = 24/A MeV
(right).

C. Solutions for heavy nuclei: Sm isotopes

Larger valence spaces that are necessary for good descrip-
tions of heavier systems are typically very difficult to be solved
directly by employing the original BAE’s. For isotopes of Sm,
we show that the exact pairing solutions are made feasible
using the present polynomial approach.

Calculations for Sm isotopes are performed for valence
neutrons in the sixth HO shell with a model space of
six j levels, f5/2,7/2, p1/2,3/2, h9/2, i13/2. The single-particle
energies used for Eq. (1) are

ε7/2 = −1.056 MeV, ε3/2 = −0.162 MeV,

ε13/2 = 0.049 MeV, ε9/2 = 0.368 MeV, (14)

ε1/2 = 0.552 MeV, ε5/2 = 0.603 MeV.

These estimates are obtained from the 144Sm and 145Sm
binding energies [29] and the 145Sm energy spectrum [32].
The average single-particle energy (εavg = −5.80 MeV) is
subtracted. For the odd-A systems, experimental data indicates
that the f7/2 levels are most likely to be blocked by the odd
particle for 145−149Sm. For 151−153Sm, the lowest theoretical
energy corresponds to the odd particle occupying the f7/2

level.

Calculations for a large number of pairs are possible
when the polynomial approach is employed. We find that
using G = 24/A MeV yields a very close agreement of the
theoretical paring gaps with the experimental counterparts
(Fig. 2, right and Table II). This example shows that the
polynomial approach can be straightforwardly applied for
heavy nuclear systems and large model spaces, and hence, can
provide exact pairing solutions in regions where the BAE’s are
impossible to handle.

In short, the comparison of the two pairing approaches
reveals the superiority of the present “HS pairing” solutions
as compared to the BCS ones, especially for a small number
of particles. The polynomial approach makes exact pairing
solutions feasible for many pairs in large model spaces.

IV. CONCLUSION

In summary, we have established a new approach for
solving the standard pairing problem based on a robust mathe-
matical foundation—the extended Heine-Stieltjes polynomials
and the corresponding Van Vleck polynomials satisfying the
polynomial solutions of the second-order Fuchsian equation.
Thus, we reach the goal of the Richardson-Gaudin theory via
the Heine-Stieltjes correspondence, which provides an exact
solution to the pairing problem by solving only two matrix
equations. This makes exact pairing solutions feasible even
when more energy levels or heavy nuclei are considered.
The approach can easily be extended and applied to solve
a large class of Gaudin-type quantum many-body problems.
A new efficient angular momentum projection method for
multiparticle systems is thus proposed as a byproduct, of which
the application to either boson or fermion systems will be
studied elsewhere.

ACKNOWLEDGMENTS

Support from the US National Science Foundation
(PHY-0500291 and OCI-0904874), the US Department
of Energy (DE-SC0005248), the Southeastern Universities
Research Association, the Natural Science Foundation of
China (11175078), the Liaoning Education Department Fund
(2007R28), the Doctoral Program Foundation of State
Education Ministry of China (20102136110002), and the
LSU–LNNU joint research program (9961) is acknowledged.

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

[2] S. T. Belyaev, Mat. Fys. Medd. Dan. Vid. Selsk. 31(11), 1 (1959).
[3] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer Verlag, Berlin, 1980).
[4] M. Hasegawa and S. Tazaki, Phys. Rev. C 47, 188 (1993).
[5] A. K. Kerman, R. D. Lawson, and M. H. MacFarlane, Phys. Rev.

124, 162 (1961).
[6] A. Volya, B. A. Brown, and V. Zelevinsky, Phys. Lett. B 509, 37

(2001).

[7] R. W. Richardson, Phys. Lett. 3, 277 (1963); 5, 82 (1963);
R. W. Richardson and N. Sherman, Nucl. Phys. 52, 221 (1964);
52, 253 (1964).

[8] M. Gaudin, J. Phys. 37, 1087 (1976).
[9] Feng Pan, J. P. Draayer, and W. E. Ormand, Phys. Lett. B 422,

1 (1998); Feng Pan and J. P. Draayer, ibid. 451, 1 (1999); Phys.
Rev. C 66, 044314 (2002).

[10] J. Dukelsky, C. Esebbag, and P. Schuck, Phys. Rev. Lett.
87, 066403 (2001); G. Ortiz, R. Somma, J. Dukelsky, and
S. Rombouts, Nucl. Phys. B 707, 421 (2005); J. Dukelsky,

024313-5

http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRevC.47.188
http://dx.doi.org/10.1103/PhysRev.124.162
http://dx.doi.org/10.1103/PhysRev.124.162
http://dx.doi.org/10.1016/S0370-2693(01)00431-2
http://dx.doi.org/10.1016/S0370-2693(01)00431-2
http://dx.doi.org/10.1016/0031-9163(63)90259-2
http://dx.doi.org/10.1016/S0375-9601(63)80039-0
http://dx.doi.org/10.1016/0029-5582(64)90687-X
http://dx.doi.org/10.1016/0029-5582(64)90690-X
http://dx.doi.org/10.1051/jphys:0197600370100108700
http://dx.doi.org/10.1016/S0370-2693(98)00034-3
http://dx.doi.org/10.1016/S0370-2693(98)00034-3
http://dx.doi.org/10.1016/S0370-2693(99)00191-4
http://dx.doi.org/10.1103/PhysRevC.66.044314
http://dx.doi.org/10.1103/PhysRevC.66.044314
http://dx.doi.org/10.1103/PhysRevLett.87.066403
http://dx.doi.org/10.1103/PhysRevLett.87.066403
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.008


GUAN, LAUNEY, XIE, BAO, PAN, AND DRAAYER PHYSICAL REVIEW C 86, 024313 (2012)

V. G. Gueorguiev, P. Van Isacker, S. Dimitrova, B. Errea, and
S. Lerma H., Phys. Rev. Lett. 96, 072503 (2006).

[11] H.-Q. Zhou, J. Links, R. H. McKenzie, and M. D. Gould, Phys.
Rev. B 65, 060502(R) (2002); J. Links, H.-Q. Zhou, R. H.
McKenzie, and M. D. Gould, J. Phys. Math. Gen. A 36, R63
(2003).

[12] A. B. Balantekin, J. H. de Jesus, and Y. Pehlivan, Phys. Rev. C
75, 064304 (2007).

[13] A. B. Balantekin and Y. Pehlivan, Phys. Rev. C 76, 051001(R)
(2007).

[14] J. M. Roman, G. Sierra, and J. Dukelsky, Nucl. Phys. B 634,
483 (2002).

[15] S. Rombouts, D. Van Neck, and J. Dukelsky, Phys. Rev. C 69,
061303(R) (2004)

[16] F. Domı́nguez, C. Esebbag, and J. Dukelsky, J. Phys. A: Math.
Gen. 39, 11349 (2006).

[17] M. Sambataro, Phys. Rev. C 75, 054314 (2007).
[18] G. G. Dussel, S. Pittel, J. Dukelsky, and P. Sarriguren, Phys.

Rev. C 76, 011302(R) (2007).
[19] A. Faribault, O. El Araby, C. Sträter, and V. Gritsev, Phys. Rev.
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