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Number-conserving approach to the pairing problem: Application to Kr and Sn isotopic chains
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The recently proposed symmetry-conserving energy density functional approach [G. Hupin, D. Lacroix, and
M. Bender, Phys. Rev. C 84, 014309 (2011)] is applied to perform variation after projection onto the good particle
number using the Skyrme interaction, including density-dependent terms. We propose a simplification to reduce
the numerical effort to perform the variation. We present a systematic study of the Kr and Sn isotopic chains.
This approach leads to nonzero pairing in magic nuclei and a global enhancement of the pairing gap compared
to the original theory, which breaks particle number symmetry.
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I. INTRODUCTION

The nuclear energy density functional (EDF) is a versatile
approach [1,2] that allows one to describe a variety of
phenomena in nuclei ranging from nuclear structure effects
to nuclear dynamics and to thermodynamics. One specificity
of nuclear energy functional approaches is that the densities
used in the energy might not respect some of the properties
related to the symmetry of the underlying bare many-body
Hamiltonian [3,4]. This is achieved by introducing a reference
Slater (or quasiparticle) state from which the one-body normal
density (and eventually the anomalous density) is constructed
to express the energy. These densities are generally localized
in space and therefore do not correspond to a translationally
invariant system. Symmetry breaking is often extended to
states that are neither an eigenstate of the particle number
operator [then breaking U(1) symmetry] nor an eigenstate of
the total angular momentum operator.

Symmetry-breaking EDF (SB-EDF) is a powerful tech-
nique to describe some aspects of nuclei such as the onset
of pairing and/or deformation. First, however, restoration of
broken symmetries is necessary to compare with experiment,
where eigenstates with good quantum numbers are probed.
Second, the restoration of symmetries and, in general, the use
of configuration mixing techniques is a way to grasp some
additional correlations associated with quantum fluctuations
in a collective space [5,6]. Ultimately, the state of the art of
the EDF approach is to perform a configuration mixing to
describe the coexistence of different intrinsic configurations
such as shapes, excited states, and electromagnetic and nuclear
transitions.

This technique of symmetry breaking followed by symme-
try restoration has been recently shown to lead to spurious
contributions to the energy and must be applied with caution
[7,8]. Overall, the very notion of symmetry breaking in a
functional approach needs to be clarified [9]. For a detailed
discussion, we refer the interested reader to the recent works
of Refs. [7,8,10–13]. To face these difficulties, at present,
three strategies have been proposed to perform well-converged
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configuration mixing calculations within the EDF approach:
(i) Derive the energy functional starting from a true Hamil-
tonian and completely incorporate the Pauli principle [7]. (ii)
Identify and remove spurious contributions from the energy
functional [10–12]. This could be performed for some specific
functionals, by comparing with the Hamiltonian case. (iii)
Consistently extend the energy functional used in the SB case
to a functional of the densities of the state with the symmetries
restored. The latter strategy is the symmetry-conserving EDF
(SC-EDF) approach proposed for the projection onto the good
particle number in Ref. [14].

Strategies (i) and (ii) prevent us from using density-
dependent interactions with noninteger powers of the density
and strongly reduce our ability to tailor the density functional.
Note that strategy (i) is nowadays used with the Gogny
force [15–17], taking specific care of the density-dependent
term. Recent applications of strategy (ii) have shown that this
approach becomes rather involved when several symmetries
are restored simultaneously [18]. While currently formulated
only for the particle number restoration case (see also the
discussion in Ref. [19]), strategy (iii) can be used for any
functional form such as those used in the SB case starting
from the Gogny or Skyrme-like interaction, while having a
different interaction in the pairing channel. In addition, strictly
enforcing antisymmetrization is not required and some useful
numerical approximations such as the Slater approximation
for the Coulomb exchange can be still used. In view of the
recent discussion in [13], it should be stressed that the choice
of density entering in the noninteger dependencies remains an
open question. We take in this paper a conservative choice and
use the projected density in such dependencies [15–17].

It is worth mentioning that, if a Hamiltonian is used as
in strategy (i), the SC-EDF can always be formulated for
all possible symmetry restorations. However, when different
effective interactions are used in the mean-field and pairing
channels, as is the case in most of the nuclear physics energy
density functional applications, a careful analysis should be
made to properly extend the SB functional. At present, this
has been shown to be possible only for the particle number
projection (PNP) by expressing the density in the canonical
basis of the Bardeen-Cooper-Schrieffer (BCS)/Hartree-Fock-
Bogoliubov (HFB) formalism, which is preserved during the
projection [19]. The latter property will break down for any
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other symmetry restoration. The problem of restoring other
symmetries within the SC-EDF approach remains an open
problem.

In this article, the work presented in Ref. [14] is extended
to perform variation after projection (VAP), enforcing good
particle number. We show that the SC-EDF used with the
up-to-date functionals based on the Skyrme interaction can be
competitive for describing pairing in nuclei.

II. THE SYMMETRY-CONSERVING EDF APPROACH

By starting from a quasiparticle state |�0〉, the most
currently used SB-EDF based on the Skyrme [20] or Gogny
[21] forces can be written as

ESB[�0] =
∑

i

tiiρii + 1

2

∑
i,j

v
ρρ

ijij ρiiρjj + 1

4

∑
i,j

vκκ
iı̄j j̄ κ

∗
iı̄κj j̄ ,

(1)

where vρρ and vκκ denote the effective vertices in the particle-
hole and particle-particle channels. Here ρ and κ denote the
normal and anomalous densities expressed in the canonical
basis.

In the Hamiltonian case, U(1) symmetry restoration can be
performed by considering the component of the quasiparticle
state with specific particle number. By introducing the particle
number projector P N , a new state |�N 〉 can be defined through

|�N 〉 = P N |�0〉. (2)

While there is no ambiguity when a Hamiltonian is used, the
main challenge within the EDF approach is to properly extend
(1) to account for particle number conservation.

This problem has been carefully analyzed in Ref. [14],
leading to a generalization of the energy density functional
given by
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ii

)
, (3)

where ρN and RN denote, respectively, the one- and two-body
matrices of the projected state, Eq. (2). Note that it is further
postulated that any dependence of the effective vertices in
terms of the SB density should be replaced by an equivalent
dependence of the projected density. By doing so, the energy
becomes a functional of the projected state degrees of freedom
(DOF) only. Note that, for other symmetries [13], this
assumption leads to serious difficulties and remains an open
question. In former applications of SC-EDF, the expression of
the energy has been used in the projection after variation (PAV)
scheme, showing the absence of any pathologies previously

observed, even if density-dependent interactions are used in
the functional.

Here, the SC-EDF is applied to perform VAP. In this case,
the energy should be minimized with respect to all possible
variations of the projected state DOF, i.e.,

δESC[ρ̂N , R̂N ] = 0. (4)

In the following we will consider the specific case where
the state |�0〉 is written in a BCS form as

|�0〉 =
∏
i>0

(ui + via
†
i a

†
ı̄ )|0〉, (5)

with u2
i + v2

i = 1. Accordingly, variation of the projected state
DOF can be recast into variations of the single-particle state
components φi(r) associated with the creation operator a

†
i

and variations of the quantity v2
i corresponding to the SB

occupancy of orbital i. We then end up with a set of coupled
equation to be solved self-consistently:

δESC

∂φ

i (r)

= 0,
δESC

∂v2
i

= 0. (6)

This procedure is the same as the one generally used in
the Hamiltonian case in PNP-VAP [22–24]. The eigenvalue
equations of the self-consistent problem are recalled and
explained in the Appendix. It is worth mentioning that we took
advantage of the analytic expressions of the densities RN [25].
This step is crucial to reduce the computational burden of the
calculation.

The Euler-Lagrange equations associated with the mini-
mization of the energy yield a set of eigenvalues and nonlinear
equations that are rather involved numerically. As explained in
the Appendix, each single-particle state evolves with its own
potential. This increases the numerical cost of the approach.
By taking advantage of the EDF flexibility without breaking
the consistency requirement, the minimization can be greatly
simplified numerically by making the assumption in Eq. (3)
that

RN
jiji � ρN

ii ρ
N
jj . (7)

With this approximation, the usual picture of single-particle
states evolving with the same mean field is recovered. To
quantify the effect of approximation (7), PAV has been
performed either using directly RN

jiji or using its approximate
form. An illustration of the results is shown in Fig. 1 for
a tin isotope in the mid-shell as a function of deformation.
It can be seen in this figure that the total energy is slightly
lower when approximation (7) is made while the shape of the
energy landscape is globally unchanged. It should be noted
that, following the spirit of density functional theory, such a
shift can easily be compensated by readjusting the functional
parameters. It is clear that the use of the complete two-body
matrix elements is desirable, but approximation (7) greatly
improves the convergence of the minimization while leading
to nonzero pairing even close to magicity. This approximation,
which appears as a compromise between practical constraints
and the improvement of pairing, is used in the following.
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FIG. 1. Evolution of the total energy given by the full SC-EDF
functional (gray dotted line) and using the approximation of Eq. (7)
(black solid line) at the PAV level as a function of the deformation of
the 116Sn nucleus.

III. APPLICATIONS

The EV8 code of Bonche, Flocard, and Heenen [26] has
been updated to allow minimization of the functional (3) using
the approximation in Eq. (7). The numerical method consists
in solving the mean-field problem by using an imaginary
time-step method [27] and the optimization of the occupation
probabilities by using sequential quadratic programming. In
the following, the SC-EDF method is used with the SLy4
interaction in the mean-field channel [28] while the effective
pairing interaction considered [29] is

vκκ (r, r′) = V0

2
(1 − Pσ )

[
1 −

(
ρ(R)

ρ0

)α]
δ(r − r′), (8)

with R = (r + r′)/2. V0 = 1250 MeV is the pairing constant,
α = 1, and ρ0 = 0.16 fm−3 is the saturation density. In
addition, to avoid the ultraviolet divergence that appears with
contact interaction, a cutoff factor [30] with an energy interval
of 5 MeV is used to select states around the Fermi energy.
These values have been typically used to reproduce neutron
and proton separation energies [31] and, in the standard
terminology, correspond to a surface pairing.

In this work, SC-EDF calculations are systematically
performed for the Kr and Sn isotopic chains. In the latter
case, the proton number is magic while in the former case it
is not. As an illustration of the results, the evolution of the
energy as a function of the deformation obtained with the SC
functional (blue solid line) is compared to the original BCS
result (green dashed line) for 72Kr and 86Kr, respectively, in
Figs. 2(a) and 2(b). Similar curves are shown in Fig. 3 for 116Sn
and 132Sn. These nuclei have been selected because they are
representative of the different types of situations: a mid-shell
nucleus (72Kr), simply magic nuclei (86Kr and 116Sn), or a
doubly magic nucleus (132Sn). The results have been obtained
by adding a quadrupole constraint in the minimization while
the deformation parameter is defined by

β =
√

5

16π

4π

3R2A
〈Q20〉, (9)
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FIG. 2. (Color online) Evolution of the energy obtained using
the VAP calculation (blue solid line) for (a) 72Kr and (b) 86Kr as a
function of deformation. In each case, the BCS result obtained with
the original EV8 code is shown with a green dashed curve.

where 〈Q20〉 is the quadrupole deformation and R = 1.2A1/3

is the nuclear radius. It can be seen in Figs. 2 and 3 that the
potential energy curves obtained with the SC-EDF are smooth.

As already discussed in Ref. [14], no additional pathologies
in the projection with density-dependent interactions [8,11] are
expected. This stems from the fact that the projected densities
are used to calculate the energy; nevertheless, the functional
is subject to the same problems as the original symmetry-
breaking EDF (for instance, possible self-interaction).

Figures 2 and 3 illustrate that the energy potential curves
of the SC-EDF with respect to the quadrupole deformation are
shifted from those of the BCS formalism. There are no changes
in the shape of these curves, both the BCS and the shifted SC
functionals can be almost superimposed. The energy gain,
illustrated by the shift, is between 1 and 2 MeV for mid-shell
and simply magic nuclei while the doubly magic nuclei 132Sn
gains more than 0.5 MeV. This increase in correlation energy
comes from the improved treatment of the pairing correlations
from the projection formalism that has been used to tailor the
functional dependancies of the energy.

As seen from Figs. 2 and 3, the full SC functional induces
rather small differences on the total energy compared to the
original BCS case. It should be mentioned, however, that
the pairing energy is always enhanced when the symmetry
is conserved, especially around shell closures, as expected.
Indeed, when the pairing is treated within BCS or HFB
formalisms, there is a sudden disappearance of correlations
in the weak-pairing regime. This is the known as the BCS
threshold anomaly. A measure of the pairing strength is
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FIG. 3. (Color online) Same as Fig. 2 for (a) 116Sn and (b) 132Sn.
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FIG. 4. (Color online) Value of the deformation parameter β

[Eq. (9)] at (a) the minimum, (b) average proton, and (c) neutron
mean gaps defined by Eq. (10) shown as a function of the neutron
number along the Kr isotopic chain obtained from BCS (green
dashed lines) and the SC-EDF (blue solid lines) approaches. The
deformation parameter at the minimum is the same for both BCS
and SC-EDF (gray long dashed line) cases. The calculations are
performed with a SLy4 effective interaction that includes a noninteger
density dependence and a density-dependent pairing interaction
[Eq. (8)]. The minimization is performed including the quadrupole
degree of freedom. In the neutron case, the experimental gaps (black
crosses) and their error bars [34] obtained with the three-point formula
(see [32,33]) are also presented.

provided by the mean gap [32]

�n/p = E
n/p
pairing∑

i

√
ρii(1 − ρii)

, (10)

where ρii are the occupation probabilities of a given theory and
E

n/p
pairing is the neutron-proton pairing energy. In the SC-EDF

formalism, these energies are calculated as the sum of the last
two terms in Eq. (3). This observable has the advantages of (i)
correlating with the pairing gap in the limit of a constant pairing
interaction and (ii) probing both the pairing energy and the
trend of the occupation probabilities, such as the fragmentation
of occupation numbers around the Fermi surface.

In Figs. 4 and 5, the deformation parameter β [Eq. (9)] at the
minimum of the energy [Figs. 4(a) and 5(a)] and the average
proton [Figs. 4(b) and 5(b)] and neutron [Figs. 4(c) and 5(c)]
gaps are shown as a function of the neutron number along
the Kr and Sn isotopic chains, respectively. The BCS (green
dashed lines) and the SC-EDF (blue solid lines) results are
compared. Note that consistently with the observations from
Figs. 2 and 3, the deformation parameter at the minimum of
the energy (long dashed line) is the same for both BCS and
SC-EDF cases (and hence is plotted once). In this figure, the
BCS case exhibits strong variations of the gap near the N = 50
shell closure. This is a fingerprint of the abrupt disappearance
of pairing in this formalism close to magicity. It is also
worth keeping in mind that the evolution of deformation as
N increases might also induce local fluctuations. This is the
case for N > 56 in the Kr chain, as we can see from the
evolution of the deformation [Fig. 4(a)] reflected by variations
in Figs. 4(b) and 4(c).
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FIG. 5. (Color online) Same as Fig. 4 for the Sn isotopic chain.
The proton mean gap (b) for the BCS case is identified with zero
along the isotopic line.

In the SC-EDF case, it is observed that the pairing gap is
systematically enhanced compared to the BCS results. This
enhancement is increased at the shell closure. For instance, in
the proton gap of Sn isotopes, a mean gap of ∼ 0.7 MeV is
obtained (see Fig. 5), compared to zero MeV at the BCS level.
In the Kr isotopic chain, both BCS and SC-EDF approaches
lead to deformed nuclei with the same deformation parameter.
The increase of pairing correlations is only due to a better
treatment of quantum fluctuations in gauge space by the SC
method. It is then seen that the increase at the shell closure
(N = 50) is further enhanced to ∼ 1 MeV, while it is of the
order of 0.3–0.5 MeV in the mid-shell. Altogether, the pairing
gap obtained within the VAP approach is much smoother than
the BCS pairing gap and more consistent with experimental
observations.

It is important to note that the increase of the pairing gap is
not fully reflected in the lowering of the ground-state binding
energy. Indeed, the SC-EDF approach is fully self-consistent
and, when the enhanced pairing is built up in the minimization,
the mean field reorganizes. Generally, it is observed that
the mean-field energy, denoted by EMF and defined as the
total energy minus the pairing energy, increases slightly and
partially compensates for the effect of the pairing. In Figs. 6
and 7, the three quantities

�Epairing = EVAP
pairing − EBCS

pairing,

�EMF = EVAP
MF − EBCS

MF ,

and

�Etot = EVAP
tot − EBCS

tot

are displayed as a function of the neutron number, respectively,
from panels (a) to (c) for the Kr and Sn isotopes. In these
figure, we see that �Epairing [Figs. 6(a) and 7(a)] is always
negative while �EMF [Figs. 6(b) and 7(b)] is always positive
and, therefore, the net reduction of the total energy [Figs. 6(c)
and 7(c)] is much less than the pairing correlation would
suggest. Altogether, the total energy is shifted. The transition
from a sharp Fermi distribution around single or doubly magic
nuclei with the BCS approach to a fragmented Fermi surface
with nonzero pairing within the SC-EDF approach leads to
a significant change in the mean-field energy, especially due
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FIG. 6. (Color online) Evolution of the quantities �Epairing (a),
�EMF (b), and �Etot (c) along the Kr isotopic chain. The horizontal
dashed line corresponds to the case where BCS and SC-EDF results
would be identical. The vertical axis has units of MeV.

to the contribution of single-particle levels above the Fermi
energy. We can observe this effect in both Figs. 6 and 7.
However, it is not possible to give more general trends because
of the deformation and self-consistency of the theory.

In Fig. 8, the two-neutron separation energies S2n obtained
in the BCS (green dashed line) and SC-EDF (blue solid line)
approaches are compared with experimental values (black
open circles). This quantity is sometime used in the literature
to adjust the pairing effective interaction parameters. Both
BCS and VAP results are consistent with experiment. In fact,
the S2n value are not affected by the variation after projection
performed within the SC-EDF formalism.

The applications of the SC-EDF show that the bulk
properties (Figs. 2, 3, and 8) of the underlying effective
interaction are conserved while the total binding and pairing
energies are shifted (Figs. 6 and 7). For all nuclei studied
here, the SC-EDF predicts a nonzero pairing energy and a
fragmented Fermi surface. This is reflected by the nonzero
pairing gap (Figs. 4 and 5) for all nuclei, including single
and doubly magic ones where the BCS approach leads to a
Fermi distribution for the orbital occupancies. In the following,
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FIG. 7. (Color online) Same as Fig. 6 for the Sn isotopic chain.
The vertical axis has units of MeV.
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FIG. 8. (Color online) Comparison of the two neutron separation
energies S2n along the Sn isotopic chain between BCS (green dotted
line) and SC-EDF (blue solid line) approaches with the experimental
values (black open circles).

the evolution of these observations are investigated in a brief
discussion as a function of the refitting of the strength V0 of
the pairing interaction.

IV. DISCUSSION OF THE PAIRING STRENGTH

The pairing interaction used above is often adjusted to
properly describe pairing gaps in the EDF approach using BCS
or HFB formalisms especially in the mid-shell [32,35–37]. It is
known in the literature [2] that one should a priori readjust the
pairing strength when the functional changes. In this section,
the results of VAP with an optimal value of the pairing strength
are presented.

In Figs. 9 and 10, results of the BCS (green dashed line) and
SC-EDF (blue solid line) approaches with a pairing strength
V0 = 1100 MeV are shown. This value of the strength has
been chosen to properly describe Kr isotopes in the open
shell and agrees with previous studies (see for instance [38]).
By comparing these figures with Figs. 4 and 5, it can be
observed that the SC-EDF with the reduced pairing interaction
reproduces the original BCS result (with V0 = 1250 MeV) in
open-shell nuclei.

Refitting of the pairing interaction solely when incorpo-
rating particle number projection is too simplistic a strategy
to properly describe both the pairing and the bulk properties
in nuclei. To improve the quality of theories that go beyond
the mean field by restoring symmetries, it is anticipated that
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FIG. 9. (Color online) Same as Fig. 4 with a pairing strength of
V0 = 1100 MeV. The green dashed curve corresponds to the BCS
result while the blue solid line corresponds to the SC-EDF case.
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FIG. 10. (Color online) Same as Fig. 5 for the Sn isotopes.

a complete readjustment of all components of the functional
(mean-field and pairing) has to be performed.

V. CONCLUSION

The recently proposed symmetry-conserving EDF ap-
proach that incorporates the effect of particle number conserva-
tion is used in the variation after projection scheme. The VAP
is applied using density-dependent interactions in both the
mean-field and pairing channels. Such a density dependence,
while impossible to use in configuration mixing calculations,
does not lead to any difficulty in the SC-EDF framework. The
particle-hole functional is simplified to allow a more efficient
treatment and illustrates that the pairing energy of the SC-EDF
yields an improved description of pairing correlations. A
systematic study of the krypton and tin isotopic chains is
made, showing the increase of pairing energy when particle
number conservation is taken into account self-consistently.
In particular, the description of correlations in the vicinity
of closed-shell nuclei is improved. Indeed, as expected, the
symmetry-conserving theory predicts nonvanishing pairing
gaps around and at shell closures. The present study clearly

shows that the incorporation of symmetry restoration leads to
an enriched functional. Here, we reduce the pairing strength
in order to properly describe pairing gaps. We recall that,
ultimately, coefficients of the functional in both mean-field
and pairing channels should be simultaneously optimized to
really improve the predictive power using EDF approaches.
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APPENDIX: EULER-LAGRANGE EQUATIONS

In the case of the SC-EDF built from a quasiparticle vacuum
and a two-body delta interaction, the eigenequations to be
solved as a self-consistent mean-field problem read

∂ESC

∂φ

i (r)

=
(

− h̄2

2m
� +

∑
j �=(i,ı̄)

∂v̄
ρρ

ijij

∂φ

i (r)∂φi(r)

RN
jiji

ρN
ii

+ ∂v̄
ρρ

iiii

∂φ

i (r)∂φi(r)

ρN
ii − εi

)
ρN

ii φi(r), (A1)

where the contribution from the pairing part of the functional
has been neglected as is usually done, v̄ρρ is a particle-hole
contact interaction, RN

jiji is the projection of the one-body
density acting in the particle-hole channel, and εi is the
Lagrange multiplier that enforces the normalization of the
single-particle state φi . It can be noted that in this form there
is one potential for each orbital due to the density dependence
in the summation. The role of the prescription in Eq. (7) is to
remove this dependency, hence recovering a single mean-field
for all orbits.
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