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Correlations in nuclear matter
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We analyze the nuclear matter correlation properties in terms of the pair correlation function. To this aim
we systematically compare the results for the variational method in the lowest-order constrained variational
(LOCV) approximation and for the Bruekner-Hartree-Fock (BHF) scheme. A formal link between the Jastrow
correlation factor of LOCV and the defect function (DF) of BHF is established and it is shown under which
conditions and approximations the two approaches are equivalent. From the numerical comparison it turns out
that the two correlation functions are quite close, which indicates in particular that the DF is approximately local
and momentum independent. The equations of state (EOS) of nuclear matter in the two approaches are also
compared. It is found that once the three-body forces (TBF) are introduced, the two EOS are fairly close, while
the agreement between the correlation functions holds with or without TBF.
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I. INTRODUCTION

The structure and properties of nuclear matter is one of
the central issues in the development of nuclear many-body
theory. Nuclear matter is of great relevance for the physics
of supernova, neutron stars, and heavy ion collisions, for
the development of density functionals in nuclear structure
studies, and for the understanding at fundamental level
of the low-energy baryon-baryon interaction. For a review
see Ref. [1]. Different many-body theories [2,3] have been
developed to approach this problem. One can mention the
variational method [4–11], the Monte-Carlo method in its
different versions [12–17], and the diagrammatic expansion
methods, in particular the Brueckner-Bethe-Goldstone hole-
line expansion [2] and the self-consistent Green’s function
scheme [18–25]. One of the main goals of this effort along the
years has been the explanation of the saturation point of nuclear
matter that can be extracted phenomenologically through
various experimental methods, in particular the analysis of
the binding energy of nuclei and of the electron elastic
scattering cross sections [1]. However, besides the saturation
point, one of the most important characteristics of nuclear
matter is its correlation structure. In fact, the presence of a
hard core in the nucleon-nucleon (NN) interaction produces a
correlation “hole” between two nucleons that can be described
by the correlation function. The latter is also determined
by the intermediate and long-range interaction, typical of
the nuclear two-nucleon potential. The correlation function
is a key quantity to characterize each many-body scheme
and to understand the corresponding numerical results. In
scattering studies, the spectral function of a many-fermion
system gives the important quantities of interest and the short-
and long-range correlation functions are very important factors
for calculating the spectral functions [26]. The connection
of the correlation function and the spectral function is not
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straightforward, but it has been elucidated in Ref. [27] in the
Brueckner-Hartree-Fock (BHF) framework and in Ref. [28]
for the lowest-order constrained variational (LOCV) method,
where it is particularly transparent. Furthermore, several
phenomena that occur in neutron star matter are closely linked
to the correlation function, such as, e.g., dissipation due to
shear viscosity and neutrino transport. It appears, then, natural
to look for a comparison between the correlation functions
from different many-body schemes. In this paper we present a
detailed comparison between the Bethe-Brueckner-Goldstone
(BBG) method [2] and the variational method, as developed
within the LOCV framework. Both methods have been applied
systematically to nuclear matter with different two-body inter-
actions. The results for the saturation point and other physical
parameters, such as the compressibility at high density [29,30]
and the critical temperature of the liquid-gas phase transition
[31,32], are close but not completely in agreement. One of
the main goals of this work is to present an analysis of the
correlation function that could help understanding the reason
of the agreements and the discrepancies by the comparison of
the corresponding correlation properties.

II. THE VARIATIONAL METHOD

The method of lowest-order constrained variational ap-
proach is among the microscopic methods that were developed
to calculate the bulk properties of homogeneous nuclear
fluids, such as the saturation quantities by using the realistic
nucleon-nucleon interaction, i.e., Reid68 and �-Reid (the
modified Reid potential with inclusion of isobar degrees of
freedom) [33]. This method was reformulated to include more
sophisticated interactions [34], such as UV14, AV18 [35], and
charge-dependent Reid potential (Reid93) [36]. The LOCV
method has been also developed for calculating the various
thermodynamic properties of hot and frozen homogeneous
fermionic fluids, such as symmetric and asymmetric nuclear
matter [37], β-stable matter [38], helium-3 [39], and electron
fluid [40], with different realistic interactions. Recently, the
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LOCV formalism was developed for covering the relativistic
Hamiltonian with a potential that has been fitted relativistically
to nucleon-nucleon phase shifts [41]. The LOCV calculation
is a fully self-consistent technique with state-dependent
correlation functions. There is no free parameter in this
method, except those included in the interactions. Considering
constraint, as in the form of normalization condition, is another
advantage of LOCV formalism. This assumption keeps the
higher-order terms as small as possible, and it also assumes a
particular form for the long-range behavior of the correlation
functions in order to perform an exact functional minimization
of the two-body energy with respect to the short-range parts of
correlation functions. The functional minimization procedure
represents an enormous computational simplification over the
unconstrained methods, where the short-range behavior of
the correlation functions is parametrized, which attempt to
go beyond the lowest order [42]. To test the convergence
of the LOCV method for nuclear matter and helium-3, the
calculations were performed beyond the lowest order, and
the three-body cluster energy was evaluated with both the state-
averaged and state-dependent correlation functions [43]. The
smallness of the normalization (the convergence parameter)
and of the three-body cluster energy indicated that at least
up to twice the empirical nuclear matter saturation density,
the cluster expansion converges reasonably, and stopping after
two-body cluster terms is a fair approximation. In the LOCV
method, we use an ideal Fermi gas-type wave function, φi ,
for the single-particle states, and we employ the variational
techniques to find the wave function of the interacting system
(Refs. [33–36]), i.e.,

� = F �, (1)

where � is the uncorrelated Fermi system wave function
(Slater determinant of plane waves) and the factor F (1, 2.., A)
is the many-body correlation function, defined as a product
of two-body correlation functions f (i, j ) (Jastrow form), and
assumes that they are operators,

F = S
∏
i<j

f (i, j ), (2)

where S is a symmetrizing operator. The many-body energy
term E[f ], which is a functional of the f ’s, is calculated by
constructing a cluster expansion for the expectation value of
Hamiltonian H of the system:

E[f ]= 1

A

〈�|H |�〉
〈�|�〉 =E1+E2 + · · · · · ·>E0, (3)

where E0 is the true ground-state energy and A is the particle
number. In the lowest order we truncate the above series after
E2, i.e., two-body energy. The one body term E1 is independent
of the f and is just the familiar Fermi gas kinetic energy. The
two-body energy term is defined as

E2 = 1

2A

∑
ij

〈ij |W |ij 〉a; | ij 〉a = |ij 〉 − |ji〉

(4)

W = − h̄2

2m
[f (1, 2), [∇2, f (1, 2)]] +f (1, 2)V (1, 2)f (1, 2),

and the two-body antisymmetrized matrix element 〈ij |W |ij 〉a
is taken with respect to the single-particle functions composing
φi , i.e., plane-waves. By inserting a complete set of two-
particle states twice in the above equation and performing
some algebra, we can rewrite the two-body term as a functional
of correlation functions [33,34,36]. In this equation, V (1, 2) is
a phenomenological nucleon-nucleon potential such as Reid
type, UV14, and AV18. At this stage, we can minimize the two-
body energy with respect to the variations of the correlation
functions [33,34,36] but subject to the normalization constraint
[33–41]:

1

A
〈ij |h2(1, 2) − f 2(1, 2)|ij 〉a = 1. (5)

The function h(1, 2) is the modified Pauli function, which for
the symmetrical nuclear matter takes the following form:

h(1, 2) =
{

1 − 9

4

[
j1(r12)

r12

]2}− 1
2

, (6)

where j1(r12) is the well-known spherical Bessel function
of order 1. Note that [χ = 〈�|�〉 − 1] plays the role of
a smallness parameter in the cluster expansion. The above
constraint introduces a Lagrange multiplier, through which all
the correlation functions are coupled. Then we can write sets of
uncoupled and coupled Euler-Lagrange differential equations
with respect to the correlation functions. The constraint is
incorporated by solving these Euler-Lagrange equations only
up to a certain distance, where the logarithmic derivative of
correlation functions matches those of the Pauli function, and
then we set the correlation functions equal to the Pauli function.
As we pointed out before, there is no free parameter in our
LOCV formalism, i.e., the healing distance is determined
directly by the constraint and the initial conditions.

III. THE BBG EXPANSION

One of the most known and used microscopic many-body
approaches to the theory of nuclear matter is the Bethe-
Brueckner-Goldstone (BBG) expansion [2]. In this scheme,
the original nucleon-nucleon interaction is systematically
replaced by the so-called G matrix, which describes the two-
nucleon scattering amplitude inside the medium. A modified
perturbative expansion is then developed in terms of this
effective interaction and the different terms can be represented
by diagrams. The G matrix can be defined also for singular
interaction, e.g., with a hard core, and it is expected to
be “smaller” than the original NN interaction. Although all
modern realistic NN interactions introduce a finite repulsive
core, it is, however, quite large, and therefore in any case a
straightforward perturbative expansion cannot be applied. As
discussed in the presentation of the variational method, the
repulsive core is expected to modify strongly the ground-state
wave function whenever the coordinates of two particles
approach each other at a separation distance smaller than the
core radius c. In such a situation the wave function should be
sharply decreasing with the two-particle distance. The “wave
function” of two particles in the unperturbed ground state φ0
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FIG. 1. Schematic representation of the expected effect of the
core repulsion on the two-body wave function in nuclear matter.

can be defined as (k1, k2 � kF )

φ(r1, r2) = 〈φ0|ψ†
ξ1

(r1)ψ†
ξ2

(r2)ak1ak2 |φ0〉
= ei(k1+k2)·Rei(k1−k2)·r/2, (7)

where ξ1 �= ξ2 are spin-isospin variables, and R = (r1 + r2)/2,
r = (r1 − r2) are the center of mass and relative coordinate of
the two particles, respectively. Therefore, the wave function
of the relative motion in the s wave is proportional to the
spherical Bessel function of order zero j0(kr), with k the
modulus of the relative momentum vector k = (k1 − k2)/2.
The core repulsion is expected to act mainly in the s wave, since
it is short range, and therefore this behavior must be strongly
modified. In the simple case of k = 0, the free wave function
j0(kr) → 1, and schematically one can expect a modification,
due to the core, as depicted in Fig. 1.

The main effect of the core is to “deplete” the wave function
close to r = 0, in a region of the order of the core radius c. Of
course, the attractive part of the interaction will modify this
simple picture at r > c. If the core interaction is the strongest
one, then the average probability p for two particles to be at
distance r < c would be a measure of the overall strength of
the interaction. If p is small, then one can try to expand the
total energy shift �E due to the interaction in power of p. The
power pn has, in fact, the meaning of probability for n particles
to be all at a relative distance less than c. In a very rough
estimate, p is given by the ratio between the volume occupied
by the core and the average available volume per particle

p ≈
(

c

d

)3

, (8)

with 4π
3 d3 = ρ−1. From Eq. (8) one gets p ≈ 8

9π
(kF c)3, which

is small at saturation, kF = 1.36 fm−1, and the commonly
adopted value for the core is c = 0.4 fm. The parameter
remains small up to a few times the saturation density.

The terms of the expansion can now be ordered according
to the order of the correlations they describe, i.e., the power
in p they are associated with. It is easy to recognize that this
is physically equivalent to grouping the diagrams according
to the number of hole lines they contain, where n-hole lines
correspond to n-body correlations. In fact, an irreducible
diagram with n-hole lines describes a process in which n

particles are excited from the Fermi sea and scatter in some
way above the Fermi sea. Equivalently, all the diagrams with
n-hole lines describe the effect of clusters of n particles, and

therefore the arrangement of the expansion for increasing
number of hole lines is called alternatively “hole expansion”
or “cluster expansion.” For a pedagogical introduction to the
BBG expansion, see Refs. [2,44], where references to more
technical reviews can be found. In Ref. [44] the connection
of BBG and the variational method is discussed. The relation
between the two approaches turns out to be more transparent
if the BBG expansion is reformulated in terms of the coupled
cluster method (or eS method) [45]. According to this scheme,
the wave function of the ground state is written

|�〉 = eŜ |�〉, (9)

where Ŝ is a correlation operator containing a set of n-body
terms, which produce excitations of n particles from below
to above the Fermi sea. This method has also a variational
character, in the sense that the variation is performed not on
the ground-state wave function but on these correlation terms
[45,46]. Then a set of coupled equations is obtained for the
n-body correlation functions. The expansion of this set of
equations in terms of the order of the correlations is equivalent
to a reordering of the hole-line expansion in the BBG theory
[47]. At the two-body level of approximation, the method is
equivalent to the so-called Brueckner approximation [44,47]
in the BBG hole-line expansion, and the operator Ŝ reduces to
a two-body operator Ŝ2

Ŝ2 =
∑

k1k2,k
′
1k

′
2

〈k′
1k

′
2|S2|k1k2〉a†(k′

1)a†(k′
2) a(k2)a(k1), (10)

where the k’s label hole state, i.e., inside the Fermi sphere,
and the k′’s particle states, i.e., outside the Fermi sphere. Each
quantity k indicates momentum k and spin-isospin quantum
numbers. The function Ŝ2 is the so called “defect function”
of the Brueckner scheme. It can be written in terms of the G

matrix and it is just the difference between the in-medium
interacting and noninteracting two-body wave functions
[2,44]. The different terms of the summation commute with
each other and expanding the exponential in Eq. (9) one gets the
product of the correlation operators over all sets of momenta,

|�〉 = �{k}

[
1 +

∑
k′

1k
′
2

〈k′
1k

′
2|S2|k1k2〉a†(k′

1)

(11)

× a†(k′
2) a(k2)a(k1)

]
|�〉,

where the product is over all disjoint pairs of momenta k1, k2,
in a given partition of the set of all momenta, in agreement
with the Brueckner scheme, which is an independent pair
approximation. Higher orders in the expansion vanish because
they include powers of annihilation or creation operators. In the
square bracket one can recognize the two-body wave function.
After Fourier transformation to coordinate representation and
assuming the defect function to be local and independent of
total momentum, this expression acquires the same form as in
the variational method, where the two-body wave function
plays the role of the correlation factors f (i, j ). However,
there are relevant differences with the variational method.
First of all the BBG expansion is not explicitly variational,
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although, as already mentioned, one can recast the expansion
in terms of the eS scheme, which can be formulated by means
of a particular variational procedure [44,45]. Second, the G

matrix, and therefore the defect function, is in general highly
nonlocal, which means that the two-body wave function is
dependent also on the initial momenta in the Fermi sea, as
well as on the total momentum. This would imply a correlation
factor in integral form for the variational scheme. Furthermore,
in BBG expansion one introduces a single particle auxiliary
potential, in order to increase the degree of convergence of the
expansion. This potential is usually called Brueckner potential
and it is determined with a self-consistent procedure [2]. In the
variational method, no single-particle potential is introduced
in the minimization procedure. Of course, it is hidden in the
mean value of the Hamiltonian, but it can be calculated only
after the optimal many-body wave function and energy have
been obtained, by adding a tiny fraction of particle to the
system [48]. Finally, in the variational method the correlation
function is introduced in the mean value of both the kinetic
energy and the interaction term. It is a peculiarity of the
BBG expansion that the total energy is written as the sum of
the unperturbed kinetic energy and the correlated interaction
energy. The latter includes, of course, implicitly the effect
of the correlation on the kinetic energy due to the momentum
dependence of the single particle potential and of the G matrix.

It is one of the main purposes of this work to explore the
consequences of these differences on the correlation properties
of the ground state. In turn, the study provides a detailed view
of the nuclear matter correlations. Since for both LOCV and the
BBG expansion three-body correlations turns out to be only
a fraction of MeV around saturation density [44,49,50], we
restrict the comparison to two-body correlations. In any case,
the two-body correlation functions are determined at the BHF
level for the BBG expansion and at the two-body Jastrow-like
factors for the variational method.

IV. FORMAL AND NUMERICAL COMPARISON

In order to formulate a meaningful comparison between
the two-body microscopic methods, we introduce a mixed
representation of the correlation functions. In the expansion of
Eq. (11) we separate relative and total momenta and perform
the Fourier transformation on the momenta k′, i.e., the final
ones above the Fermi sea. One gets in this way the correlation
function F in coordinate representation, which is dependent
on the initial relative momentum and on the total momentum∫

d3q ′

(2π )3
eiq′r[δqq ′ + 〈q ′|S2(P )|q〉] = FB(r; q, P ), (12)

where the defect function can be written in terms of the G

matrix,

〈q ′|S2(P )|q〉 = Q(q ′, P )

e(q ′, q, P )
〈q ′|G(P )|q〉, (13)

where Q is the average Pauli operator and e is the average two-
particle excitation energy; see the Appendix for more details.
Because of this averaging, the denominator in Eq. (13) can
vanish. The integral of Eq. (12) is meant as principal value,

in agreement with the BHF calculations of the nuclear matter
EOS.

The correlation function can be expanded in partial waves
and one can define a correlation function for each two-
body channel, identified by the quantum numbers lSJT

of the relative angular momentum, total spin, total angular
momentum, and total isospin, respectively. As shown in the
Appendix, the correlation function FB has to be compared with
the corresponding correlation function FV for the variational
method

FV (r, q) = f (r) × jl(qr), (14)

where jl is the spherical Bessel function of order l and f (r) is
the correlation function of, e.g., Eq. (5). It is essential to notice
the factorization of the free wave function characteristic of the
variational method. For the Brueckner correlation function FB

this property does not hold, which embodies the nonlocality
of the G matrix. However, it can hold approximately, and this
can be verified by, e.g., the numerical comparison between the
two correlation functions. Details on the formal comparison
between FV and FB can be found in the Appendix.

We consider symmetric nuclear matter around saturation
and we take the potential Argonne v18 [35] as the two-body
nucleon-nucleon interaction. At the Fermi momentum kF =
1.36 fm−1, corresponding to density 0.17 fm−3, we compare in
Fig. 2 the correlation functions FV (r) and FB(r) at the relative
initial momentum q = 0.1 fm−1 and at zero total momentum
P . In this case the correlation functions are calculated for
the 1S0 channel. In the variational method a small hard core of
radius Rc = 0.1 fm is introduced for numerical reasons, which
is apparent from the figure since the correlation function FV

is zero below the core radius. Both correlation functions feel
in any case the repulsive, but finite, core of the interaction and
they decrease sharply at short distance. They agree closely
above the small core radius Rc. At large distances both
correlation functions reach the expected value of 1, but just
above the repulsive core they exceed 1, due to the attractive part
of the NN interaction. In this region they practically coincide.
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FIG. 2. Correlation function in the 1S0 channel for the LOCV and
BHF approaches. The same correlation functions multiplied by r2 are
also shown. The momentum q = 0.1 fm−1 is the relative momentum
of the two correlated particles.
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FIG. 3. The same as described in the legend of Fig. 2 but for
q = 0.5 fm−1.

A small discrepancy is observed at intermediate distances,
where FV is slightly larger than FB . To be more quantitative,
we calculated the mean absolute deviation for r > 0.25 fm.
We found a value below 2 %, as in all cases we are going to
consider in the following.

The comparison for the 1S0 channel, but for q = 0.5 fm−1, is
reported in Fig. 3. In this case already at moderate distance the
two-body wave function F starts to oscillate since it smoothly
merges into the free wave function, i.e., the Bessel function
(of order 0 in this case). The same agreement between FV and
FB is observed. This result indicates that the factorization of
Eq. (14) is approximately valid also for the correlation function
FB of the BBG expansion. It is also an indication that the defect
function is approximately local.

Notice that in the numerical calculations the correlation
functions are multiplied by r2 and therefore the contribution
of the small distances is vanishing small. This is illustrated in
the same figures, where the correlation functions multiplied
by r2 are reported. In this case the very close agreement is
apparent. A similar trend is obtained for the 3S1 channel; see
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FIG. 4. The same as described in the legend of Fig. 2 but for the
3S1 channel.
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FIG. 5. The same as described in the legend of Fig. 2 but for the
1P1 channel.

Fig. 4. In the channels with higher partial waves the agreement
is even better. To put in evidence the tiny differences, we
have reported in an amplified scale the correlation functions
in Fig. 5 for the 1P1 channel and in Fig. 6 for the 3P1 channel.
Notice the change of scale with respect to the previous figures.
In these cases the centrifugal barrier suppresses further the
two-body wave functions at short and intermediate distance.
At larger distance, outside the considered range, the correlation
functions merge into the proper Bessel function and then they
obviously coincide.

We also checked the dependence on the total momentum
that is present in the two-body wave function. It turns out that
this dependence is quite weak (see Fig. 7), which justifies the
assumption, intrinsic in the variational method, of neglecting
such a dependence. Finally, we have introduced the three-
body forces (TBF) in the calculations, both in the LOCV and
the BBG schemes. It is well known that TBF are necessary
if the phenomenological saturation point of nuclear matter
has to be reproduced. At the level of two-body correlation
approximation, as BHF and LOCV, the TBF are reduced to an
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FIG. 6. The same as described in the legend of Fig. 2 but for the
3P1 channel.
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FIG. 7. The correlation functions as in Fig. 4 at different total
momentum P of the two correlated particles.

effective two-body force by averaging on the position and on
spin-isospin of the third particle [51]. The averaging involves
the two-body correlation itself. In principle the original TBF
can be derived within the nucleon-meson model of nuclear
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FIG. 8. (a) The correlation function in the 3S1 channel is reported,
with and without three-body forces. (b) The blow up of the plot in (a)
within a region at small distances.

forces. This procedure turns out to have only a limited success
[52,53] and requires in any case the tuning of the parameters
(masses and coupling constants) to get a reasonable saturation
point. The latter can be obtained only with the Bonn B potential
[54,55] as two-body forces [52,53]. We prefer to follow a more
pragmatic point of view. We used the Urbana IX model and
treated the TBF according to the method adopted in Ref. [31],
where the averaging is performed by using a schematic two-
body correlation function. We then tune the (two) parameters
of the TBF to get a good saturation point for BHF and we use
the same values in LOCV. Around saturation the contribution
of TBF is relatively small in absolute value, about 1–3 MeV,
in comparison with the total correlation energy that is about
−40 MeV at this density. It is slightly repulsive, and as a
consequence the two-body wave function is further reduced.
This is illustrated in Fig. 8. Since the effect is quite small,
as expected by the relatively weakness of the TBF, Fig. 8(b)
shows a blow up of the small distance region. It looks as if the
effect of the TBF is slightly larger for the BHF method.

V. DISCUSSION AND CONCLUSION

We have studied the correlation properties of nuclear
matter both in the variational LOCV method and in the BHF
scheme. In particular we have shown that one can identify
the variational (generalized) Jastrow factor FV (r) with the
BHF correlation function FB(r) = 1 + g(r), where g(r) is
the so-called defect function. Despite the additional total and
relative momentum dependence of FB , not present in FV , and
the different method of approximation, it turns out that the two
correlation functions are quantitatively quite similar. This is
true for each two-body channel, with or without the inclusion
of the three-body forces. To see the possible relation of the
small differences between the LOCV and BHF correlation
functions to other nuclear matter properties, we have computed
the nuclear matter EOS in the two theoretical schemes. The re-
sults are reported in Fig. 9. The two lower curves, labeled 2BF,
correspond to the EOS with two-body forces only, while the
two upper curves, labeled 2BF + 3BF, correspond to the EOS
when the (same) three-body forces are also included. One can
notice that the two EOS are much more similar when the three-
body forces are included. This is in line with the similar finding
[56] that the EOS’s with different NN interactions become
much closer when the (same) three-body force is included.

In the variational method the average kinetic energy is
affected directly by correlations. The total correlation energy
includes a kinetic energy part and a potential part; see Eq. (4).
The breakdown of the two contributions as a function of
density is reported in Table I for the case where TBF are
included. For comparison the total potential energy of the BHF
calculations is also reported. In the BHF scheme the kinetic
energy is not explicitly modified [2], and the whole correlation
energy is contained in the potential energy coming from the G

matrix contribution. The modification of the kinetic energy is
embodied in the momentum dependence of the G matrix and in
the self-consistent single-particle potential, which also affects
the total binding indirectly since it determines the entry energy
of the G matrix. From the results it looks as if the connection
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FIG. 9. Binding energy per particle as a function of the density
ρ in symmetric nuclear matter for the LOCV and BHF approaches.
The two lower curves, labeled 2BF, correspond to calculations with
two-body force only. The two upper curves, labeled 2BF + 3BF,
correspond to calculations with the inclusion of the three-body forces.

of the EOS and the details of the correlation function is
not so straightforward. This is apparent if we calculate the
correlations functions at twice the saturation density. They
are displayed in Fig. 10(a) for the case with only two-body
forces. The agreement between the two correlations looks
insensitive to the introduction of the TBF [see Fig. 10(b)] and
indeed quantitatively the disagreement, as anticipated before,
is below 2 % for r > 0.25 fm, with or without TBF. Despite
the fact that small variations can be relevant, it looks unlikely
that this deviation can be considered responsible for the fact
that the disagreement between BHF and LOCV is reduced by
several MeV at this density once TBF are introduced. It has
to be noticed that in BHF there is no simple way to relate the
binding energy to the correlation function, which is not directly
involved in the BHF expression for the correlation energy. The
change of the binding is clearly due to the direct effect of
the change in the nucleon-nucleon force due to the TBF. The
only effect of TBF on the correlation function [see Fig. 10(b)]
seems to be a very small decrease at intermediate distance

TABLE I. Nuclear matter correlation energy per particle in LOCV
and in BHF as a function of the density ρ. The first column (K.E.)
for LOCV gives the modification of the kinetic energy due to the
two-body correlation, the second one (P.E.) the potential part, and the
third one their sum. For comparison, the BHF total correlation energy
is reported in the last column. The three-body forces are included.

ρ(fm−3) LOCV BHF

K.E. P.E. TOT

0.10 11.24 −40.75 −29.51 −29.24
0.17 16.77 −56.09 −39.32 −37.97
0.20 18.94 −61.20 −42.26 −40.42
0.30 25.62 −71.18 −45.56 −43.60
0.34 28.20 −72.34 −44.14 −43.10
0.40 32.12 −71.83 −39.71 −40.46
0.50 36.68 −64.32 −27.64 −31.07
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FIG. 10. Correlation function in the 1S0 channel for the LOCV
and BHF approaches at the density ρ = 0.32 fm−3. The same
correlation functions multiplied by r2 are also shown. The momentum
q = 0.1 fm−1 is the relative momentum of the two correlated particles.
(a) Only two-body forces. (b) Three-body forces are included.

of FV with respect to FB . This could suggest that the good
agreement of the EOS is the result of a redistribution of the
attractive and the repulsive contributions to binding. To make
easier the qualitative estimate of the relevance of the TBF,
we have reported in Fig. 11 the comparison of the correlation

FIG. 11. Comparison of the effect of the TBF on the correlation
function at two different densities, 0.16 fm−3 (full lines) and
0.32 fm−3 (dashed lines). At each density the lower curves include the
TBF. Panel (a) refers to BHF; panel (b) refers to LOCV. The meaning
of the other labels is as in previous figures.
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functions with and without TBF at the densities 0.16 fm−3 and
0.32 fm−3, both for LOCV and BHF. At increasing density the
effect of TBF increases, but the effect looks larger for BHF.
Also in this case no systematic trend is observed in relation
to the corresponding EOS. It has been found in Ref. [57]
that also the spectral function has a mild dependence on the
presence of TBF. Beside the EOS, other quantities, such as
transport coefficients or neutrino and electron scattering cross
sections, are probably more directly related to the correlation
and spectral function [58]. The analysis of this point is left to
a future work, but in any case no major discrepancy can be
expected between BHF and LOCV schemes.
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APPENDIX

In this Appendix we give some details on the formal
comparison between the effective correlation factor FB that
is present in the ground-state wave function of the Brueckner
approximation, within the BBG hole-line expansion, and
the corresponding correlation factor FV in the variational
LOCV approximation. The unperturbed ground-state � is
the antisymmetrized product of N single-particle momentum
states

|�〉 = �ki
a
†
ki
|O〉, (A1)

where |O〉 is the vacuum state and the ki include spin-isospin
variables. Then, Eq. (11) can be rewritten as

|�〉 = �{k1k2}F̂k1,k2 |O〉
(A2)

F̂k1k2 =
∑
k′

1k
′
2

[
δk′

1k1δk′
2k2 + 〈k′

1k
′
2|QS2|k1k2〉

]
a†(k′

1)a†(k′
2),

where the summations in F̂ are over all momenta and we have
introduced the Pauli operator Q that restricts the momenta k′

1k
′
2

outside the Fermi sphere, while the momenta k1k2 are inside
the Fermi sphere.

It is convenient to introduce the wave function of the
correlated ground-state |�〉 by taking the scalar product with

the antisymmetrized N -particle coordinate states

|r1r2....rN 〉 = �iψ
†(ri)|O〉 = |{ri}〉, (A3)

where ψ†(ri) is the creation operator of a particle at the position
ri (including spin-isospin variables). One gets

�({ri}) = 〈{ri}|�〉 = A{ri }�{k1k2}fk1k2 (ri, rj ), (A4)

where the operator A antisymmetrizes the N coordinates ri

and

fk1k2 (ri, rj ) =
∑
k′

1k
′
2

[
δk′

1k1δk′
2k2 + 〈k′

1k
′
2|QS2|k1k2〉

]

×〈ri |k′
1〉〈rj |k′

2〉, (A5)

which is the Fourier transform of the defect function. The
variables ri and rj are two generic coordinates among the N

antisymmetrized ones. Introducing the coordinate representa-
tion for the defect function, one gets

fk1k2 (ri, rj ) = 〈ri |k1〉〈rj |k2〉 + 〈rirj |QS2|k1k2〉
= 〈ri |k1〉〈rj |k2〉 +

∫
d3r ′

id
3r ′

j 〈rirj |QS2|r ′
i r

′
j 〉

× 〈r ′
i |k1〉〈r ′

j |k2〉. (A6)

We consider the relative coordinate rij = (ri − rj ) and center
of mass coordinate Rij = (ri + rj )/2 and notice that the
defect function QS2 is diagonal in the total momentum P .
If, furthermore, we assume that the defect function is local,
one gets

fk1k2 (ri, rj ) = 〈rij |q〉〈Rij |P 〉
+

∫
d3r ′

ij 〈rij |QS2(P )|r ′
ij 〉〈r ′

ij |q〉〈Rij |P 〉
= [1 + g(rij )]〈rij |q〉〈Rij |P 〉, (A7)

where q is the relative momentum and

〈rij |QS2(P )|r ′
ij 〉 = g(rij )δ(rij − r ′

ij ). (A8)

Here the dependence on the total momentum of the defect
function has been neglected. This result shows that, under the
stated assumptions, the correlated wave function can be written
as

�({ri}) = A�k1k2 [1 + g(rij )]〈ri |k1〉〈rj |k2〉, (A9)

which has the form of the variational wave function, if we
identify the factor 1 + g with the correlation function f (r)
of the variational method. The defect function in the mixed
representation FB has then to be compared with FV (r)〈r|q〉,
as discussed in the text. Both FB and FV can be expanded in
partial waves and compared channel by channel.
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