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Curved and diffuse interface effects on the nuclear surface tension
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We redefine the surface tension coefficient for a nuclear Fermi-liquid drop with a finite diffuse layer. Following
the Gibbs-Tolman concept, we introduce the equimolar radius Re of the droplet surface at which the surface tension
is applied and the radius of tension surface Rs which provides the minimum of the surface tension coefficient σ .
This procedure allows us to derive both the surface tension and the corresponding curvature correction (Tolman
length) correctly for the curved and diffuse interface. We point out that the curvature correction depends
significantly on the finite diffuse interface. We show that Tolman’s length ξ is negative for a nuclear Fermi-liquid
drop. The value of the Tolman length is only slightly sensitive to the Skyrme force parametrization and equals
ξ = −0.36 fm.
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I. INTRODUCTION

The binding energy of saturated many-particle systems
like a nucleus exhibits the hierarchy of series in powers of
mass number A1/3 which is associated with well-established
experimental features and plays an important role in the
understanding of macroscopic properties of nuclei [1]. In a
simplest case, the surface energy ES of such systems is given
by the term of order A2/3 in this hierarchy. The structure of
the surface energy ES and the corresponding surface tension
coefficient σ depend on the interparticle interaction and the
surface conditions. Moreover, the nucleus is a two component,
charged system with a finite diffuse layer. This fact specifies a
number of various peculiarities of the nuclear surface energy
ES : dependency on the density profile function, contribution
to the surface symmetry energy, connection to the nuclear
incompressibility, etc. The additional refinements of ES appear
due to the quantum effects arising from the smallness of a
nucleus. In particular, the curved interface creates the curvature
correction to ES of order A1/3 and can play an appreciable role
in small nuclei.

The curvature correction to the planar tension coefficient
and the corresponding Tolman length [2] can be estimated
phenomenologically using the polynomial, in powers of A1/3,
expansion of mass formula [3–6]. However the influence
of the curved interface on the properties of small quantum
systems is still poorly studied because of the finite diffuse
layer where particle density drops down to the zero value. The
presence of the finite diffuse layer in a small drop creates, at
least, two questions: (i) What is the actual radius of a drop?
(ii) What is the physical surface where the surface tension is
applied? Because of the presence of the diffuse layer, different
definitions for the size of the drop are possible [7] which
all give the value of drop radius located within the diffuse
layer. Note also that though the width of diffuse layer is much
less than the range of approximate uniformity of the particle
density, one still needs the strict definition of the drop size
because of the following reason. In contrast to the planar
geometry, the area S for the spherical (curved) surface will
depend on the choice of drop radius and this will affect the
value of the surface tension σ derived from the surface energy.

Gibbs was the first who addressed the problem of the
correct definition of the radius and the surface of tension to
a small drop with a diffuse interface [9]. After him, Tolman
drew attention [2] to the fact that two different radii have
to be introduced in this case: the equimolar radius Re, which
gives the actual size of the corresponding sharp-surface droplet
for a given particle number A, and the radius of tension Rs ,
which derives, in particular, the capillary pressure, see below
in Sec. II. Following Tolman, see also Ref. [8], the surface
tension σe ≡ σ (Re) approaches the planar limit σ∞ as

σ (Re) = σ∞

(
1 − 2ξ

Re

+ O
(
R−2

e

))
, (1)

where ξ is the Tolman’s length [2]. At the same time the
capillary pressure Pcapil, which is generated by the curved
surface and provides the equilibrium condition for the well-
defined radius Re, is determined by the radius of tension Rs [9]
[see also below Eqs. (17) and (18)]

Pcapil = 2σ

Rs

. (2)

In general, the presence of the curved interface affects both
the bulk and the surface properties. The curvature correction
�σcurv = −2σ∞ξ/Re ∼ A−1/3 is usually negligible in heavy
nuclei. However, this correction can be important in some
nuclear processes. For example the yield of fragments at the
nuclear multifragmentation or the probability of clusterization
of nuclei from the freeze-out volume in heavy ion collisions are
derived by the statistical weight W of the radius fluctuations
[10]. In both above mentioned processes, small nuclei neces-
sarily occur and the exponential dependence of the statistical
weight W on the surface tension σ [10] should cause a
sensitivity of both processes to the curvature correction �σcurv.

In nuclear physics, the curvature correction to the sur-
face tension was intensively investigated phenomenologically
[3,4,6] as well as within the quantum approaches [11]. Using
the Thomas-Fermi approximation (TFA), the dependence on
curvature of the nuclear surface energy was studied in Ref. [12]
and the various terms of the droplet model were derived from
the Skyrme interaction in Ref. [13]. We point out that within the
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TFA, the nucleus is considered as a quantum liquid. In contrast
to the classical liquid, where the van der Waals equation of state
and the corresponding saturation properties are caused by the
short-range interparticle correlations (collisions), the nuclear
quantum liquid is collisionless. The fundamental saturation
property is provided there by the self-consistency conditions
and the specific density-dependent effective interaction. More-
over, the nuclear quantum liquid is a liquid in a space of
probability distribution, current probability, etc. [14]. This fact
allows one to extend the consideration of liquid properties
to the case of quite small nuclei of order A ∼ 10 until the
saturation properties are not violated.

The curvature correction can also play an appreciable
role for the nuclear fission near the scission point and for
the nuclear fusion in the neck region. This aspect of large
nuclear deformations was not studied yet. In Ref. [15], a
general procedure restricted by the Skyrme-type functional
and the terms of the order h̄2 was applied for calculation of
the curvature energy and in Ref. [16] the curvature-energy
was studied by use of semiclassical mean-field approaches
with including higher-order terms. In Ref. [17] a closed
expression for the nuclear curvature energy and its expansion
into series of volume terms and surface moments was deduced
in a soluble model. For the Fermi gas model in an external
Woods-Saxon potential the curvature energy was calculated
in Ref. [18]. A special care was given to the kinetic energy
operator and the bulk density oscillations within the quantum-
mechanical approach [11]. It was shown that, in contrast to the
semiclassical approaches, to obtain a reasonable value for the
curvature energy the particle and energy densities should be
averaged in a special way.

In the present paper, we suggest the microscopic analysis
of the curvature correction to the surface tension of a small
drop with a finite diffuse layer. We follow the ideology
of the extended Thomas-Fermi approximation (ETFA) with
effective Skyrme-like forces combining the ETFA and the
direct variational method. In our consideration, the proton and
neutron densities ρp(r) and ρn(r) are generated by the diffuse-
layer profile functions which are eliminated by the requirement
that the energy of the nucleus should be stationary with respect
to variations of these profiles. In order to formulate proper
definition for the drop radius, we will use the concept of the
dividing surface, originally introduced by Gibbs [9]. Following
Gibbs, we will introduce the superficial (surface) density as the
difference (per unit area of dividing surface) between actual
number of particles A and the number of particles AV which
a drop would contain if the particle density were uniform.

This paper is organized as follows. In Sec. II we give the
thermodynamical derivation of the surface tension for a finite
system. The Tolman length is derived in Sec. III. Numerical
results and conclusions are summarized in Secs. IV and VI.
The connection of Gibbs-Tolman (GT) approach to the droplet
model is given in Sec. V.

II. EQUIMOLAR SURFACE

We will calculate the dependence of the surface tension
coefficient on the position of the dividing surface in a small

Fermi-liquid drop with a finite diffuse layer similarly to
the procedure described in Refs. [8,19]. The goal of the
calculations is to determine the position of the equimolar
surface, the dependence of surface tension on the bulk density
and the sensitivity of the curvature correction (Tolman length
ξ ) to the parametrization of the effective nuclear forces.

We consider the uncharged symmetric (N = Z) droplet
having the number of particles A = N + Z, the chemical
potential λ and the free energy F . Note that the thermody-
namical consideration is most adequate here because of the
finite diffuse interface in a cold nucleus is similar to the vapor
environment in a classical liquid drop. In order to formulate
proper definition for the drop radius, we will use the concept
of dividing surface of radius R, originally introduced by
Gibbs [9]. Following Refs. [8,9], we introduce the formal (ar-
bitrary but close to the interface) dividing surface of radius R,
the corresponding volume V = 4πR3/3 and the surface area
S = 4πR2. The droplet free energy F will be then split
between the volume, FV , and surface, FS , parts

F = FV + FS , (3)

where

FV = (−P + λ�V )V , FS = (σ + λ�S )S . (4)

Here P = P (λ) is the pressure of nuclear matter achieved at
some volume particle density �V = AV/V and �S = AS/S is
the surface particle density, where AV and AS are the volume
and the surface particle numbers, respectively. Irrespective to
the way of calculation of the total free energy F , its volume
part FV stands for the nuclear matter free energy of the uniform
density �V within the volume V . The state of the nuclear
matter inside the specified volume is chosen to have the
chemical potential λ equal to that of the actual (in the presence
of the finite diffuse layer) drop. Having the value of λ one
can calculate all the intensive quantities like the free energy
per particle FV/AV , the particle density �V and the pressure
P = −∂FV/∂V|AV from the equation of state for the infinite
nuclear matter. The surface part of the free energy FS as well
as the surface particle number AS are considered as the excess
quantities responsible for “edge” effects with respect to the
corresponding volume quantities. Thus, the chemical potential
λ is the key quantity needed to determine both the volume
part of the free energy FV and the surface energy FS due
to Eq. (3).

The actual particle number is given by

A = AV + AS = �VV + �SS . (5)

Note also that the surface (superficial) particle number AS
is a formal quantity which is caused by the deviation of the
volume part AV from the actual particle number A through
an arbitrary choice of the dividing surface. The value of AS
disappears for the actual size of the sharp-surface droplet given
by the equimolar radius Re, see Ref. [9] and below in Sec. III.
The use of Eqs. (3)–(5) gives the following relation for the
surface tension:

σ = F − λA

S + PV
S = 
 − 
V

S , (6)
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where symbol 
 = F − λA stands for the grand potential and

V = −PV . To reveal a R-dependence of the surface tension
σ , it is convenient to introduce the grand potential per particle
ω = F/A − λ for the actual droplet and ωV = FV/AV − λ =
−P/�V for the volume part. Then the surface tension is written
as

σ [R] = ωA

4πR2
− 1

3
ωV�VR . (7)

Here, the square brackets denote a dependence of the observ-
able F , λ, P , etc. on the dividing surface radius R which
is different than the dependence on the physical size of a
droplet [19]. Using Eq. (6), the capillary pressure P reads

P = 3
σ [R]

R
− 3

F − λA

4πR3
. (8)

Taking the derivative from Eq. (8) with respect to the formal
dividing radius R and using the fact that the observable
quantities F , λ, and P should be R independent (changing
dividing radius R we keep the particle density invariable), one
can rewrite Eq. (8) as

P = 2
σ [R]

R
+ ∂

∂R
σ [R] , (9)

which is the generalized Laplace equation.
The choice of the dividing radius R is arbitrary, the only

condition is to keep the same chemical potential λ. So, the
formal value of surface density �S can be positive or negative
depending on R. From Eq. (5) one finds

�S [R] = A

4πR2
− 1

3
�VR . (10)

We have performed the numerical calculations using
Skyrme type of the effective nucleon-nucleon interaction. The
energy and the chemical potential for actual droplets have
been calculated using a direct variational method within the
extended Thomas-Fermi approximation [20]. The free energy
F of the nucleus is given by the following functional:

F =
∫

dr {εkin[ρn, ρp] + εSk[ρn, ρp] + εC[ρp]}, (11)

where εkin[ρn, ρp] is the kinetic energy density, εSk[ρn, ρp]
is the potential energy density of Skyrme NN -interaction
and εC[ρp] is the Coulomb energy density. The equilibrium
condition can be written as a Lagrange variational problem.
Namely,

δ(F − λnN − λpZ) = 0, (12)

where the variation with respect to all possible small changes
of ρn and ρp is assumed.

Assuming the leptodermous condition, the total energy
takes the following form of A,X expansion:

F/A ≡ eA = e0(A) + e1(A)X + e2(A)X2 , (13)

where X is the isotopic asymmetry parameter X = (N − Z)/A
and

ei(A) = ci,0 + ci,1A
−1/3 + ci,2A

−2/3 . (14)

An explicit form of coefficients ci,j for the Skyrme forces
is given in Ref. [20]. Using the trial profile function for the

neutron ρn(r) and proton ρp(r) densities and performing the
direct variational procedure, we can evaluate the equilibrium
particle densities ρ±(r) = ρn(r) ± ρp(r), the equilibrium bulk
density ρ±,0 = limr→0 ρ±(r), the total free energy per particle
F/A, and the chemical potentials λn and λp, see Ref. [20]
for details. From now on, we will consider symmetric and
uncharged nuclei with λn = λp = λ and zero asymmetry
parameter X = 0.

The volume part of free energy FV/AV is associated with
the coefficient c0,0 of Ref. [20]

FV/AV = c0,0,

c0,0 = h̄2

2m
αρ

2/3
+,0 + 3t0

8
ρ+,0 + t3

16
ρν+1

+,0

+ α

16
[3t1 + t2(5 + 4x2)]ρ5/3

+,0 , (15)

where α = (3/5) (3 π2/2)2/3 and ti , x2 and ν are the Skyrme
force parameters. Using the evaluated chemical potential λ,
we fix the particle density �V = �V (λ) from the condition

∂FV
∂AV

∣∣∣∣
V

= ∂

∂ρ+,0
(ρ+,0c0,0)

∣∣∣∣
ρ+,0 = �V

= λ . (16)

For an arbitrary dividing radius R we evaluate then the volume
particle number AV = 4πR3�V/3 and the volume part of free
energy FV/AV . Finally, evaluating the surface parts AS =
A − AV and FS = F − FV , we obtain the surface tension
coefficient σ [R] for an arbitrary radius R of dividing surface.
The dependence of the surface tension σ [R] on the location of
the dividing surface for A = 208 is shown in Fig. 1. As seen
from Fig. 1, function σ [R] has a minimum at radius R = Rs

(radius of the surface of tension [8]) which usually does not
coincide with the equimolar radius Re. The radius Rs denotes
the location within the interface. Note that for R = Rs the cap-
illary pressure of Eq. (9) satisfies the classical Laplace relation

P = 2
σ [R]

R

∣∣∣∣
R = Rs

. (17)
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FIG. 1. Surface tension σ as a function of the dividing radius R

for A = 208. The calculation was performed using the SkM force. Rs

denotes the dividing radius where σ approaches the minimum value.
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FIG. 2. Surface particle density �S versus dividing radius R for
A = 208. The calculation was performed using the SkM force. Re

denotes the equimolar radius where �S becomes zero.

III. SURFACE TENSION AND TOLMAN LENGTH

In Fig. 2 we present the calculation of the surface particle
density �S [R]. Note that, in general, the surface free energy FS
includes both contributions from the surface tension σ itself
and from the bulk binding energy of AS particles within the
surface layer. The equimolar surface and the actual physical
radius Re of the droplet are derived by the condition �S [Re] =
0 [2,8,19], i.e., the contribution from the bulk binding energy
should be excluded from the surface free energy FS . The
corresponding radius is marked in Fig. 2. Equimolar dividing
radius Re defines the physical size of the sharp surface droplet
and the surface at which the surface tension is applied.

Figure 3 illustrates the profile density of the droplet (solid
line) and its volume part (dashed line). One can see from
this figure that the density of nuclear matter, �V , slightly
differs from the droplet bulk density, ρ+,0. Using the SkM
force, we obtain for A = 208 slightly different values of

0.0

0.05

0.1

0.15

0.2

0.25

(f
m

-3
)

0 2 4                                 8 10
r (fm)

Re Rs

SkM, A=208

V

ρ+,0 ρ∞

FIG. 3. Profile density ρ(r) for A = 208. Solid line shows calcu-
lation for the actual droplet, dashed line represents the distributions
which correspond to the equimolar and tension dividing surfaces,
dotted line is the particle density ρ∞ in nuclear matter. The calculation
was performed using the SkM force. Re denotes the equimolar radius,
Rs is the radius of the surface of tension.

�V = 0.171 fm−3 and ρ+,0 = 0.170 fm−3. This difference
disappears for an incompressible liquid or in the planar limit.
In Ref. [3] the approximation ρ+,0 = �V was used to obtain the
curvature correction to the surface tension. Since the correction
for curvature is calculated in the limit of semi-infinite matter,
such approximation should, obviously, give correct results.
Note also that both particle densities �V and ρ+,0 exceed
the nuclear matter density ρ∞ (dotted line in Fig. 3). That
is because the surface pressure, which influences the bulk
properties, leads to an increase in the nucleon density in center
of the nucleus.

Considering an arbitrary choice of the dividing surface and
following the Gibbs-Tolman concept, we have determined two
radii, the equimolar dividing radius Re which corresponds to
zero surface density �S and the radius of tension Rs which
corresponds to the minimum value of the surface tension. From
Eqs. (7) and (10) the values of these radii are given by

Re =
(

4π�V
3A

)−1/3

, Rs =
(

−2π�V
3A

ωV
ω

)−1/3

. (18)

Following Gibbs and Tolman [2,9], we will assume that the
physical (measurable) value of the surface tension is that taken
at the equimolar dividing surface. Taking Eq. (9) for R = Rs ,
using Eqs. (17) and (1) and introducing small value η = Re −
Rs , we obtain

P = 2σ∞
Rs

(
1 − 2ξ

Rs

+ O
(
R−2

s

))
. (19)

Taking Eq. (9) for R = Re and Eq. (1) we find

P = 2σ∞
Rs

(
1 − ξ + η

Rs

+ O
(
R−2

s

))
. (20)

We point out, that one should make a difference between the
formal derivative σ ′[R] in Eq. (9) and the derivative σ ′(R)
where the surface tension is treated as a function of physical
size. However, for the special case of the equimolar dividing
surface one can derive σ ′[Re] = σ ′(Re), see [8]. In particular,
using Eq. (1) one finds σ ′(Re) = σ∞(2ξR−2

e + O(R−3
e )) and,

in contrast to σ ′[Rs] = 0, one has σ ′(Rs) = σ∞(2ξR−2
s +

O(R−3
s )). Comparing Eqs. (19) and (20) for Rs → ∞, we

obtain the Tolman result [2] (see also [19])

ξ = lim
A→∞

(Re − Rs) . (21)

This result leads to the important conclusions which were not
mentioned in previous studies of nuclear surface. First, one
needs to define two different radii: the equimolar radius, Re,
for a proper extraction of the surface energy from the total
energy of nucleus and the radius of tension, Rs , to determine
the capillary pressure. Second, to obtain the nonzero value of
Tolman length, and, consequently, the value of the curvature
correction �σcurv �= 0 for a curved surface, the droplet must
have the diffuse surface layer.

The value of Tolman’s length could be positive or negative.
Positive value of Tolman’s length ξ > 0 means σe < σ∞ [see
Eq. (1)] and negative one leads to σe > σ∞ for a curved surface.
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FIG. 4. Surface tension of the droplet versus the surface curvature
for the range of particle number A = 102–104. The calculation was
performed using the SkM force.

IV. NUMERICAL RESULTS

Since we consider a noncharged droplet (without
Coulomb), the calculation is possible up to very high values
of particle number A ∼ 106. Figure 4 shows the result of
calculation for the tension σe as a function of doubled droplet
curvature 2/Re. The calculation was carried out using the
SkM force. Figure 4 demonstrates the negative value of ξ

for this calculation. An extrapolation of curve in Fig. 4 to zero
curvature 2/Re → 0 allows one to derive both the surface
tension coefficient σ∞ = σe(Re → ∞) in a planar geometry
and the slope of curve which gives the Tolman length ξ . The
result of such kind of extrapolation of σe(Re) is shown in Fig. 4
by dashed line.

We have determined the Tolman’s length ξ and the planar
surface tension σ∞ for several sets of Skyrme interaction. For
this purpose we have performed calculations up to particle
number 106 and extrapolate them to zero curvature. Results are
summarized in Table I. To obtain the error of the extrapolation
2/Re → 0 we estimated the magnitude of the higher order
term ∼R−2

e in Eq. (1). For the interval of particle numbers
A = 104–106 we gain the term of about 0.5R−2

e for the SkM
interaction, so one has about 10−2% contribution from this
term to the surface tension within the considered mass number
interval. One should expect the same accuracy for the extracted
values of σ∞ and ξ .

We can see from Table I that Tolman’s length ξ is negative
for a nuclear Fermi-liquid drop. This conclusion is also sup-
ported by the results of Ref. [3]. The value of the Tolman length
is only slightly sensitive to the Skyrme force parametrization

TABLE I. Values of Tolman’s length ξ and planar
surface tension σ∞ obtained for different parametriza-
tions of Skyrme forces.

Force ξ (fm) σ∞ (MeV/fm2)

SkM − 0.36 0.92
SIII − 0.26 0.93
SLy230b − 0.37 1.01
T6 − 0.36 1.02

with the exception of old one SIII. The calculation of the
curvature correction to the surface tension by expansion around
the plane surface (semi-infinite nuclear matter) was introduced
in Ref. [3] and widely used for different types of nucleon-
nucleon interactions with the Skyrme-type interactions among
them (see, for example, [13,21].) Comparing the values of
the surface, a2, and curvature, a3, coefficients obtained for
T6 and SIII forces in Ref. [21] with the results for the same
forces of Table I by means of Eqs. (35) and (37) (see the next
section), we find the numerical coincidence of our results with
that of Ref. [21]. The main reason of this coincidence, in our
opinion, is the following. For the Gibbs-Tolman approach at
the limit A → ∞ one has �V = ρ∞ and, consequently, the
equimolar radius given by Eq. (18) and obtained from the
condition �S = 0 becomes equal to the equivalent “sharp”
radius of the approach proposed in Ref. [3]. In other words, the
applicability of the Myers-Swiatecky approach is motivated in
this case. The more detailed comparison is quite difficult since
the calculation made within Gibbs-Tolman approach does not
rely on the bulk asymptotics of the energy density functional.

In fact, the above comparison shows the equivalence of
two approaches at large masses. It is interesting to analyze
the applicability both of them for the case of small mass
numbers. Following [13,21] the coefficients of mass formula
are calculated using the leptodermous approximation which
requires the surface layer thickness to be small as compared
to the nuclear size given by the corresponding sharp radius.
According to Gibbs [9] the thermodynamical relation (2)
remains exact up to the zero value of Rs , provided the pressure
is calculated for the matter at the value of chemical potential of
the actual drop. Another conclusion concerning Gibbs-Tolman
approach was made in Ref. [8], namely, the lowest limit of
Rs where the definition of the surface tension make sense is
about of Rs ∼ |ξ |. Since both the tension and the equimolar
dividing surfaces are located within the surface diffuse layer,
the absolute value of η = Re − Rs should not exceed the
thickness, a, of the surface layer. For large masses where
a/R � 1 one can reasonably assume η to be approximately
constant and equal to its planar limit value ξ [2,22]. For the
case of very low masses of 10–20 nucleons, the approximation
η ∼ ξ as well as the leptodermous condition a/R � 1 are
violated. The Gibbs-Tolman procedure described in Sec. II
defines surface quantities as the excess ones with respect
to a certain volume of uniformly distributed matter which
conserves the saturation property. This procedure itself does
not bring any extra approximation like the leptodermous one
a/R � 1, so the question on the applicability of the GT
procedure in the case of low masses should be addressed
to the model which is used for the calculation of the free
energy and the chemical potential. The free energy per particle
for the nuclear matter given by Eq. (15) can, obviously,
be used independently on the value of mass number. One
can obtain the binding energies for the range of low masses
solving numerically the Euler-Lagrange equation (12) within
the extended Thomas-Fermi theory [13] avoiding the use of
the leptodermous condition.

Figure 5 shows the surface tension calculated within the
Gibbs-Tolman procedure based on the binding energy and
the chemical potential obtained from different models. In this
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FIG. 5. Mass number dependence of the surface tension cal-
culated using Gibbs-Tolman procedure. Solid line corresponds to
the exact solution of the Euler-Lagrange equation (12) within the
extended Thomas-Fermi approximation. Dashed lines show results
obtained using the leptodermous expansion. Long dashed line
corresponds to direct variational method with the free energy given
by Eqs. (13) and (14), short dashed line is the droplet model result,
see Eq. (36).

figure, we compare the result based on the exact numerical
solution of the Euler-Lagrange equation (12) (solid line)
with that obtained from models which use the leptodermous
expansion (dashed lines). One can see from Fig. 5 that the
use of A−1/3 expansion overestimates the value of the surface
tension for nuclei with low masses. Figure 5 demonstrates that
σe/σ∞ > 1 for finite A and the difference in predictions for
presented models decreases as the mass number increases.

The effect of finite size of the drop on the surface tension
value can essentially affect the yield of fragments in the nuclear
multifragmentation observed for heavy ion collisions. The
yield Y (A) of the fragment having a certain mass number A is
given by Y (A) ∝ exp(−w/T ) [10], where T is the tempera-
ture, w is the work which is needed to form the fragment from
the nucleon vapor. The value of w is given by Refs. [9,10,22]

w = −PV + σS . (22)

Here, the value of the vapor pressure Pvap is considered to be
negligible as compared to the pressure P of the liquid phase.
Such simplification is possible for small drops far from the
critical state. Leaving apart the temperature dependence of σ ,
let us estimate the effect of the drop size on the value of w.
Using Eq. (9) one can rewrite Eq. (22) as

w = 4πσ [R] R2

3

(
1 − ∂ ln σ [R]

∂ ln R

)
. (23)

Using Re for the radius of dividing surface one obtains

w = 4πσe R2
e

3

(
1 − ∂ ln σe

∂ ln Re

)
. (24)

When obtaining Eq. (24) from Eq. (23), the properties of the
equimolar surface were used, namely, σ ′[Re] = σ ′(Re),
see also [8]. The value of work w estimated from

TABLE II. The work of the drop formation w in
units of the semi-infinite matter estimate w∞ for mass
numbers from 12 to 24, see the text for details of the
calculations. wDM stands for the droplet model result,
see Eq. (38).

A w/w∞ wDM/w∞

12 1.17 1.42
16 1.19 1.39
20 1.19 1.36
24 1.20 1.34

the semi-infinite matter (no size effect) is equal to
w∞ = σ∞(4π/3)1/3(A/ρ∞)2/3. The comparison of w with w∞
should apparently allocate the effect of the finite drop size. We
have performed the calculation for the work of drop formation
for several small mass numbers using the SkM force. The
values of the free energy and the chemical potential were
obtained by solving numerically the Euler–Lagrange equation
(12) within the extended Thomas–Fermi theory [13,21]. Then
the Gibbs-Tolman procedure was applied to evaluate w using
Eq. (24). The results are presented in the second column of
Table II and show values of about 20% higher than w∞ for
mass numbers from 12 to 24. This should bring the hindrance
of the yield of fragments with those masses due to the effect
of the finite fragment size. From the third column of Table II
one can see a significant overestimation of the work w if one
uses the leptodermous expansion around the value of w∞ for
the semi-infinite matter.

V. LINK TO THE DROPLET MODEL

The Gibbs concept of dividing surface does not imply any
specific energy density functional and relies on the value
of the binding energy and the chemical potential which are
measurable quantities. It is possible to apply this concept to the
phenomenological droplet model as well. Considering the non-
charged (N = Z, without Coulomb interaction) droplet at zero
temperature, we will apply the same procedure as described
in previous sections to extract the value of Tolman length.
According to Ref. [3], one can write the free energy, F , and the
chemical potential, λ, of the nucleus having mass number A as

F = −a1A + a2A
2/3 +

(
a3 − 2a2

2

K

)
A1/3 , (25)

λ = −a1 + 2

3
a2A

−1/3 + 1

3

(
a3 − 2a2

2

K

)
A−2/3 , (26)

where a1, a2, and a3 are, respectively, the volume, the
surface and the curvature correction coefficients, K is the
incompressibility. From Eqs. (25) and (26) one obtains the
grand potential per particle ω = F/A − λ as

ω = 1

3
a2A

−1/3 + 2

3

(
a3 − 2a2

2

K

)
A−2/3. (27)

In terms of the droplet model, the equation of state for infinite
nuclear matter beyond the equilibrium point reads

F/A = −a1 + 1
2Kε2 (28)
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and its chemical potential, l, is given by

l = −a1 + 1
6Kε(9ε − 2) . (29)

In Eqs. (28) and (29), the dimensionless variable

ε = − 1

3

ρ − ρ∞
ρ∞

(30)

was introduced as the measure of difference between the
nuclear matter density ρ and its equilibrium value ρ∞. Fixing
the value of particle density �V = ρ(λ) from the condition
l(ρ) = λ, one obtains the volume part of the grand potential
per particle

ωV = − 2

3
a2A

−1/3 − 1

3

(
a3 − 8a2

2

K

)
A−2/3 + O(A−1), (31)

and, using also Eq. (27), the ratio ω/ωV

ω

ωV
= − 1

2
− 3

4

a3

a2
A−1/3 + O(A−2/3) . (32)

Then, using Eqs. (18) and (21), one derives both radii

Re = r0A
1/3

[
1 − 2a2

K
A−1/3 + O(A−2/3)

]
, (33)

Rs = r0A
1/3

[
1 +

(
a3

2a2
− 2a2

K

)
A−1/3 + O(A−2/3)

]
(34)

and the Tolman length

ξ = − a3

2a2
r0, (35)

where r0 = (4πρ∞/3)−1/3. Taking the Eq. (6) at R = Re, by
the use of the Eqs. (27), (31), and (33), the surface tension reads

σe = (ω − ωV )A

4πR2
e

= 1

4πr2
0

(a2 + a3A
−1/3 + O(A−2/3)) . (36)

With the Tolman length given by Eq. (35) and the relation

σ∞ = a2

4πr2
0

(37)

one can reduce Eq. (1) to Eq. (36). As seen from the above
Eqs. (33), (34), and (35), both the equimolar, Re, and the
tension, Rs , radii include the term of compression effect
(2a2/K)A0, whereas the value of Tolman’s length ξ of
Eq. (21) reflects purely the effect of curvature of dividing
surface. Using the results presented in Table I, one may
estimate the ratio of the curvature correction to the surface
coefficient of the droplet model as a3/a2 ≈ 0.63 for the case
of the SkM nucleon-nucleon interaction. This value of the
ratio a3/a2 is consistent with that of Ref. [4].

We have also estimated the droplet model (DM) value wDM

for the work needed to form the drop with mass number A

from the nucleon vapor as given by Eq. (24). Using Eqs. (33)
and (36) one obtains from Eq. (24) the following expression:

wDM = a2A
2/3

3

[
1 +

(
2a3

a2
− 4a2

K

)
A−1/3 + O(A−2/3)

]
.

(38)

VI. CONCLUSIONS

Considering a small droplet with a finite diffuse layer,
we have introduced a formal dividing surface of radius R

which splits the droplet onto volume and surface parts. The
corresponding splitting was also done for the free energy.
Assuming that the dividing surface is located close to the
interface, we are then able to derive the pressure P and the
surface free energy FS . In general, the surface free energy FS
includes the contributions from the surface tension σ and from
the binding energy of AS particles within the surface layer. The
equimolar surface and the actual physical size of the droplet
was derived by the condition �S = 0.

In a small nucleus, the diffuse layer and the curved interface
affect the surface properties significantly. In agreement with
Gibbs-Tolman concept [2,9], two different radii have to be
introduced in this case. The first radius, Rs , is the surface
tension radius which provides the minimum of the surface
tension coefficient σ and the fulfillment of the Laplace relation
(17) for capillary pressure. The another one, Re, is the
equimolar radius which corresponds to the equimolar dividing
surface and defines the physical size of the sharp surface
droplet, i.e., the surface at which the surface tension is applied.
The difference of two radii Re − Rs derives the Tolman
length ξ in an asymptotic limit of large system A → ∞. That
means the presence of curved surface is not sufficient for the
calculation of the curvature correction to the surface tension.
The finite diffuse layer in the particle distribution is also
required. We point out that the Gibbs-Tolman theory allows
to treat a liquid drop within thermodynamics with minimum
assumptions. Once the binding energy and chemical potential
of the nucleus are known its equimolar radius, radius of tension
and surface energy can be evaluated using the equation of state
for the infinite nuclear matter. In this sense, in contrast to the
“geometrical” definition of nuclear size [7], the Gibbs-Tolman
approach does not rely on details of the particle density profile.
In particular, the quantum oscillations of bulk density [11] do
not need to be smoothed to obtain the volume density �V which
is different, in general, than the bulk density.

The sign and the magnitude of the Tolman length ξ depend
on the interparticle interaction. We have shown that the Tolman
length is negative for a nuclear Fermi-liquid drop. As a
consequence, the curvature correction to the surface tension
could lead to the hindrance of the yield of light fragments at
the nuclear multifragmentation in heavy ion collisions.
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