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2Division of Mathematical Physics, LTH, Lund University, P.O. Box 118, S-22100 Lund, Sweden

3Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, PL-00-681 Warsaw, Poland
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Background: Following the 2007 precise measurements of monopole strengths in tin isotopes, there has been a
continuous theoretical effort to obtain a precise description of the experimental results. Up to now, there is no
satisfactory explanation of why the tin nuclei appear to be significantly softer than 208Pb.
Purpose: We determine the influence of finite-range and separable pairing interactions on monopole strength
functions in semimagic nuclei.
Methods: We employ self-consistently the quasiparticle random phase approximation on top of spherical Hartree-
Fock-Bogoliubov solutions. We use the Arnoldi method to solve the linear-response problem with pairing.
Results: We found that the difference between centroids of giant monopole resonances measured in lead and
tin (about 1 MeV) always turns out to be overestimated by about 100%. We also found that the volume
incompressibility, obtained by adjusting the liquid-drop expression to microscopic results, is significantly larger
than the infinite-matter incompressibility.
Conclusions: The zero-range and separable pairing forces cannot induce modifications of monopole strength
functions in tin to match experimental data.
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I. INTRODUCTION

The incompressibility of infinite nuclear matter as well as
of finite nuclei has been studied in a number of theoretical
papers and reviews. In the classic review by Blaizot [1] the
connection between the finite-nucleus incompressibility and
centroid of the giant monopole resonance (GMR) was shown.
This relation allows us to study incompressibility of nuclei
through microscopic calculations of the monopole excitation
spectra. It also brings us the possibility to directly compare
theoretical results with experimental data. For examples, see
the measurements presented in Refs. [2–4].

In Ref. [5], it was shown that the self-consistent models that
succeed in reproducing the GMR energy in the doubly magic
nucleus 208Pb systematically overestimate the GMR energies
in the tin isotopes. In spite of many studies related to the
isospin [6–8], surface [9], and pairing [10–16] influence on
the nuclear incompressibility, to date there is no theoretical
explanation of the question “Why is tin so soft?” [5,17]. For
an excellent recent review of the subject matter we refer the
reader to Ref. [4].

Studies in Refs. [14,15] were restricted to the effect of
zero-range pairing interaction. In the present paper we focus
on a different kind of pairing force, namely, we implement the
finite-range, fully separable, translationally invariant pairing
interaction of the Gaussian form [18–20], together with the
general phenomenological quasilocal energy density func-
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tional in the ph-channel [21]. We have performed calculations
for all particle-bound semimagic nuclei starting from Z = 8 or
N = 8, up to Z = 82 or N = 126. The ground-state properties
were explored within the Hartree-Fock-Bogoliubov (HFB)
method, whereas the monopole excitations were calculated
by using the quasiparticle random phase approximation
(QRPA) within the Arnoldi iteration scheme [22]. For the
numerical solutions, we used an extended version of the code
HOSPHE [23].

The paper is organized as follows. In Secs. II and III, we
briefly outline the Arnoldi method to solve the QRPA equations
and present the separable pairing interaction, respectively. In
Sec. IV, we discuss the nuclear incompressibility, including its
theoretical description, definitions in finite and infinite nuclear
matter, and relations to monopole resonances. Then, our results
are shown and discussed in Sec. V and conclusions are given
in Sec. VI, whereas the Appendix presents numerical tests of
the approach.

II. QRPA METHOD

In the present study, we solve the QRPA equations by using
the iterative Arnoldi method, implemented in Ref. [22]. It
provides us with an extremely efficient and fast way to solve the
QRPA equations. The QRPA equations are well known [24,25]
and have been recently reviewed in the context of the finite
amplitude method (FAM) [26]. Therefore, here we only give a
brief resumé of basic equations, by presenting their particularly
useful and compact form.
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Basic dynamical variables of the QRPA method are given
by the generalized density matrix R,

R =
(

ρ κ

κ+ 1 − ρT

)
=

(
V ∗V T V ∗UT

U ∗V T U ∗UT

)
, (1)

corresponding to mean-field Hamiltonian H = ∂E/∂R,

H =
(

h − λ �

�+ −h∗ + λ

)
. (2)

The standard HFB equations that define amplitudes U and V

read(
h − λ �

�+ −h∗ + λ

)(
U V ∗

V U ∗

)
=

(
U V ∗

V U ∗

)(
E 0

0 −E

)
,

(3)

where the diagonal matrix E contains positive quasiparticle
energies. Then the quasiparticle (χ ) and quasihole (ϕ) states
are given by columns of eigenvectors:

ϕ :=
(

V ∗

U ∗

)
, χ :=

(
U

V

)
, (4)

that is,

Hϕ = −ϕE, Hχ = χE. (5)

The vibrational time-dependent HFB state |	(t)〉,
|	(t)〉 = |	〉 + eiωt |	̃〉, (6)

where |	̃〉 is a small-amplitude correction, leads to the time-
dependent density matrix,

R(t) = R + eiωtR̃ + e−iωtR̃+ (7)

and time-dependent mean field H(t),

H(t) = H + eiωtH̃ + e−iωtH̃+. (8)

After a linearization of fields in the time-dependent Hamilto-
nian, one obtains the QRPA equations in a simple form,

−h̄ωR̃ = [H, R̃] + [H̃,R]. (9)

In this approach, states in Eq. (6) play a role of Kohn-Sham-
like wave functions, which serve the purpose of generating
generalized density matrices R(t) only. Neither |	〉 represents
a correct ground state of the system nor |	̃〉 represents that of
an excited vibrational state. However, the amplitude R̃, which
constitutes the fundamental degree of freedom of the QRPA
method, does represent a fair approximation to the transition
density matrix between both states of the system. It then allows
for calculating matrix elements of arbitrary one-body operators
between the ground state and vibrational state, which is the
primary goal of the QRPA approach.

Equation (9) constitutes the base for our solution of the
QRPA equations in terms of the iterative Arnoldi method.
Indeed, since the mean-field amplitude H̃ depends linearly on
the density amplitude R̃, Eq. (9) constitutes an eigenequation
determining R̃ and h̄ω. However, the matrix to be diagonal-
ized, that is the QRPA matrix, does not have to be explicitly
determined. To obtain the entire QRPA strength function, it
is enough to start from a pivot amplitude and repeatedly act

on it with the expression on the right-hand side [22]. In each
iteration, one only has to calculate the mean-field amplitude
H̃ corresponding to the current density amplitude R̃, which
is an easy task. The pivot can be freely chosen to optimally
suit the calculation. It can for example be random, a QRPA
eigenphonon or be constructed from an external field. In this
work we construct the pivot from the monopole transition
operator. This approach is fundamentally different than that
used within the FAM of Ref. [26], where an external field is
used throughout the calculation and Eq. (9) has to be iterated
for all values of frequencies ω.

Since both stationary (R2 = R) and time-dependent,
[R2(t) = R(t)] density matrices are projective, the QRPA
amplitude R̃ has vanishing matrix elements between the
quasihole and between the quasiparticle states, that is,

ϕ+R̃ϕ = χ+R̃χ = 0. (10)

Therefore, R̃ is solely defined through the antisymmetric
amplitude matrices Z̃ and Z̃′+ defined as

Z̃ = −Z̃T = χ+R̃ϕ, Z̃′+ = −Z̃′∗ = ϕ+R̃χ. (11)

Explicitly, amplitudes Z̃ and Z̃′+ read

Z̃ = U+ρ̃V ∗ + U+κ̃U ∗ + V +κ̃ ′+V ∗ − V +ρ̃T U ∗,
(12)

Z̃′+ = V T ρ̃U + V T κ̃V + UT κ̃ ′+U − UT ρ̃T V .

Within such a formalism, the QRPA equations (9) can be
expressed as

−h̄ωZ̃ = EZ̃ + Z̃E + W̃ ,
(13)

h̄ωZ̃′+ = EZ̃′+ + Z̃′+E + W̃ ′+,

where the field amplitudes W̃ and W̃ ′+ are defined as

W̃ = −W̃ T = χ+H̃ϕ, W̃ ′+ = −W̃ ′∗ = ϕ+H̃χ, (14)

or explicitly,

W̃ = U+h̃V ∗ + U+�̃U ∗ + V +�̃′+V ∗ − V +h̃T U ∗,
(15)

W̃ ′+ = V T h̃U + V T �̃V + UT �̃′+U − UT h̃T V .

We can also invert Eq. (12) and obtain transition densities ρ̃,
κ̃ , and κ̃ ′+ expressed in terms of amplitudes Z̃ and Z̃′+, that
is,

ρ̃ = UZ̃V T + V ∗Z̃′+U+, κ̃ = UZ̃UT + V ∗Z̃′+V +,

κ̃ ′+ = V Z̃V T + U ∗Z̃′+U+. (16)

Finally, we can reduce the above QRPA formalism to
spherical symmetry used in the present study. Then, the
vibrating amplitude of Eq. (6) has good angular-momentum
quantum numbers JM , that is, |	̃〉 ≡ |	̃JM〉 and hence
all the QRPA amplitudes pertain to the given preselected
channel JM , while the ground state |	〉 is spherical. As a
consequence, as dictated by the angular-momentum algebra,
only specific spherical single-particle states are coupled by
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the QRPA amplitudes, which can be expressed through the
Wigner-Eckart theorem and reduced matrix elements as

X̃JM
αjm,α′j ′m′ = 1√

2j + 1
C

jm

j ′m′JM〈ψαj ||X̃J ||ψα′j ′ 〉, (17)

where X̃ stands for amplitudes ρ̃ or h̃, and

X̃JM
αjm,α′j ′m′ = (−1)√

2J + 1
CJM

jmj ′m′ 〈ψαj ||X̃J ||ψα′j ′ 〉, (18)

X̃′+JM
αjm,α′j ′m′ = (−1)J−M

√
2J + 1

C
J,−M
jmj ′m′ 〈ψαj ||X̃′+J ||ψα′j ′ 〉, (19)

where X̃ stands for amplitudes κ̃ , �̃, Z̃, or W̃ . In these
expressions, we have used the standard quantum numbers αjm

of spherical single-particle states.
Spurious QRPA mode appears in the 0+ QRPA calculations.

In a self-consistent full QRPA diagonalization, the spurious
mode decouples from the physical QRPA modes and appears
at zero energy. In the Arnoldi method, this separation does
not happen unless we make the full Arnoldi diagonalization,
which usually is not feasible.

To prevent the mixing of physical QRPA excitations
with the spurious 0+ mode, before the Arnoldi iteration we
create the spurious-mode QRPA amplitudes and its associated
conjugate-state (boost-mode) QRPA amplitudes. The spurious
0+ mode amplitudes follow from the particle number operator
and have the form,

P̃ 00 = U+V ∗, P̃ ′+00 = V T U. (20)

The 0+ boost mode is generated by making an additional
HFB calculation whose chemical potentials λτ and average
particle numbers are slightly shifted from the ground state
values, producing a perturbed state |HFB2〉. The boost-mode
amplitudes are calculated by using Thouless theorem as

R̃00
αjm,α′j ′m′ = 〈HFB2|a+

αjma+
α′j ′m′ |HFB〉

〈HFB2|HFB〉
= (Ṽ Ũ−1)αjm,α′j ′m′ , (21)

R̃
′+00
αjm,α′j ′m′ = 〈HFB|aα′j ′m′aαjm|HFB2〉

〈HFB|HFB2〉
= (Ṽ Ũ−1)∗αjm,α′j ′m′ , (22)

where we used the standard transformation matrices from one
quasiparticle basis to another [24],

Ṽ = UT V2 + V T U2, (23)

Ũ = U+U2 + V +V2. (24)

Gram-Schmidt orthogonalization is used to keep during the
Arnoldi iteration the Krylov-space basis vectors orthogonal
to the spurious and boost modes, that is, each Krylov-
space basis vector is orthogonalized against P̃ and R̃. The
orthogonalization procedure is described in detail in Ref. [22].
For the semimagic nuclei considered here, we only vary the
particle number of the nucleon species that has nonvanishing
pairing correlations.

III. SEPARABLE PAIRING INTERACTION

The separable finite-range pairing interaction for neutrons
(τ = n) and protons (τ = p) that we use in this study is defined
as [19]

V̂τ (r1s1, r2s2; r ′
1s

′
1, r ′

2s
′
2)

= −Gτδ(R − R′)P (r)P (r ′) 1
2 (1 − P̂σ ), (25)

where R = (r1 + r2)/2 denotes the center of mass coordinate,
r = r1 − r2 is the relative coordinate, r = |r|, P̂σ is the
standard spin-exchange operator, and function P (r) is a sum
of m Gaussian terms,

P (r) = 1

m

m∑
i=1

1(
4πa2

i

)3/2 e
− r2

4a2
i . (26)

Coupling constants Gτ define the pairing strengths for neu-
trons and protons.

For such a pairing interaction, the pairing energy acquires
a fully separable form, which in spherical symmetry reads

Esep
pair = −1

2

∑
NJτ

Gτ

(∑
μν

V NJ
μν 〈ψμ|∣∣κ ′+J

τ

∣∣|ψν〉
)

×
⎛
⎝∑

μ′ν ′
V NJ

μ′ν ′ 〈ψμ′ |∣∣κJ
τ

∣∣|ψν ′ 〉
⎞
⎠ , (27)

and depends on the reduced matrix elements of the pairing
densities κτ and κ ′+

τ between the single-particle wave functions
ψμ(r) for μ denoting the set of spherical harmonic-oscillator
(HO) quantum numbers nμlμjμ. The interaction matrix ele-
ments V NJ

μν are defined as

V NJ
μν = √

(4π )(2J + 1)(2jμ + 1)(2jν + 1)

⎧⎪⎨
⎪⎩

lμ lν J

1
2

1
2 0

jμ jν J

⎫⎪⎬
⎪⎭

×MNJn0
nμlμnν lν

21/4

b3/2

√
π1/2(2n + 1)!

2(2nn!)2

1

m

m∑
i=1

1(
4πa2

i

)3/2

×
(

2a2
i b

2

1 + a2
i b

2

)3/2(1 − a2
i b

2

1 + a2
i b

2

)n

, (28)

where 2n = 2nμ + lμ + 2nν + lν − 2N − J , MNλn0
nμlμnν lν

are the

standard Talmi-Moshinski coefficients [27], and b = √
mω/h̄

denotes the HO constant.

IV. NUCLEAR INCOMPRESSIBILITY

The isoscalar incompressibility of infinite nuclear matter is
defined by the well-known formula [1]

K∞ = 9ρ2 d2

dρ2

(
E

A

)
ρ=ρnm

, (29)

where ρnm is the saturation density of nuclear matter. Of
course, K∞ cannot be directly measured; however, by using
Eq. (29) it can be calculated from theoretical equation of state
E(ρ) or it can be indirectly estimated from measurements of
monopole excitations of finite nuclei.
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P. VESELÝ et al. PHYSICAL REVIEW C 86, 024303 (2012)

The incompressibility of finite nucleus, KA, is defined by
its scaling-model relation [28] to the centroid of the giant
monopole resonance (GMR), EGMR, as

EGMR =
√

h̄2KA

m〈r2〉 , (30)

where 〈r2〉 is the average square radius of the nucleus.
Equation (30) is derived under the assumption that most of the
monopole strength is concentrated within one dominant peak,
see Ref. [1]. However, often the monopole giant resonances
consist of more than one dominant peak. The reliability of
the scaling-model was also challenged in, e.g., Ref. [29].
Therefore, we want to emphasize that extracting the incom-
pressibility KA from the GMR centroid in Eq. (30) is only
approximative and model-dependent. For this reason, we pay
attention to analyze not only the nuclear incompressibilities,
but also directly the GMR centroids.

The centroid of the GMR can be extracted from its strength
function as the ratio of the first and zero moments, that is,

EGMR = m1

m0
. (31)

There exist several alternative ways to extract EGMR through
different moments of the strength function, such as EGMR =√

m1/m−1 or EGMR = √
m3/m1. However, they are more

sensitive to details of the strength function and thus less
appropriate for studies of the incompressibility.

In analogy to the Weizsäcker formula for the nuclear
masses, one can introduce [1] a similar relation for nuclear
incompressibilities,

KA = KV + KSA
−1/3 + (Kτ + KS,τA

−1/3)
(N − Z)2

A2

+KC

Z2

A4/3
. (32)

Similarly as in the liquid-drop (LD) model, we refer to KV , KS ,
Kτ , KS,τ , and KC as the volume, surface, symmetry, surface-
symmetry, and Coulomb incompressibility parameters, respec-
tively. By adjusting these parameters to the incompressibilities
KA, calculated in finite nuclei from Eqs. (30) and (31), we can
obtain an estimate of the infinite-matter incompressibility as
K∞ 	 KV .

V. RESULTS

In our study we performed a set of calculations for
semimagic nuclei starting from Z = 8 or N = 8 and ending
with Z = 82 or N = 126. The ground states properties were
calculated within the HFB method by using the code HOSPHE

[23], whereas the monopole strength functions were obtained
by implementing in the same code the QRPA method within
the Arnoldi iterative method [22].

We decided to use two different Skyrme functionals—SLy4
[30] and UNEDF0 [31]. Both of them were tuned (among other
observables) to reproduce the main properties of the infinite
nuclear matter. In particular, they correspond to the same value
of nuclear incompressibility (29) of K∞ = 230 MeV and differ

in their values of the effective mass of m∗/m = 0.70 and 1.11
for SLy4 and UNEDF0, respectively.

The present study is focused on comparing incompressibil-
ities obtained with two different pairing interactions, namely,
the standard zero-range force, Vτ (r, r ′) = −V0τ δ(r − r ′), and
separable force presented in Sec. III. To make the comparison
meaningful, we adjusted the strength parameters, Gτ and
Vτ , so as to obtain for both forces very similar neutron
(proton) pairing gaps in Z = 50 isotopes (N = 50 isotones).
The resulting gaps roughly correspond to the experimental
odd-even mass staggering along the Z = 50 and N = 50
chains of nuclei. Theoretical pairing gaps, �n and �p, were
determined as in Ref. [32], namely,

�τ = Tr′(ρτ�τ )

Trρτ

, (33)

where TrA = ∑
k Akk and Tr′A = ∑

k>0 Akk̄ . For the separa-
ble pairing, in Eq. (26) we used only one Gaussian term with
a1 = 0.66 fm.

In this way, in the calculations we used the separable-force
strength parameters of Gn = 631 and 473 MeV fm3 (Gp =
647 and 521 MeV fm3) for the SLy4 and UNEDF0 functionals,
respectively, and similarly, for the zero-range force: Vn =
195 and 126 MeV fm3 (Vp = 221 and 157 MeV fm3). All
calculated neutron and proton pairing gaps are shown in Figs. 1
and 2, respectively. One can see that the results obtained
for both pairing forces are fairly similar. The HFB iterations
were carried out using a linear mixing of densities from the
current and previous iteration defined by a constant mixing
parameter [23]. With this recipe, for some of the nuclei, the
HFB iterations did not end in converged solutions. Such cases
were excluded from the analysis of pairing properties and the
subsequent QRPA calculations.

We note here that no energy cutoff is needed for calculations
using the separable force, and thus in our calculations the entire
HO basis up to N0 = 20 shells was used, see the Appendix.

FIG. 1. (Color online) Neutron pairing gaps in the Z = 8, 20,
28, 50, and 82 isotopes (see the legend shown in Fig. 4). Upper
and lower panels show results obtained for the SLy4 and UNEDF0
functionals, respectively. Left and right panels show results obtained
for the zero-range and separable pairing, respectively.
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FIG. 2. (Color online) Same as in Fig. 1 but for the proton gaps
in the N = 8, 20, 28, 50, 82, and 126 isotones (see the legend shown
in Fig. 5).

On the other hand, for the zero-range force we used the cut-
off energy of 60 MeV applied within the two-basis method
[33,34].

In Fig. 3 we compare our QRPA results with raw experimen-
tal data obtained in Ref. [4]. In this work, a Lorentzian fit to data
was performed in the region of energies of 10.5–20.5 MeV, and
the experimental values of m1/m0 were determined from the
corresponding fitted curve (its moments were calculated for
energies from zero to infinity). In determining our theoretical
values of m1/m0, we also perform the integration in the
entire energy domain. We have checked that the integration
of theoretical curves in the fixed region of 10.5–20.5 MeV
does not bring meaningful results, because, in the wide region
of masses studied here, the GMR peaks move too much,
and extend beyond the above narrow range of energies. Our
QRPA strength functions were obtained from the discrete
Arnoldi strength distributions by using the smoothing methods

FIG. 3. (Color online) The QRPA monopole strength function
in 112Sn (solid line) compared to raw experimental data [4] and
Lorentzian fit to data (dashed line) performed in the region of energies
of 10.5–20.5 MeV [4].

FIG. 4. (Color online) Incompressibility KA calculated for the
isotopic chains of semimagic nuclei with Z = 8, 20, 28, 50, and
82. Left and right panels show results obtained for the SLy4 and
UNEDF0 functionals, respectively. Full (empty) symbols correspond
to the zero-range (separable) pairing force.

explained in Ref. [22]. We also note that in our QRPA
calculations, the high-energy shoulder of the strength function
is not obtained, cf. discussion in Ref. [4].

Figures 4 and 5 present the overview of all obtained finite-
nucleus incompressibilities KA, Eqs. (30) and (31), calculated
along the isotopic and isotonic chains, respectively. One can
see that for both Skyrme functionals, SLy4 and UNEDF0,
values corresponding to the zero-range (full symbols) and
separable (open symbols) pairing forces are very similar.

To see effects of the pairing interaction in more detail,
we focus on the results obtained for chains of tin and lead
isotopes. In Figs. 6 and 7 we compare theoretical results
with the experimental data for 208Pb and 112−124Sn, taken
from Refs. [2–4]. A comparison of the two types of pairing
interactions, and two different Skyrme functionals, leads to the
conclusion that the calculated incompressibilities KA depend
on the interactions in the particle-particle channel as well as
the particle-hole channel of the two Skyrme functionals used

FIG. 5. (Color online) Same as in Fig. 4, but for the isotonic
chains with N = 8, 20, 28, 50, 82, and 126.
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FIG. 6. (Color online) Incompressibility KA calculated for chains
of the Z = 50 and 82 isotopes. Results obtained by using the
separable (squares) and zero-range (circles) pairing with the UNEDF0
functional are compared to the available experimental data [2–4].

in our study—SLy4 and UNEDF0—only weakly. Of course,
we can expect that using Skyrme parametrizations tuned to
higher (lower) values of K∞ may lead to uniformly higher
(lower) values of KA.

To check a weak dependence of KA on the intensity of
pairing correlations, we have repeated the calculations by using
values of neutron pairing strengths varied in a wide range,
Gn = 631 ± 150 MeV fm3 and Vn = 195 ± 30 MeV fm3.
Such variations induce very large changes of neutron pairing
gaps, shown in Fig. 8; the ones that are certainly beyond any
reasonable range of uncertainties related to adjustments of
pairing strengths to data. In Figs. 9 and 10, we show the
influence of the varied pairing strengths on the calculated
incompressibilities KA. We see clearly that even such large
variations cannot induce changes compatible with discrepan-
cies with experimental data.

To illustrate the effect of isospin asymmetry, in Figs. 9 and
10 we plotted the results as functions of N/Z, whereby 124Sn
and 208Pb are located at almost the same point of the abscissa.
These figures clearly show that the discrepancies with data are
probably not related to the isospin dependence of KA. Indeed,

FIG. 7. (Color online) Same as in Fig. 6, but for the UNEDF0
(squares) and SLy4 (circles) functionals and separable pairing force.

FIG. 8. (Color online) Neutron pairing gaps calculated in tin
isotopes for low (triangles), central (squares), and high (circles) values
of pairing strength parameters given in captions of Figs. 9 and 10.

for both types of pairing, in the region of 1.0 < N/Z < 1.6,
the results obtained for tin and lead isotopes roughly follow
each other.

Finally, to illustrate the fact that nuclear radii are fairly
robust and cannot significantly influence the values of KA,
determined from Eqs. (30) and (31), we show values of m1/m0

alone in Figs. 11 and 12. We see that for both types of pairing,
in tin and lead the calculated values of m1/m0 overestimate
and underestimate the measured ones by 0.6–0.8 and 0.4 MeV,
respectively. Exactly the same pattern was obtained within
the relativistic nuclear energy density functionals studied in
Ref. [12], where the corresponding discrepancies were equal
to 0.8–1.0 and 0.2 MeV. We also note that this comparison
directly relates calculations to data, without using the interme-
diate and model-dependent definition of KA.

To conclude our analysis, we have performed adjustments
of the LD formula (32) to our microscopically calculated
values of KA. Since in the LD formula all parameters appear
linearly, we could use the standard linear-regression method,

FIG. 9. (Color online) Incompressibility KA calculated for the
SLy4 functional and separable pairing force in tin (squares) and
lead (circles) isotopes compared to the available experimental data.
Theoretical results are plotted together with uncertainties pertaining
to variations of the neutron strength parameter in the range of
Gn = 631 ± 150 MeV fm3.
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FIG. 10. (Color online) Same as in Fig. 9, but for the zero-range
pairing force and uncertainties pertaining to variations of the neutron
strength parameter in the range of Vn = 195 ± 30 MeV fm3.

which gave us the values of parameters that minimize χ2 along
with standard estimates of statistical errors.

The obtained parameters are collected in Table I. We
see that the LD formula is able to provide an excellent
description of the QRPA results, with average deviations of
the order of 5 MeV, that is, about 3% of the typical value
of KA. Similarly the values of the volume incompressibility
KV are determined to about 2% of precision. The least
precisely determined LD parameter is the surface-symmetry
incompressibility KS,τ , estimated up to 25% of precision. We
also note that, within the fit precision, the volume parameter
KV averaged over both functionals and both pairing forces
equals to 254 ± 5 MeV, which is significantly higher than
the corresponding infinite-matter incompressibility of K∞ =
230 MeV. We would like to point out that the errors given in
Table I are the statistical errors of the adjusted parameters and
do not take into account possible systematic errors caused
by using the model-dependent Eq. (30). Nevertheless, the
results of the fit can be used as a useful parametrization of
the microscopic calculations.

FIG. 11. (Color online) Same as in Fig. 9, but for the centroids
m1/m0.

FIG. 12. (Color online) Same as in Fig. 11, but for the zero-range
pairing force.

VI. CONCLUSIONS

In this work we have presented the first application of
the separable, finite-range pairing interaction of the Gaussian
form together with the nonrelativistic functional of the Skyrme
type. This interaction was used to determine both the ground-
state Hartree-Fock-Bogoliubov solutions and quasiparticle-
random-phase-approximation monopole strength functions in
semimagic nuclei. Results were systematically compared with
those pertaining to the standard zero-range pairing interaction.

From the monopole strength functions, we extracted the
finite-nucleus incompressibilities and compared them to ex-
perimental data. It turned out that neither zero-range nor
separable pairing effects were able to describe the low values
of incompressibilities measured in tin, relative to the high
value measured in 208Pb. By changing the infinite-matter
incompressibility, one can certainly describe either the tin
or lead values; however, the high difference thereof remains
unexplained.

The lack of agreement with experimental data is evident
also in the case of the GMR centroids. This is even more
important for the conclusions of our work, since the analysis of
the centroids is not affected by the model-dependent extraction
of incompressibilities by way of Eq. (30).

TABLE I. Parameters (in MeV) of the LD formula (32) with
standard errors, obtained by a fit to the values of KA calculated in
M semi-magic nuclei across the mass chart. The parameter χ was
determined as the square root of the sum of fit residuals squared
divided by the number of fit degrees of freedom (M − 5 in our case).

SLy4 UNEDF0

separable zero-range separable zero-range

KV 252 ± 5 258 ± 5 249 ± 5 257 ± 4
KS −391 ± 14 −406 ± 13 −397 ± 14 −412 ± 13
Kτ −460 ± 30 −500 ± 30 −510 ± 30 −550 ± 30
KS,τ 410 ± 110 560 ± 100 570 ± 120 740 ± 100
KC −5.2 ± 0.4 −5.4 ± 0.4 −4.5 ± 0.4 −5.1 ± 0.4
M 210 211 204 195
χ 5.0 4.7 5.3 4.4

024303-7
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FIG. 13. Convergence of the ratio of first and zero moments
m1/m0 calculated in 112Sn as a function of the number of Arnoldi
iterations.

We have also performed adjustments of the LD formula to
microscopically calculated incompressibilities, and we found
that (i) such a formula is able to describe microscopic results
very well, and (ii) the volume LD term is significantly higher
than the infinite-matter incompressibility determined for a
given functional.
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APPENDIX: NUMERICAL TESTS

Figure 13 illustrates the reliability of the Arnoldi method in
determining the key factors of our analysis, namely, the ratios
of moments of the monopole strength functions. To obtain a
perfectly stable result, only about 70 Arnoldi iterations suffice.

FIG. 14. (Color online) Dependence of the ratio of first and zero
moments m1/m0 on the number of HO shells N0, calculated in tin
isotopes.

FIG. 15. (Color online) Dependence of differences of m1/m0,
calculated for pairs of tin and lead isotopes, on the number of HO
shells N0.

In this way, the QRPA result is achieved within the CPU time
that is of the same order as that needed to obtain a converged
HFB ground state. Note that the Arnoldi iteration conserves
all odd moments, so during the iteration, the moment m1 does
not change; thus the convergence of m1/m0 simply illustrates
the convergence of m0 alone.

The HO basis used in our calculations is characterized by
two numerical parameters: frequency h̄ω and number of shells
included in the basis N0. With varying particle numbers A, we
use the standard prescription of

h̄ω = 1.2 × 41 MeV × A−1/3, (A1)

established for the ground-state calculations [35]. Within this
prescription, in Fig. 14 we study dependence of the QRPA
moments m1/m0 on the number of HO shells N0. One can
see that in well-bound tin isotopes with A � 132, one obtains
perfectly-well converged results. As is well known, in weakly
bound isotopes, owing to the effects of coupling to the
continuum, the convergence properties gradually deteriorate
and the HO-basis calculations become less reliable.

FIG. 16. (Color online) Dependence of the ratio of first and zero
moments m1/m0 on the HO frequency h̄ω, calculated in tin isotopes.
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Nevertheless, as is often the case for restricted-space
calculations, results pertaining to relative observables are
much less basis-dependent. This is illustrated in Fig. 15,
where we show differences of ratios of the QRPA moments
m1/m0, calculated for pairs of tin and lead isotopes. We start
form the pair of well-bound isotopes, 124Sn and 208Pb, where
experimental data are known, but we also show pairs with 8, 16,
and 24 more neutrons. We see again that results for well-bound
isotopes are perfectly well converged. However, even for very
exotic weakly bound nuclei, the HO basis provides reasonably
reliable results.

Finally, in Fig. 16 we show dependence of results on the
HO frequency h̄ω, determined for N0 = 20 HO shells. Note

that the range of frequencies shown in the plot is much wider
than those corresponding to prescription (A1), which gives
h̄ω = 10.60 and 8.88 MeV for 100Sn and 170Sn, respectively.
Nevertheless, no significant h̄ω dependence is obtained for
the A � 132 isotopes, whereas for weakly bound ones the
estimated uncertainty does not exceed 1 MeV.

As an additional check, for the tin isotope 112Sn we
performed the standard QRPA calculation by using the same
N0 = 20 configuration space as that used for our Arnoldi-
method calculations. We found the spurious 0+ peak at a
very small energy of 5.2 × 10−6 MeV, which guarantees a
proper separation of the spurious mode from the physical
spectrum.

[1] J. P. Blaizot, Phys. Rep. 64, 171 (1980).
[2] D. H. Youngblood, H. L. Clark, and Y.-W. Lui, Phys. Rev. Lett.

82, 691 (1999).
[3] T. Li, U. Garg, Y. Liu, R. Marks, B. K. Nayak, P. V.

Rao Madhusudhana, M. Fujiwara, H. Hashimoto, K. Kawase,
K. Nakanishi, S. Okumura, M. Yosoi, M. Itoh, R. Matsuo,
T. Terazono, M. Uchida, T. Kawabata, H. Akimune, Y. Iwao,
T. Murakami, H. Sakaguchi, S. Terashima, Y. Yasuda,
J. Zenihiro, and M. N. Harakeh, Phys. Rev. Lett. 99, 162503
(2007).

[4] T. Li, U. Garg, Y. Liu, R. Marks, B. K. Nayak, P. V.
Madhusudhana Rao, M. Fujiwara, H. Hashimoto, K. Nakanishi,
S. Okumura, M. Yosoi, M. Ichikawa, M. Itoh, R. Matsuo,
T. Terazono, M. Uchida, Y. Iwao, T. Kawabata, T. Murakami,
H. Sakaguchi, S. Terashima, Y. Yasuda, J. Zenihiro, H. Akimune,
K. Kawase, and M. N. Harakeh, Phys. Rev. C 81, 034309 (2010).

[5] J. Piekarewicz, J. Phys. G: Nucl. Part. Phys. 37, 064038 (2010).
[6] H. Sagawa, S. Yoshida, G.-M. Zeng, J.-Z. Gu, and X.-Z. Zhang,

Phys. Rev. C 76, 034327 (2007).
[7] J. M. Pearson, N. Chamel, and S. Goriely, Phys. Rev. C 82,

037301 (2010).
[8] M. Centelles, S. K. Patra, X. Roca-Maza, B. K. Sharma, P. D.
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