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A model for low-energy meson-baryon interaction in the strange sector is presented. The interaction is
described in terms of separable potentials with multiple partial waves considered. A general solution of the
Lippmann-Schwinger equation for the scattering of spin-0 and spin-1/2 particles is derived. Next, the general
framework is applied to the KN sector in a simple model with only the S and P waves taken into account. The
separable potential is designed to match the chiral perturbation theory at the lowest nontrivial order. It is shown
that although a simple model with three free parameters works well for the S wave, it fails to reproduce the
P -wave features of kaon-nucleon physics. Most importantly, the P -wave interaction is too weak to express a
resonant behavior that could be identified as �(1385) resonance.
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I. INTRODUCTION

The description of low-energy meson-baryon interaction in
the strange sector is a highly puzzling problem. The direct
application of the effective theory approach [1], which was
successful in the pion-nucleon sector, i.e., baryonic chiral
perturbation theory (for review, see Ref. [2]), is problematic.
The key physical issue is the presence of the �(1405)
resonance below the K-N threshold [3]. The existence of a
resonance implies the need to work to all orders in perturbation
theory and therefore procedures alternative to standard chiral
perturbation theory (χPT) are required.

A possible way to proceed is via the multichannel
Lippmann-Schwinger equation with the interaction described
by separable potentials [4–6]. The physics based on chiral sym-
metry of QCD is reflected in the design of the respective sep-
arable potentials. They are designed to match the amplitudes
obtained in chiral perturbation theory up to given order O(pn).
In the hypothetical world of very low quark masses, amplitudes
obtained by iterating the Lippmann-Schwinger equation with
such potentials are equal to the amplitudes derived in χPT up to
a given order in the chiral expansion O(pn). Note that the χPT
is constructed as an effective theory of QCD in the regime of
low momenta and low quark masses. However, in the physical
world with a relatively high s quark mass, the connection to the
fundamental theory of strong interactions—the QCD—is more
subtle.

The suggested approach has, on the other hand, the
advantage that the Lippmann-Schwinger equation is exactly
solvable; the originally complicated system of coupled integral
equations simplifies to an algebraic equation and a set of
integrals. Additionally, some features of nuclear medium, for
example, Pauli blocking [7] and/or self-energy effects [8], can
be straightforwardly incorporated into the separable potential
model. Kaon-nucleon amplitudes enriched with in-medium
effects may then be used to determine an effective in-medium
kaon-nuclear potential [9,10], as well as to study other
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low-energy processes involving kaon-nuclear interaction, for
example, the hypernuclear production [11,12].

In their recent work, Cieplý and Smejkal [6,10] were able
to fit a large set of low-energy experimental data (threshold
branching ratios, kaonic hydrogen shift and width, and cross
sections to various channels for kaon incident momentum up
to 200 MeV) with a very simple model combining the chiral
dynamics with a separable potential approach considering only
the L = 0 partial wave. They were also able to analyze the
properties of the �(1405) resonance. However, the model
of Ref. [6] has an important limitation—it considers only
the S-wave contribution. Although this turned out to be
sufficient for the kaon incident momentum up to 200 MeV,
the inclusion of higher partial waves becomes necessary if
one wants to go to higher kaon momenta. Moreover, the
P -wave interaction is expected to play an important role in
the formation of deeply bound K−-nuclear states [13,14].
Although the authors of Ref. [14] used the more fundamental
model of Ref. [10] for the S-wave interaction, they relied
on purely phenomenological parametrization for the P -wave
interaction. Thus, the improvement of the understanding of
the P -wave part of meson-baryon interactions in the strange
sector is certainly desirable.

The goal of this paper is to extend the separable potential
model of Ref. [6] for meson-baryon interactions in the
strange sector to include the effects of the P wave. With
the P -wave part included in the separable potential, one
should gain access to phenomena which are inaccessible
if only the S wave is included, for example, the angular
distribution of the cross section. Moreover, one might expect
that the P -wave resonance �(1385) could be dynamically
generated using the P -wave potential in a way similar to
that for the �(1405) resonance, as was studied by Cieplý and
Smejkal.

The paper is organized as follows. The general formalism
of spin-0 spin-1/2 particle scattering is summarized in Sec. II.
In Sec. III, the general form for a multichannel separable
potential model is discussed and the solution of the Lippmann-
Schwinger equation is derived for such potentials. In Sec. IV,
the potential for kaon-proton scattering is constructed to
match the χPT up to the lowest nontrivial order. Fits to the
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available experimental data and discussion of the obtained
results follows in Sec. V.

II. FORMALISM OF SPIN0 SPIN-1/2 SCATTERING

In this section, the formalism describing two-particle
scattering—one with spin-1/2 and one with spin0—is sum-
marized. To be concrete, only the interactions that are both
time-reversal and parity invariant are considered; all formulas
are given in the center-of-mass frame of reference.

The most general form of the scattering amplitude is a 2 × 2
spin matrix [15]:

f(p → p′) = f̃ (p → p′) + i σ · p̂ × p̂′ g̃(p → p′). (1)

In Eq. (1), p and p′ stand for the initial and final center-of-mass
momentum. A hat above a vector indicates a unit vector in the
respective direction. The spin nonflip and spin flip amplitudes
are denoted as f̃ and g̃.

Due to parity invariance, the total angular momentum
J and the orbital angular momentum L are separately
conserved during the scattering. Thus, for a given initial
orbital momentum L (a given partial wave), there are two
independent S-matrix elements—one for J = L + 1/2 and
one for J = L − 1/2—that fully characterize the scattering
process. Therefore, one can write down the generalized
partial wave expansion using the projection operators into the
respective subspaces J = L ± 1/2. The amplitude reads

f(p → p′) =
∑
L

(2L + 1)[f L+(p → p′) �L+

+ f L−(p → p′) �L−]PL(p̂ · p̂′), (2)

where �L± is a projection operator to a subspace of total
angular momentum J = L ± 1/2:

�L+ = 1

2L+1
(L+1+σ · L), �L− = 1

2L+1
(L−σ · L).

Simple algebraic manipulations allow one to find a partial
wave expansion for spin flip and spin nonflip amplitudes (f̃
and g̃) in terms of amplitude projections for given total and
orbital angular momenta (f L+, f L−):

f̃ =
∑
L

[(L + 1) f L+ + Lf L−]PL(p̂ · p̂′), (3)

g̃ =
∑
L

[f L+ − f L−]P ′
L(p̂ · p̂′). (4)

Note that if the spin-orbit coupling is zero, amplitude f L+
is equal to f L−. In this case, the partial wave expansion for spin
nonflip amplitude f̃ coincides with the standard one for the
scattering of two spinless particles and the spin flip amplitude
g̃ vanishes.

In this parametrization, the differential cross section for the
unpolarized beam and target reads

dσ

d�
(p → p′) = |f̃ (p → p′)|2 + sin2(θ ) |g̃(p → p′)|2. (5)

If only L = 0 and L = 1 are included—the model which will
be investigated later in the paper—the differential and total
cross sections read as follows:

dσ

d�
= (|f 0+|2 + |2f 1+ + f 1−|2 cos2 θ + |f 1+ − f 1−|2 sin2 θ

+[f 0+(2f 1+ + f 1−)∗ + (f 0+)∗(2f 1+ + f 1−)] cos θ ),

(6)

σ tot =2π

(
2|f 0+|2 + 2

3
|2f 1+ + f 1−|2 + 4

3
|f 1+ − f 1−|2

)
.

(7)

The angular distribution of the differential cross section is
often parametrized in powers of cos θ :

dσ

d�
≈ A0 + A1 cos θ + A2 cos2 θ + · · · , (8)

A0 = |f 0+|2 + |f 1+ − f 1−|2,
A1 = 2 Re[f 0+(2f 1+ + f 1−)], (9)

A2 = |2f 1+ + f 1−|2 − |f 1+ − f 1−|2.
Note that A0, A1, and A2 are the only three coefficients that
are nonzero if only S and P waves are considered.

III. SEPARABLE POTENTIALS AND A SOLUTION
OF THE LIPPMANN-SCHWINGER EQUATION

In this section, a general form of a multichannel separable
potential between spin-1/2 and spin-0 particles is discussed.
It is shown that, even in this relatively complicated case, the
solution of a Lippmann-Schwinger equation simplifies to an
algebraic problem. To cover the most general situation when
particle types can change during the process, the multichannel
approach to the problem is employed from the beginning;
individual channels are labeled (ai), where a stands for the
type of spin-1/2 particle (baryon) and i stands for the spin-0
particle (meson).

Knowing the general form of the scattering amplitude (2),
the potential is taken to have the following form:

V(ai)→(bj )(p → p′)

=
∑
L

(2L + 1)
(
V L+

(ai)→(bj )�
L+ + V L−

(ai)→(bj )�
L−)

×PL(p̂ · p̂′) gL
(ai)(p) gL

(bj )(p
′), (10)

where gL
(ai)(p) is a form factor corresponding to the channel

(ai) and the partial wave L.
The Lippmann-Schwinger equation reads

T(ai)→(bj )(p → p′)
= V(ai)→(bj )(p → p′)

+
∑
(ck)

2μ(ck)

∫
d3q

V(ai) → (ck)(p → q) T(ck) → (bj )(q→p′)
p2

(ck) − q2 + iε
,

(11)
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FIG. 1. Feynman diagrams representing the Weinberg-Tomozawa, direct (s-channel), and crossed (u-channel) contributions to the meson-
baryon scattering.

where the sum is over all possible intermediate channels (ck),
p(ck) is the on-shell momentum in the intermediate channel,
and μ(ck) is its reduced energy.

Having the potential in the separable form (10), it is natural
to use the following ansatz for the T matrix:

T(ai)→(bj )(p → p′)

=
∑
L

(2L + 1)
(
T L+

(ai) →(bj )�
L+ + T L−

(ai) →(bj )�
L−)

×PL(p̂ · p̂′) gL
(ai)(p) gL

(bj )(p
′). (12)

To prove that the separable potential (10) and the T -matrix
ansatz (12) actually transform the Lippmann-Scwhinger equa-
tion into an algebraic equation, the crucial thing is to show
that the integral in Eq. (11) actually splits into two pieces, one
for J = L + 1/2 and one for J = L − 1/2, and preserves the
separability for each piece. The separation of the angular and
radial parts of the integral gives∑

LL′

∑
(ck)

2μ(ck)

∫
dqq2 (2L + 1)(2L′ + 1)

p2
(ck) − q2 + iε

× gL
(ai)(p) gL

(ck)(q) gL′
(ck)(q) gL′

(bj )(p
′)

×
∫

d�q
(
V L+

(ai)→(ck)�
L+ + V L−

(ai)→(ck)�
L−)

PL(p̂ · q̂)

×(
T L′+

(ck)→(bj )�
L′+ + T L′−

(ck)→(bj )�
L′−)

PL′ (q̂ · p̂′).

The orthogonality of Legendre polynomials and the properties
of projection operators are key ingredients in the proof of
separability. Finally, one gets two independent sets of matrix
equations in the channel space, one for J = L + 1/2 and one
for J = L − 1/2:

T L±
(ai)→(bj ) = V L±

(ai)→(bj ) + V L±
(ai)→(ck)G

L
(ck)T

L±
(ck)→(bj ) . (13)

GL is a diagonal matrix with elements given by the integral:

GL
(ck) = 4πμ(ck)

∫
dq q2

[
gL

(ck)(q)
]2

p2
(ck) − q2 + iε

. (14)

The relation between the T -matrix elements T L±
(ai)→(bj ) and

the scattering amplitudes f ±
(ai)→(bj ) is

f(ai) →(bj ) = −4π
√

μ(ai)μ(bj ) T(ai)→(bj ). (15)

From here one straightforwardly obtains all the information
about the scattering process using formulas derived in the
previous section.

In the case with only S and P waves considered, the
potential is of the following form:

V(ai)→(bj ) = V 0+g0
(ai)g

0
(bj ) + 3(V 1+�1+ + V 1−�1−)g1

(ai)g
1
(bj )

cos θ = V 0+g0
(ai)g

0
(bj ) + [(2V 1+ + V 1−) cos θ

+ (V 1+ − V 1−)iσ · p̂ × p̂′]g1
(ai)g

1
(bj ) . (16)

Analogous expansions hold for the T -matrix and the scattering
amplitude as well. Overall, there are three independent
equations of the form of Eq. (13) for T 0+, T 1+, and T 1−.

IV. THE CONSTRUCTION OF SEPARABLE POTENTIALS
FOR KAON-PROTON SCATTERING

The separable potential (16) used in the calculation will
be constructed to match the χPT up to order O(p), the lowest
nontrivial order, in this section. Thus, a brief review of relevant
parts of the baryon χPT is in order.

The first-order chiral Lagrangian [16] reads

L(1) = i〈Bγμ[Dμ,B]〉 − M0〈BB〉 − D

2
〈Bγμγ5{uμ, B}〉

− F

2
〈Bγμγ5[uμ, B]〉. (17)

For meson-baryon scattering, one gets three principally dif-
ferent contributions from the diagrams summarized in Fig. 1.
The first one represents the contact interaction coming from the
O(p1) Lagrangian, the so-called Weinberg-Tomozawa term
(WT); it is a leading contribution to the S-wave amplitudes.
The other two diagrams correspond to the direct (s-channel)
and crossed (u-channel) processes built from vertexes from
the O(p1) Lagrangian. At first sight, these seem to be of
order O(p2). However, the nonrelativistic baryon propagator
1/k0 is of order O(p−1) making the leading behavior of the
diagram be O(p1). These diagrams represent the leading-
order contribution to the P -wave amplitudes. Some of the
amplitudes may be found in the literature [16–19], and all of
them can be reconstructed from the potentials presented below.
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TABLE I. Kaon-nucleon threshold data.

Fit Exp. [21,22]

γ 2.36 2.36 ± 0.04
Rc 0.637 0.664 ± 0.011
Rn 0.178 0.189 ± 0.015
�E −296 eV −283 ± 42 eV
� 761 eV 541 ± 111 eV

The separable potentials (16) are constructed to match the
chiral perturbation theory:

V(ai)→(bj ) = 1

4(2π )3

√
1

sμ(ai)μ(bj )
M(ai)→(bj ), (18)

where M(ai)→(bj ) are Lorenz invariant scattering amplitudes
obtained in χPT up to a given order O(pn); only the leading
order O(p1) is considered in this paper.

Because the S and P waves are considered in the model,
two form factors are needed; one for L = 0 and one for L = 1.
For simplicity, Yamaguchi-type form factors [20] are used in
the following calculation:

g0
(ai)(p) = 1

1 + p2

α2
(ai)

, (19)

g1
(ai)(p) = p(

1 + p2

α2
(ai)

)3/2 , (20)

where α(ai) characterizes the range of the interaction in the
particular channel.

0 50 100 150 200 250 300
0

10

20

30

40

pK MeV

Σ
m
b

0 50 100 150 200 250 300
0

10

20

30

40

pK MeV

Σ
m
b

0 50 100 150 200 250 300
0

10

20

30

40

pK MeV

Σ
m
b

0 50 100 150 200 250 300
0

50

100

150

200

250

pK MeV

Σ
m
b

0 50 100 150 200 250 300
0

50

100

150

pK MeV

Σ
m
b

0 50 100 150 200 250 300
0

10

20

30

40

50

60

pK MeV

Σ
m
b

(a) (b)

(c) (d)

(e) (f)

FIG. 2. The total cross section for channels π 0� (a), π 0�0 (b), π−�+ (c), π+�− (d), K−p (e), and K
0
n (f). Experimental data are from

Refs. [23–29].
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The use of Eqs. (16), (18)–(20) immediately leads to the
potentials V L±. Recall that, for the L = 1 part, the one power
of the momentum p (p′) is already included in the form factor
g1

(ai)(p) (20) and therefore does not appear in the respective
potentials V 1+ (22) and V 1− (23). The potentials up to order
O(p1) read as follows:

V 0+
(ai)→(bj ) = N

[
−1

8

(
Ei + E2

i − m2
i

2M2
i

+ Ej + E2
j − m2

j

2M2
j

)

× CWT
(ai)→(bj )

]
, (21)

V 1+
(ai)→(bj ) = N

[
−1

9

(
1

mi + mj

)
Ccrossed

(ai)→(bj )

]
, (22)

V 1−
(ai)→(bj ) = N

[
1

6

(
1

mi + mj

)
Cdirect

(ai)→(bj ) + 1

18

(
1

mi + mj

)

× Ccrossed
(ai)→(bj )

]
. (23)

The constant N guaranteeing proper relativistic flux normal-
ization reads as follows:

N = 1

2f 2
π

1

(2π )2

√
MaMb

sμ(ai)μ(bj )
. (24)

Matrices C ... are summarized in the Appendix. They determine
how the channels are coupled between each other.

A brief comment about the V 1± potentials is in order. In
the leading-order amplitude in χPT, there is a sum of meson
energies Ei + Ej in the denominator. However, it leads to
a possible unphysical divergence in the deep subthreshold
region. This divergence is trackable back to the form of
the fully relativistic baryon propagator, which diverges for
kμkμ = −M2. The complication here is due to the fact that
the calculation is restricted solely to the tree diagrams at
the level of χPT. This divergence, eventually, disappears if
one continues to higher orders. In the presented model, the
spurious divergence is avoided by replacing the meson energy
Ei by meson mass mi wherever it appears in the denominator,
as was suggested in Ref. [10].

The potential for the S-wave V 0+ part is identical to the
leading part of the potential used by Cieplý and Smejkal [6]

and Kaiser et al. [4]. The P -wave contributions V 1+ and V 1−
have not been considered by these authors.

V. FIT TO THE LOW-ENERGY K−-P DATA AND
DISCUSSION OF THE OBTAINED RESULTS

The comparison of the chirally motivated separable po-
tential model from the previous section to the experimen-
tal low-energy data is presented and discussed here. The
model developed in the previous section contains, in its full
complexity, a substantial number of free parameters. For
example, there are in principle 20 different inverse range
parameters α

0,1
(ai) characterizing form factors g

0,1
(ai)(p). More

parameters would appear if one considers the second-order
chiral Lagrangian. However, it is useful to keep the analysis
simple and straightforward. Thus, the model is restricted to
the first-order chiral Lagrangian and the same inverse range
parameter is used for all channels: αS for the S-wave form
factors (19) and αP for the P -wave form factors (20). In
the leading-order χPT, the decay constant fπ is the same
for all mesons in the pseudoscalar octet (pions, kaons, η);
its value is not constrained experimentally and is thus subject
to fit. Overall, there are three free parameters to be specified:
inverse ranges αS and αP , and fπ controlling the strength of
the interaction.

From the point of view of the partial wave analysis,
the low-energy experimental data may be divided into three
subcategories. First, the threshold branching ratios [21] and
kaonic hydrogen properties [22] are influenced entirely by
the S-wave physics. Cross sections are influenced by both
S and P waves (and, naturally, higher partial waves as the
energy of the collision increases), yet they are nonzero even
if the P wave is neglected. And finally, properties of the
angular distribution of the differential cross sections require
the presence of the P wave. All of them are considered in
the analysis. Because the �(1520) resonance, which is a D

wave resonance, emerges at the kaon incident momentum
around 400 MeV, the validity of the model containing only S

and P waves is certainly limited to below this value; this paper
considers only the scattering data up to 300 MeV [23–29],
because there is a significant effect of the P wave while
the effect of the D wave is expected to be negligible. The
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(a) (b)

FIG. 3. Asymmetries A1/A0 in the differential cross sections. Channels π−�+ (solid line, squares) and π+�− (dashed line, circles) are in

graph (a); channels K−p (solid line, squares) and K
0
n (dashed line, circles) are in graph (b).
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FIG. 4. Absolute values of isoscalar π� amplitudes for 0+ (a) and isovector π� amplitude for 1+ (b) partial waves.

key novelty of this paper is the focus on the effects of the
P -wave interaction; therefore the attention is given to angular
distribution of the differential cross section. The asymmetry in
the angular distribution, which is parametrized by the quantity
A1/A0 (9), begins to be observable at kaon incident momenta
above 200 MeV [23,24,27,28]. The experimental data on
angular distributions are, unfortunately, very imprecise and

available only for channels π−�+, π+�−, K−p, and K
0
n.

In the fitting of free parameters, a simple minimization
of χ2 is problematic; the χ2 fit weights most importantly
the data points that are most precise. In this case, the
threshold branching ratios, whose uncertainties are orders of
magnitude smaller than the uncertainties of other data points,
would dominate the fit, whereas the properties of angular
distribution, which depend dominantly on P -wave physics,
would be almost irrelevant because their uncertainties are
big. Because the main focus of this paper is the P -wave
interaction, the following procedure, which emphasizes the
P -wave physics, is adopted. First, the threshold characteristics
and total cross section at low kaon momenta (at 100 MeV
for π−�+ and π+�−, at 110 MeV for K−p and K

0
n, and

at 120 MeV for π0� and π0�0) are fitted with only the
S-wave interaction taken into account. It is justified by the
fact that the P -wave interaction is negligible for such low
energies. In this procedure, the free parameters controlling
the S-wave interaction, αS and fπ , are set. Next, with the
S-wave potential fixed, the total cross sections at higher kaon
momentum (300 MeV for all channels) and asymmetries in
the angular distribution (A1/A0 for momenta 225, 250, 275,

and 300 MeV for channels π−�+, π+�−, K−p, and K
0
n)

are fitted with full potential to get the αP .
The best results were obtained for the following values of

free parameters: αS = 736 MeV, fπ = 116.6 MeV, and αP =
1353 MeV; the overall χ2/N = 4.3. The fact that the χ2/N

is well above 1 is not a problem because the presented model
does not aspire to be the complete description of nature. The
comparison with experimental data is summarized in Table I
and Figs. 3 and 4.

As is seen in Table I and Fig. 2, the agreement of the model
with the data is satisfactory for both the threshold data and the
total cross sections; χ2/N = 2.9 for the first part of the fit.
Note that this was expected because it was already shown by
Cieplý and Smejkal [6] that the chirally motivated separable

potential model considering only the S wave reproduces the
wide range of low-energy experimental data.

However, the agreement is considerably worse in the
P -wave sector. In Fig. 3, the asymmetries in the angular
distribution of the differential cross sections A1/A0 are shown
for all four channels where data are available. Although
the experimental data are reproduced sufficiently well in the
π−�+ and π+�− channels, the model fails for the K−p and

K
0
n channels. Note that the sign of the asymmetry is correct,

but the absolute value is too small. It suggests that the P -wave
potential is too weak.

The notion that the P -wave potential motivated by the
O(p1) chiral Lagrangian is too weak is enforced if one looks
at the possible resonance in the π� amplitudes (see Fig. 4).
The isoscalar amplitude in the 0+ partial wave clearly shows
a resonant structure, which can be identified with the �(1405)
resonance (as is discussed more extensively in Ref. [6]).
On the other hand, in the isovector 1+ partial wave, where
the �(1385) resonance lies, there is no resonant behavior
observed.

To check this hypothesis, the dependence of the π�

isovector amplitude on the strength of the P -wave interaction
was studied in a simplest possible way. The P -wave potential,
Eqs. (22) and (23), was multiplied by the new parameter Pscale,
which controls the strength of the P -wave interaction, while

1300 1350 1400 1450 1500
0.0

0.2

0.4

0.6

0.8

1.0

s MeV

aI
1

fm

FIG. 5. Absolute values of isovector π� amplitude for 1+

(right) partial waves obtained with artificially strengthened P -wave
interaction. Curves correspond to the values of Pscale from −3.9
to −4.4 with peaks moving from left to right. The dashed line
corresponds to the Pscale = 1.
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FIG. 6. Absolute values of isovector π� amplitude for 1+ partial waves obtained with artificially strengthened P -wave interaction. Graph
(a) corresponds to αP = 1100 MeV and values of Pscale from −6.7 to −7.7. Graph (b) corresponds to αP = 900 MeV and values of Pscale from
−10.5 to −13.0.

keeping the parameters fπ , αS , and αP fixed to the values
obtained in the fit. As is seen in Fig. 5, the resonant structure
above the π� threshold appears for P RES

scale ≈ −3.9 and with
increasing strength of the potential moves towards higher
energies.

The numerical value of the P RES
scale where the resonant

structure appears depends on the value of αP . With the
decreasing value of inverse range parameter αP , the absolute
value of P RES

scale increases. Graphs analogous to the one in
Fig. 5 for αP = 1100 MeV and αP = 900 MeV are presented
in Fig. 6; corresponding values of P RES

scale are −6.7 and −10.5,
respectively.

Note that the model of this paper is based only on the
first-order chiral Lagrangian. In their latest version, the model
of Cieplý and Smejkal [10] is based on the second-order chiral
Lagrangian and has seven free parameters to describe the
S-wave physics only. Similarly, a more sophisticated potential
containing the P -wave interaction can be developed if one
considers a second-order Lagrangian and allows different
inverse range parameters for different channels. Such a model
could, in principle, be able to capture the desired resonant
behavior in the 1+ partial wave if the respective low-energy
constants coming from the second-order chiral Lagrangian
were big enough.

The approach using a more sophisticated model, however,
leads to a substantial increase in the number of free parameters.
Note that there is already a certain level of freedom in the
formulation of the model itself. For example, the functional
form of the form factors (19) and (20) is not constrained by any
underlying theory and the Yamaguchi-type form was chosen
for simplicity. The vast space of free parameters combined
with the poor quality of the data would make any interpretation
of any result obtained quite problematic. On the other hand,
better measurements of angular distribution asymmetries or
other quantities that would more firmly constrain the P -wave
interaction would certainly gain a more firm physical ground
to the extended model.

The role of chiral perturbation theory is more subtle in
the presented model. Because the KN system is outside the
regime of validity of χPT—it was the original motivation for
an alternative approach in the first place—χPT serves only as a
guideline in the construction of the respective potentials. Note,

on the other hand, that the very use of χPT for the P -wave
physics in the strange sector may raise an important question. It
was established phenomenologically [21,30] that the �(1385)
resonance couples strongly to the π� channel, weakly to the
π� channel, and negligibly to the KN channel. It suggests
that the SU (3) flavor symmetry is badly broken and therefore
the use of chiral physics may be misguided—even if it serves
only as a motivation. Recall, however, that chirally motivated
models were successful in the description of various S-wave
phenomena in the strange sector and thus the use of chiral
physics as a guideline for the construction of P -wave models
seems to be a natural extension. From this point of view, the
introduction of a new scaling parameter, Pscale, which on one
hand shifts the model away from χPT and on the other hand
improves the agreement with the experimental data, does not
seem to be unreasonable.

In summary, it was shown that the model based on
the solution of the Lippmann-Schwinger equation with the
interaction described by the separable potential (developed
in Sec. III) is able to capture the physics of the P -wave
interaction. It was also shown that, although working quite
well for the S wave, the model based on the chiral La-
grangian at the lowest order (developed in Sec. IV) is not
sufficient to even qualitatively reproduce the meson-baryon
interaction in the strange sector for the L = 1 partial wave.
The possible extension of the model that would be based
on the O(p2) chiral Lagrangian is, in principle, possible, but
problematic due to the huge amount of new free parameters to
consider.
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APPENDIX

The Appendix consists of Tables II–IV, which specify the
couplings C ...

(ai)→(bj ) among channels.
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TABLE II. Coupling matrix CWT
(ai)→(bj ).

π 0� π 0�0 π−�+ π+�− K−p K
0
n η� η�0 K0�0 K+�−

π 0� 0 0 0 0
√

3 −√
3 0 0 −√

3
√

3
π 0�0 0 4 4 1 1 0 0 1 1
π−�+ 4 0 2 0 0 0 2 0
π+�− 4 0 2 0 0 0 2
K−p 4 2 3

√
3 0 0

K
0
n 4 3 −√

3 0 0
η� 0 0 3 3
η�0 0 −√

3
√

3
K0�0 4 2
K+�− 4

TABLE III. Coupling matrix Cdirect
(ai)→(bj ).

π 0� π 0�0 π−�+ π+�− K−p

π 0� 4D2 0 −4
√

3DF 4
√

3DF 2
√

3D(D − F )
π 0�0 4D2 4D2 4D2 −2D(D + 3F )
π−�+ 4D2 + 12F 2 4D2 − 12F 2 −2D(D + 3F ) − 6F (D − F )
π+�− 4D2 + 12F 2 −2D(D + 3F ) + 6F (D − F )
K−p (D + 3F )2 + 3(D − F )2

K
0
n η� η�0 K0�0 K+�−

π 0� −2
√

3D(D − F ) 0 4D2 −2
√

3D(D + F ) 2
√

3D(D + F )
π 0�0 −2D(D + 3F ) −4D2 0 −2D(D − 3F ) −2D(D − 3F )
π−�+ −2D(D + 3F ) + 6F (D − F ) −4D2 −4

√
3DF −2D(D − 3F ) + 6F (D + F ) −2D(D − 3F ) − 6F (D + F )

π+�− −2D(D + 3F ) − 6F (D − F ) −4D2 4
√

3DF −2D(D − 3F ) − 6F (D + F ) −2D(D − 3F ) + 6F (D + F )
K−p (D + 3F )2 − 3(D − F )2 2D(D + 3F ) 2

√
3D(D − F ) D2 − 9F 2 − 3(D2 − F 2) D2 − 9F 2 + 3(D2 − F 2)

K
0
n (D + 3F )2 + 3(D − F )2 2D(D + 3F ) −2

√
3D(D − F ) D2 − 9F 2 + 3(D2 − F 2) D2 − 9F 2 − 3(D2 − F 2)

η� 4D2 0 2D(D − 3F ) 2D(D − 3F )
η�0 4D2 −2

√
3D(D + F ) 2

√
3D(D + F )

K0�0 (D − 3F )2 + 3(D + F )2 (D − 3F )2 − 3(D + F )2

K+�− (D − 3F )2 + 3(D + F )2

TABLE IV. Coupling matrix Ccrossed
(ai)→(bj ).

π 0� π 0�0 π−�+ π+�− K−p

π 0� 4D2 0 4
√

3DF −4
√

3DF −√
3(D + F )(D + 3F )

π 0�0 4D2 −12F 2 −12F 2 3(D + F )(D − F )
π−�+ 0 4D2 − 12F 2 0
π+�− 0 6(D + F )(D − F )
K−p 0

K
0
n η� η�0 K0�0 K+�−

π 0�
√

3(D + F )(D + 3F ) 0 −4D2
√

3(D − F )(D − 3F ) −√
3(D − F )(D − 3F )

π 0�0 3(D + F )(D − F ) 4D2 0 3(D − F )(D + F ) 3(D − F )(D + F )
π−�+ 6(D + F )(D − F ) 4D2 −4

√
3DF 0 6(D − F )(D + F )

π+�− 0 4D2 4
√

3DF 6(D − F )(D + F ) 0
K−p 0 (D + 3F )(D − 3F ) −√

3(D − F )(D − 3F ) 6(D + F )(D − F ) D2 − 9F 2 + 3(D2 − F 2)

K
0
n 0 (D + 3F )(D − 3F )

√
3(D − F )(D − 3F ) D2 − 9F 2 + 3(D2 − F 2) 6(D + F )(D − F )

η� 4D2 0 (D + 3F )(D − 3F ) (D + 3F )(D − 3F )
η�0 4D2

√
3(D + F )(D + 3F ) −√

3(D + F )(D + 3F )
K0�0 0 0
K+�− 0
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