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Elastic proton scattering of medium mass nuclei from coupled-cluster theory
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Using coupled-cluster theory and interactions from chiral effective field theory, we compute overlap functions
for transfer and scattering of low-energy protons on the target nucleus 40Ca. Effects of three-nucleon forces
are included phenomenologically as in-medium two-nucleon interactions. Using known asymptotic forms for
one-nucleon overlap functions we derive a simple and intuitive way of computing scattering observables such
as elastic scattering phase shifts and cross sections. As a first application and proof of principle, we compute
phase shifts and differential interaction cross sections at energies of 9.6 and 12.44 MeV and compare with
experimental data. Our computed diffraction minima are in fair agreement with experimental results, while we
tend to overestimate the cross sections at large scattering angles.
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Introduction. With the advent of accelerators of new genera-
tion, which provide radioactive ion beams, it becomes possible
to synthesize nuclei far from the valley of stability. Little is
known about these nuclei. For example, the nuclear interaction
is not well understood at large proton-to-neutron ratios, and
it appears that its effects are radically different close to
driplines compared to the vicinity of the valley of stability. The
most striking example is the redistribution of shell closures,
which are different from the usual magic numbers present
in well-bound nuclei [1,2]. In order to precisely study nuclei
close to driplines, new theoretical tools must be developed,
going further from the standard structure methods of nuclear
analysis, based on the use of standard shell model, treating
all nuclear states as well bound, and, in reaction theory, using
optical potentials fitted from experimental data. Indeed, both
nuclear structure and reactions must be unified, so that both
internucleon correlations and scattering degrees of freedom are
included within the same framework [3]. Microscopic models
aiming at unifying nuclear structure and reactions date back
to the seminal works of Chew [4], Watson [5], and Kerman,
McManus, and Thaler, who sought to find a microscopic basis
for phenomenological optical potentials [6]. More recently, the
full-folding g-matrix approach by Amos and collaborators [7]
and the full-folding optical potential model by Elster, Weppner,
and Chinn [8] have had great success in determining the
optical potential from microscopic input. Nevertheless, all
these approaches rely on approximations such as the impulse
approximation and simplified density matrices of the target
nucleus. Because of the increase of computational power
in the past few years, ab initio reaction frameworks have
started to emerge and hold great promise. The resonating
group method within the no core shell model has successfully
described nucleon and deuteron scattering and fusion in
light nuclei [9], the Green’s function Monte Carlo method
has been used to describe elastic scattering on 4He and
in the computation of asymptotic normalization coefficients
in light nuclei [10], and finally the self-consistent Green’s
function (SCGF) method has been applied to the micro-
scopic calculation of optical potentials and proton scattering
on 16O [11].

An interesting avenue for computing nuclear reactions
microscopically lies in coupled-cluster theory. The coupled-
cluster method is a microscopic theory which comes at a
relatively low computational cost and at the same time can pro-
vide accurate descriptions of low-lying states and properties of
nuclei with closed (sub-)shells [12,13]. Recently, the coupled-
cluster method has made significant progress in computing
structures of nuclei from the valley of stability towards the
neutron dripline. Using a Berggren basis [14] consisting of
bound, resonant, and scattering states, both loosely bound
and unbound states have been accurately computed within the
coupled-cluster formalism [15,16]. However, so far no attempt
has been made to apply the coupled-cluster method to compute
reaction observables, and it is the aim of this work to fill this
gap and to develop a new formalism to compute reaction
observables such as elastic scattering cross sections using
microscopic coupled-cluster theory. As a first application we
consider the elastic scattering reaction 40Ca(p,p)40Ca, whose
phase shifts and differential elastic cross sections are evaluated
at low energies.

Hamiltonian and treatment of the infinite-range Coulomb
interaction. The intrinsic A−nucleon Hamiltonian consists of
kinetic, nuclear, and Coulomb parts,

Ĥ =
∑

1�i<j�A

(
( �pi − �pj )2

2mA
+ V̂

(i,j )
NN + V̂

(i,j )
Coul + V̂

(i,j )
3Neff

)
. (1)

Here, the intrinsic kinetic energy depends on the mass number
A. The potential V̂NN denotes the chiral NN interaction
at next-to-next-to-next-to-leading order [17,18] (with cutoff
� = 500 MeV), V̂Coul is the Coulomb interaction, and V̂3Neff

is a schematic potential based on the in-medium chiral NN

interaction by Holt et al. [19]. The potential V̂3Neff results
from integrating one nucleon in the leading-order chiral 3NF
over the Fermi sphere with Fermi momentum kF in symmetric
nuclear matter. It depends formally on the Fermi momentum
kF , the low-energy constants cD and cE of the short-range
contributions to the leading-order chiral 3NF, and the chiral
cutoff. The latter is equal to the value employed in the chiral
NN interaction [18]. In this work we employ the parameters
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kF = 0.95 fm−1, cD = −0.2, and cE = 0.735, which was
recently applied for the study of shell evolution in neutron-rich
calcium isotopes [1].

Let us briefly discuss our treatment of the short- and
long-range parts of the Hamiltonian in Eq. (1). The nuclear
interaction V̂NN is of short range and is adequately expanded in
a basis of harmonic oscillator states (see Ref. [20] for details).
The difficulty induced by the infinite-range character of the
Hamiltonian is thus embodied in the Coulomb interaction
V̂Coul, asymptotically behaving as (Z − 1)e2/r , with r the
distance between the isolated proton and the center of charge
of the remaining part of the nucleus. Clearly, it is insufficient
to treat V̂Coul with a harmonic oscillator expansion as we do
for V̂NN . A solution to this problem has been formulated in
Ref. [21]. For this, the Coulomb interaction is rewritten as the
sum of two terms:

VCoul = UCoul(r) + [VCoul − UCoul(r)], (2)

where one demands that the Coulomb one-body potential
UCoul(r) behave as (Z − 1)e2/r for r → +∞. In this work
we choose UCoul(r) = erf(αr)(Z − 1)e2/r , where erf is the
error function and α = π/4fm−1. Thus, the [VCoul − UCoul(r)]
term is short ranged, so that one can use the harmonic oscillator
expansion method of Ref. [20] to calculate its matrix elements.
Note that the r coordinate can be taken with respect to the
origin of the laboratory, because center-of-charge effects are
negligible in the asymptotic region on the one hand and for a
medium-mass nucleus such as 40Ca on the other hand.

In order to account for the scattering continuum using
the coupled-cluster formalism, it is convenient to express the
Hamiltonian for given partial waves in a basis of spherical
Bessel functions [16]. Thus, in order to proceed, we express
UCoul(r) in momentum space, and write it in the following
way:

UCoul(k, k′) = 〈k|UCoul(r) − (Z − 1)e2

r
|k′〉

+ (Z − 1)e2

π
Q�

(
k2 + k′2

2kk′

)
, (3)

where � is the orbital angular momentum of the considered
partial wave and Q� is the Legendre function of the second
kind [22]. As the the first term of Eq. (3) decreases very quickly
for r → +∞, it can be calculated by numerical integration.
However, the second term presents a logarithmic singularity
at k = k′. In order to counter this state of affairs, we follow
the off-diagonal method introduced in Ref. [23]. It consists of
replacing the infinite value Q�(1) in Eq. (3) occurring at k = k′
with a finite value depending on the discretization used (see
Ref. [23] for method and details).

In order to show the precision of the method in the context
of momentum space calculation, we diagonalize with a basis
of Bessel functions the one-body Hamiltonian for the � = 0
partial wave studied in Ref. [23], which reads

h = p̂2

2m
− Vo

[
1 + exp

(
r − R0

d

)]−1

+ UCoul(r), (4)

where m is the proton mass, d = 0.65 fm, R0 = 3 fm, Vo =
52 MeV, and UCoul(r) is the Coulomb potential from Ref. [20].

Obtained scattering wave functions have been fitted for large
r with their asymptotic limit equal to

CF

F (�, η, kr)

r
+ CG

G(�, η, kr)

r
, (5)

where F (�, η, x) and G(�, η, x) are respectively the regular
and irregular Coulomb wave functions [22], η is the Som-
merfeld parameter, and CF and CG are integration constants.
Regular and irregular Coulomb wave functions are evaluated
numerically using the publicly available CWFCOMPLEX code
[24], while CF and CG constants are determined by fitting
Eq. (5) to the considered scattering wave functions at r =
10 fm. Results are depicted in Fig. 1. It is therein clear
that their asymptotic behavior is very well reproduced, as
Coulomb asymptotic expansions and diagonalized scattering
wave functions are virtually indistinguishable for r > 7 fm.
This proves that the infinite-range character of the Coulomb
interaction can be handled precisely with Fourier-Bessel
transform, so that reactions involving protons, such as elastic
scattering, can be undertaken.

One-nucleon overlap functions and coupled-cluster theory.
The scattering of a nucleon on a target A can be described
by the one-nucleon overlap function. The one-nucleon radial
overlap function OA+1

A (lj ; r) is defined microscopically as
the overlap between two independent many-nucleon wave
functions of A and A + 1 nucleons,

OA+1
A (lj ; kr) =

∑∫
n

〈A + 1||ã†
nlj ||A〉φnlj (r). (6)

The double bar denotes a reduced matrix element, and the
integral-sum over n represents both the sum over the discrete
spectrum and an integral over the corresponding continuum
part of the spectrum. The creation operator ã

†
nlj is a spherical

tensor of rank j . The radial single-particle basis function is
given by the term φnlj (r), where l and j denote the single-
particle orbital and angular momentum, respectively, and n is
the nodal quantum number. The isospin quantum number has
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FIG. 1. (Color online) Scattering s-wave functions ϕ(r) obtained
from diagonalization of the one-body Hamiltonian defined in Eq. (4)
in momentum space (solid lines) and their asymptotic expansion
defined in Eq. (5) (dashed lines) as a function of radius, provided in
femtometers. Wave functions are given in units of femtometers−3 and
their energy is written on the figure in units of million electron volts.
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been suppressed. The one-nucleon overlap function describes
the capture or scattering of an incoming particle with quantum
numbers lj on the target nucleus A and with the final state A +
1 being either a bound or a scattering state. The momentum k is
given from the energy difference k =

√
2m̃(EA+1 − EA)/h̄, in

the case of A and A + 1 being in their ground state. EA+1 − EA

is the one-nucleon separation energy in the A + 1 nucleus (here
m̃ = (1 − 1/A)m). We emphasize that the overlap function
is defined microscopically and independently of the single-
particle basis. It is uniquely determined by the many-body
wave functions |A〉 and |A + 1〉. |A〉 and |A + 1〉 can in general
either be in their ground or any excited state. However, in this
work we are interested in low-energy elastic scattering, which
implies that the target nucleus |A〉 is in its ground state before
and after the scattering. The one-nucleon overlap functions
are formally solutions of the Dyson equation, which can be
written in a Schrödinger-like form where the self-energy takes
the place of a nonlocal and energy-dependent optical potential
[11]. Outside the range R of the optical potential, the one-
nucleon overlap functions for bound A + 1 states takes (k =
iκ) the form

OA+1
A (lj ; kr) = Clj (iκ)

W−η,l+1/2(iκr)

r
(7)

and for A + 1 scattering states (k > 0),

OA+1
A (lj ; kr) = Blj (k)

[
Fl,η(kr) − tan δl(k)Gl,η(kr)

]
. (8)

Here W−η,l+1/2 is the Whittaker function, Fl,η and Gl,η are
the regular and irregular Coulomb wave functions, η is the
Sommerfeld parameter [η = (Z − 1)e2√m̃/2|E|], Clj (iκ) is
the asymptotic normalization coefficient (ANC), tan δl(k) is
the lth partial wave scattering phase shift at momentum k,
and Blj (k) is an arbitrary normalization constant for the
scattering states. In order to compute the phase shifts at a
given energy, it is sufficient to know the one-nucleon overlap
function OA+1

A (lj ; kr) and its derivative at a given radius
r > R. In order to obtain OA+1

A (lj ; kr) we need to solve
for the ground state of the target nucleus A and the ground
and excited scattering states in the residual nucleus A + 1.
The coupled-cluster method is a very efficient tool for the
computation of ground and low-lying excited states in nuclei
with a closed (sub-)shell structure and their neighbors. In this
work the target nucleus A is a closed-shell nucleus, and we use
the coupled-cluster method to compute the ground state of A,
that is, |A〉 = eT |φA〉. Here |φA〉 is the Hartree-Fock reference
state while T is a linear combination of particle-hole excitation
operators. For the residual A + 1 nucleus we use particle-
attached equation-of-motion coupled-cluster theory to obtain
the ground and excited states, and the A + 1 wave functions
are therefore given by 〈A + 1|μ = 〈φA|LA+1

μ e−T , with LA+1
μ a

linear combination of one-particle and two-particle–one-hole
de-excitation operators (details on our implementation are
presented in Refs. [25,26]). Inserting these expressions for
the A and A + 1 systems into Eq. (6), we obtain the coupled-
cluster formulation of the one-nucleon overlap functions:

OA+1
A (lj ; kr) =

∑∫
n

〈φA|∣∣LA+1
μ ã

†
nlj

∣∣|φA〉φnlj (r). (9)
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FIG. 2. (Color online) Radial overlap function OA+1
A (lj ; kr)

between the ground state of 40Ca and the J π = 7/2− ground state of
41Sc (solid line), also shown is the corresponding Whittaker function
CljW−η,l+1/2(iκr)/r for the f7/2 proton partial wave (dashed line).

Here ã
†
nlj = e−T ã

†
nlj e

T is the similarity-transformed creation
operator. The derivation of the diagrammatic and algebraic

expressions of Eq. (9) and ã
†
nlj can be found in Ref. [27].

Note that in order to compute the radial overlap in Eq. (9)
we need to use the same mass number (41) in the intrinsic
kinetic energy of the A and A + 1 Hamiltonians in Eq. (1). This
introduces a small error in the ground state of the target nucleus
A. However, this error decreases rapidly with increasing mass,
and we estimate that the error is of the order of 100–200 keV
in the relative energy entering the overlap function [28].

In our coupled-cluster calculations we use a model space
consisting of Nmax = 17 major spherical oscillator shells with
the oscillator frequency h̄ω = 26 MeV. This is a sufficiently
large model space to reach practically converged results
for the ground state of 40Ca (see Ref. [1]). In order to
properly account for scattering continuum in 41Sc we use
a Gamow-Hartree-Fock basis [29] for the relevant proton
partial waves. In constructing the single-particle basis with
the correct treatment of long-range Coulomb effects, we
use the off-diagonal method in momentum space and discretize
the one-body momentum space Schrödinger equation with 50
mesh points. We find that this is a sufficiently large number of
mesh points in order to obtain the correct Coulomb asymptotics
necessary to describe proton elastic scattering on 40Ca.

Results. Figure 2 shows the computed radial overlap
function for the ground state of 40Ca with the Jπ = 7/2−
ground state of 41Sc on a logarithmic scale. Our computed
proton separation energy for 41Sc is SCC

p = 0.71 MeV, which
is in good agreement with the experimental proton separation
energy S

Exp
p = 1.09 MeV. From the radial overlap function

and the separation energy we can compute the behaviour
of the the overlap function at distances beyond the range
of the nuclear interaction according to Eq. (7). It is clearly
seen that the overlap function and the known asymptotic
form completely overlap for distances larger than r ∼ 8 fm.
Figure 3 shows the computed radial overlap functions for the
ground state of 40Ca with two Jπ = 7/2− scattering states of
41Sc, at the energies E = 5.439 MeV and E = 16.304 MeV,
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FIG. 3. (Color online) Radial overlap functions OA+1
A (lj ; kr)

between the ground state of 40Ca and two J π = 7/2− scattering states
in 41Sc (solid lines). Also shown are the corresponding Coulomb scat-
tering functions Blj (k)[Fl,η(kr) − tan δl(k)Gl,η(kr)] (dashed lines).

respectively. As we found for the bound overlap function
shown in Fig. 2, we see that the radial overlap function for
scattering states and the known asymptotic forms completely
overlap for distances larger than r ∼ 8 fm. By matching the
asymptotic forms of the overlap functions given in Eq. (8)
with the computed overlap functions, it is clear that we can
determine the corresponding elastic scattering phase shift at
the computed scattering energy. Figure 4 shows our computed
scattering phase shifts for proton elastic scattering on 40Ca for
the s1/2, p1/2, p3/2, d3/2, d5/2 partial waves at energies below
14 MeV. The solid dots correspond to the computed scattering
energies, and we used cubic spline to interpolate between
the discrete set of scattering energies. We clearly see the
appearance of a narrow resonance in the p3/2 partial wave
around ∼1.6 MeV, while a broader resonance appears in the
p1/2 partial wave at around ∼3.4 MeV. In order to check our
results we computed the low-lying resonances in 41Sc using
a complex Gamow-Hartree-Fock basis [16], and we found a
Jπ = 3/2− resonance at the energy E = 1.61–0.001i MeV
and a Jπ = 1/2− resonance at the energy E = 3.42–0.20i
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FIG. 4. (Color online) Computed phase shifts for elastic proton
scattering on 40Ca for low-lying partial waves and energies below
14 MeV.
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FIG. 5. (Color online) Differential cross section from coupled-
cluster calculations divided by Rutherford cross section for elastic
proton scattering on 40Ca at Ecm = 9.6 MeV (solid line), experimental
data (dots), and optical model potential fits (dashed line), taken from
Ref. [31].

MeV. Clearly these energies are consistent with the resonances
appearing in the p3/2 and p1/2 elastic scattering phase shifts
in Fig. 4. From the scattering phase shifts we can compute
the differential cross section for elastic proton scattering as
described in, for example, Ref. [30]. Figures 5 and 6 show our
computed differential cross section divided by the Rutherford
cross section for elastic proton scattering on 40Ca at the
relative center-of mass energies Ecm = 9.6 MeV and Ecm =
12.44 MeV, and we compare to these experimental results and
the optical model potential fit to data of Ref. [31]. All partial
waves for l � 2 were included in the computation of the cross
sections. In light of the fact that we performed no fine-tuning
of model parameters to scattering data in 40Ca, we get overall
fair agreement between our calculated cross sections and the
experimental cross sections. In particular we see that our
computed minima are in good agreement with the experimental
minima, while we tend to overestimate the cross sections at
large scattering angles. The overestimated cross sections at
large angles is most likely due to the fact that we do not account
for intermediate excitations that takes place above the deuteron
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FIG. 6. (Color online) Same caption as in Fig. 5 except that the
energy is Ecm = 12.44 MeV.
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threshold, and these excitations generally cause absorption and
reduce the cross section at large angles. Going beyond 2p-1h

excitations for the computation of the A + 1 wave functions
will account for such effects, and we are working towards
such improvements in our approach. We also computed the
cross sections including the f5/2, f7/2, g7/2, g9/2 partial waves;
however, the agreement with data did not improve. This is
most likely due to the fact that our computations for the
f5/2 and g9/2 partial waves find very narrow resonances at
energies that are too low as compared to the experiment.
This is also consistent with the ∼10-MeV overbinding we
get for 40Ca using the Hamiltonian in Eq. (1) [1]. As cross
sections at low energies are very sensitive to the location
of low-lying resonances, we believe that the disagreement
between data and theory is most likely due to (i) deficiencies in
the Hamiltonian and (ii) the approximation of the A + 1 wave
function.

Conclusions. Using coupled-cluster theory, we computed
cross sections for elastic scattering of protons on 40Ca, at
the center-of-mass energies 9.6 and 12.44 MeV, respectively.
We found a fair agreement for our computed diffraction
minima with experiment, while we tend to overestimate the
cross sections at large scattering angles. The key ingredients

for computing observables for proton scattering are (i) the
one-nucleon overlap function computed from microscopic
coupled-cluster theory and (ii) a single-particle basis that has
the correct Coulomb asymptotics. We showed that the newly
developed off-diagonal method is a very accurate method for
computing Coulomb scattering wave functions in momentum
space. The fast convergence of the scattering wave functions
with increasing number of mesh points makes this basis an
ideal starting point for computing reaction observables. This
work constitutes a successful application of coupled-cluster
theory to nuclear reactions, and we believe it makes a
significant leap forward in linking reactions with microscopic
structure calculations.
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