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Constraints on the symmetry energy and neutron skins from experiments and theory
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The symmetry energy contribution to the nuclear equation of state impacts various phenomena in nuclear
astrophysics, nuclear structure, and nuclear reactions. Its determination is a key objective of contemporary
nuclear physics, with consequences for the understanding of dense matter within neutron stars. We examine
the results of laboratory experiments that have provided initial constraints on the nuclear symmetry energy
and on its density dependence at and somewhat below normal nuclear matter density. Even though some of
these constraints have been derived from properties of nuclei while others have been derived from the nuclear
response to electroweak and hadronic probes, within experimental uncertainties-they are consistent with each
other. We also examine the most frequently used theoretical models that predict the symmetry energy and its
slope parameter. By comparing existing constraints on the symmetry pressure to theories, we demonstrate how
contributions of three-body forces, which are essential ingredients in neutron matter models, can be determined.
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I. INTRODUCTION

Contemporary nuclear science aims to understand the
properties of strongly interacting bulk matter at the nuclear,
hadronic, and partonic levels [1,2]. In addition to their contri-
butions in fundamental physics, such studies have enormous
impact on astrophysics, from the evolution of the early universe
to neutron star structure [3]. For example, a precise knowledge
of the equation of state of neutron matter is essential to
understand the physics of neutron stars and binary mergers,
predicted to be strong sources of gravitational waves [4].
While the equation of state of symmetric nuclear matter
consisting of equal amount of neutrons and protons has been
constrained over a wide range of densities [5], our knowledge
on asymmetric nuclear matter is very limited, largely as a
consequence of our inadequate understanding of the symmetry
energy [5,6]. The symmetry energy describes the response of
the force on protons and neutrons in a nuclear system with
excess neutrons or protons. It reduces the nuclear binding
energy in nuclei with N �=Z and is critical for understanding
the properties of nuclei, including the existence of rare isotopes
with extreme proton to neutron ratios [7–9].

Its slope parameter at saturation density provides the dominant
baryonic contribution to the pressure in neutron stars [10]
and affects the neutron skin thicknesses in heavy nuclei.
Knowledge of the neutron skin thickness is important for
atomic parity violation (APV) experiments because atomic
electrons have weak interactions, primarily with neutrons (see,
for example, [11–13]). Therefore, constraining the neutron
skin thickness may be important for low-energy APV tests of
the standard model. Conversely, one can measure APV for a
range of isotopes to deduce neutron radii [14].

For all its importance, we do not have a realistic model
of nuclear forces that can describe the equation of state
of neutron matter [15–29] over a wide range of densi-
ties. Recently, substantial progress in our understanding of
the symmetry energy has been made both experimentally
[30–54] and theoretically [15–29,55,56], in particular at
subsaturation densities. Astrophysical observations of neutron
stars are also starting to provide quantitative constraint to
the symmetry energy [57,58]. Aside from describing the
progress on symmetry energy and the neutron skin thick-
ness in 208Pb, we will discuss how the results can be
used to constrain theoretical calculations and to test the
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FIG. 1. (Color online) Density dependence of the symmetry
energy from the Skyrme interactions used in Ref. [6]. The shaded
region is obtained from HIC experiments as described in the text and
corresponds to the shaded region in Fig. 2.

importance of three-body and higher order forces in micro-
scopic models.

Using the Skyrme-Hartree-Fock model, Brown [6] pointed
out a decade ago that selected Skyrme parameterizations,
which fit the binding energy difference between 100Sn and
132Sn nuclei, may predict very different density dependencies
of the energy per nucleon in pure neutron matter at densities
above and below saturation density. Figure 1 shows that the
symmetry energy, which represents the difference between
the energies of symmetric and pure neutron matter, is equally
uncertain. Brown also discovered a nearly linear correlation
between the neutron skin thickness in heavy nuclei and the
pressure of the neutron matter equation of state (EOS) at
ρ ≈ 0.625ρ0, a trend replicated later by relativistic Hartree
model calculations [59]. Many observables, from nuclear
masses to nuclear structure and nuclear dynamics, also display
significant sensitivities to the density dependence of the
symmetry energy in the region near saturation density and
below (0.3 � ρ/ρ0 � 1). Since the constraints obtained from
heavy ion collisions (HICs) have been compared to constraints
obtained from pygmy dipole resonance (PDR) and the isobaric
analog states in Ref. [30], many new results become available.
In this article, we are able to update the PDR constraints as
well as to include constraints from nuclear masses and from
the elastic scattering of 208Pb. A constraint on the symmetry
energy obtained from determination of neutron star radius is
also included in our compilation.

To the lowest order expansion, the EOS of cold nuclear
matter can be approximately written as the sum of the energy
per nucleon of symmetric matter and an asymmetry term
[5,55,56]

E(ρ, δ) = E0(ρ, δ = 0) + S(ρ)δ2, (1)

where δ = (ρn − ρp)/ρ is the asymmetry, and ρn, ρp, and ρ

are the neutron, proton, and nucleon densities, respectively.
(For simplicity, we do not include the readily calculated

electromagnetic contribution to the energy.) The symmetry
energy factor, S(ρ) depends on density.

It is useful to expand the symmetry energy factor S(ρ) in
Eq. (1) in a Taylor series around the saturation density, ρ0 ∼
0.16 fm−3, where the binding energy of symmetric nuclear
matter reaches its maximum value of ∼16 MeV:

S(ρ) = S0 − Lε + 1/2Ksymε2 + O[ε3], (2)

where ε ≡ (ρ0 − ρ)/(3ρ0). In the literature, S0 is sometimes
also denoted as J . L and Ksym are the slope and curvature
parameters at ρ0. The slope parameter L,

L = 3ρ0dS(ρ)/dρ|ρ0 = [3/ρ0]P0, (3)

governs P0, the pressure from the symmetry energy in pure
neutron matter at ρ0. P0 provides the dominant baryonic
contribution to the pressure in neutron stars at ρ0 [10] and
influences the inner crusts and radii of neutron stars [3,60].
Thus L forms an essential link between nuclear physics and
astrophysics [10].

Realistic models of nuclear matter and its effective inter-
actions predict model-dependent correlations between S0, L,
and Ksym. Observables with different sensitivities to S0, L,
and Ksym can be combined to allow independent constraints
on them and on the theories from which they can be calculated.
However, Ksym correlates strongly with L and contributes
weakly to the symmetry energy at subsaturation densities,
making it difficult to constrain Ksym [61]. In the following, we
discuss constraints on S0 and L extracted from ground-state
properties, such as nuclear masses and neutron skin thick-
nesses and from excited-state properties, such as the energies
of isobaric analog states, and the energies and strengths of giant
and pygmy dipole resonances. We also discuss constraints
provided by observables sensitive to the transport of neutrons
and protons during nucleus-nucleus collisions. In addition,
we compile results from recent measurements of the neutron
skin thickness of 208Pb, the best candidate for precise neutron
skin measurement. We examine critically the consistency
between different measurements, including experimental and
theoretical uncertainties, and discuss the ability of future
experiments to provide further constraints.

We note that these constraints on S0 and L are most
directly applicable to matter at uniform or nearly uniform
density. Low-density ρ < 0.3ρ0 matter plays important roles in
neutron stars and core collapse supernovae and is not uniform
[62]; consequently, the mean field does not directly apply.
Laboratory experiments have been performed to investigate
the properties of low-density nuclear matter. We refer readers
to the work of Natowitz et al. [63] for a recent exploration of
the interplay of clusterization and the low-density symmetry
energy in laboratory systems. The constraints on S0 and L

discussed in this paper can be relevant to statistical models
that describe the separation of matter into dilute and dense
phases, where the latter resemble nuclei [64].

This paper is organized as follows. Recent experimental
measurements providing constraints on the nuclear symmetry
energy and the neutron skin thickness of 208Pb are discussed
in Sec. II. Discussion of the effects of the constraints on
different theoretical models is presented in Sec. III, followed
by summary and outlook in Sec. IV.
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II. EXPERIMENTAL CONSTRAINTS
ON THE SYMMETRY ENERGY

A. Symmetry energy constraints from
heavy ion collisions (HIC)

Large density variations can be attained for a very short
period of time in HIC using projectiles such as Au or Sn
[5,55,56]. The EOS is an essential input to the transport models
and can be constrained by comparing measurements of such
collisions to transport model calculations [5,55,56,65,66]. This
strategy was successfully applied to constrain the EOS of
symmetric matter, E0(ρ, δ = 0), at densities of ρ0 � ρ �
5ρ0, by studying energetic 197Au + 197Au collisions [5,31,65].

To gain sensitivity to the symmetry energy and extrapolate
to neutron-rich asymmetric matter, one can vary the neutron
and proton numbers of the projectile and target nuclei so as
to compare emission of particles from neutron-rich systems to
that from neutron-deficient systems [30–40]. The influence of
the symmetry potential can be more easily distinguished from
other effects by comparing the emitted nucleons and light
nuclei with different neutron and proton numbers. Especially
interesting are the comparisons between “mirror” nuclear
ejectiles with the same mass, and total isospin, but where the
proton and neutron numbers are exchanged, e.g., comparing
the emission of neutrons to protons, 3H to 3He, 7Li to 7Be
[31,34,36,55,56]. Such comparisons probe the combination of
Coulomb and symmetry mean-field potentials. The latter has
the opposite sign for protons and neutrons, but the combi-
nation contributes greatly to the uncertainty in the symmetry
energy [55].

In a neutron-rich environment, the symmetry potential tends
to expel neutrons and attract protons, enhancing the yield ratios
of ejected neutrons/protons and other isotopes while influ-
encing their dependence on the ejected particle’s momentum
[34,55,56]. Neutron-proton spectral ratios [34] and neutron,
hydrogen [35], and fragment flows [36,37] have all been used
to study the density dependence of the symmetry energy.
When the collision involves projectiles and targets of different
N/Z asymmetry, and different local density, the symmetry
potential pushes the system towards an “isospin equilibrium”
characterized by constant values of δ = (ρn − ρp)/ρ, through-
out the system. Thus, the magnitude of the symmetry potential
in a low-density “neck” region joining a projectile and target
during a peripheral or midcentral collision governs the rate
of “isospin diffusion” between a projectile and a target of
different asymmetry. This phenomenon has been used to probe
the symmetry energy [32,33,38–40,55].

The neutron and proton spectra from central collisions
for 124Sn + 124Sn and 112Sn + 112Sn collisions at 50 MeV per
nucleon [34] have been measured. At the same incident energy,
isospin diffusion was investigated. Normalization of the latter
requires asymmetric systems 124Sn + 112Sn (112Sn + 124Sn)
to be compared to symmetric systems of 124Sn + 124Sn and
112Sn + 112Sn collisions [33,39,40]. A χ2 analysis compared,
measured, and calculated values for the ratios of neutron-to-
proton spectra as well as two observables sensitive to isospin
diffusion [30]. In Fig. 2, a set of constraints within two
standard deviations from the minimum, corresponding to 95%
confidence levels, is shown as a shaded band bounded by

FIG. 2. (Color online) Constraints on the slope L and magnitude
S0 of the symmetry energy at saturation density from different
experiments. The experimental methods are labeled next to the boxes
with the estimated uncertainties. The symbols are results without the
analysis of the errors. See text for details.

two diagonal lines in the (L, S0) plane. The solid star shows
the results from isospin diffusion observables measured for
collisions at a lower beam energy of 35 MeV per nucleon
[40]. The corresponding density dependence of the symmetry
energy is plotted as the shaded region in Fig. 1. All observables
obtained from the sets of data described here were mainly
sensitive to the symmetry energy at densities 0.3ρ0 � ρ � ρ0.

Transverse collective flows of hydrogen and helium iso-
topes [36,37] as well as intermediate mass fragments with
Z < 9 have also been measured at incident energy at 35 MeV
per nucleon in 70Zn + 70Zn, 64Zn + 64Zn, and 64Ni + 64Ni
collisions and compared to transport calculations. These
comparisons yielded values for (S0, L) denoted by the open
squares in Fig. 2. No extensive χ2 or sensitivity analyses have
been performed over the (S0, L) space for either the transverse
flow data (open squares) or the low-energy isospin diffusion
data (solid star). We consequently plot them without error bars.

B. Symmetry energy constraints from nuclear binding energies

In 1935, Bethe and Weizäcker et al. proposed a very
successful theory of nuclear binding energies [7,8]. To a good
approximation, this theory reduces to a remarkably simple
mass formula in which the binding energy B(N ,Z) is obtained
as a function of proton number Z and neutron number N , with
mass number, A = N + Z,

B(N,Z) = avolA − asurfA
2/3 − aC

Z2

A1/3

− asym
(N − Z)2

A
+ dE, (4)

in terms of volume, surface, Coulomb, symmetry energies, and
additional small contributions related to microscopic effects
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[7,8]. The coefficients in Eq. (4) can be determined by fitting
to known atomic masses across the nuclear chart.

Myers and Swiatecki separated the volume and surface
contributions to the symmetry energy in their liquid drop
model [67] and subsequently developed a refined version of
the model, called the droplet model, by expanding the volume,
surface, and Coulomb energies in a Taylor series in terms of
(N − Z)/A and A−1/3 around the standard liquid drop model
values. This introduced additional degrees of freedom allowing
for the deviations from uniformity of the proton and neutron
densities and led to a more realistic parameterization of the
symmetry energy [67].

Since the symmetry energy contribution to the total binding
energy can be small relative to those from the other terms,
the unambiguous determination of S0 and L, the magnitude
and slope of the symmetry energy at saturation density, has
proven difficult [60,68]. To overcome the problem, all main
contributions to the binding energy must be theoretically
described with the highest possible accuracy. A refinement of
the droplet model, the finite-range droplet model (FRDM) [9],
came close to fulfillment of this requirement. It included
additional important features such as microscopic “shell”
effects and the extra binding associated with N = Z nuclei.
The FRDM reproduced binding energies of known nuclei with
a deviation σ = 0.67 MeV and implied a value of S0 =
32.73 MeV [9].

Despite the greatly improved predictions for nuclear bind-
ing energies it provided, it still did not have enough sensitivity
to determine L. More complex calculations [9] that include
additional effects such as axially asymmetric nuclear ground-
state shapes further improved the deviation of nuclear binding
energies to σ = 0.57 MeV. This means that the nuclear binding
energies are reproduced to within 0.1%. The model now allows
determination of both S0 = 32.5 ± 0.5 MeV and L = 70 ±
15 MeV. This constraint is shown as a square box in Fig. 2,
labeled “FRDM” on the top. Although the results are consistent
with other model predictions, this very small uncertainty in the
value of S0, if correct, limits seriously the choice of currently
available equations of state used in modeling neutron stars and
supernova matter.

C. Symmetry energy constraints from isobaric analog states

Fits of nuclear binding energies to mass models must
address ambiguities stemming from the similarities in the
influences of Coulomb and symmetry energy terms over the
range of experimentally measured masses. These ambiguities
in the determination of the symmetry energy from binding
energies caused by the Coulomb term can be removed by
taking advantage of the charge independence of nuclear inter-
actions, i.e., to a very good approximation, strong interactions
between nucleons in the same state do not depend on whether
the nucleons are protons or neutrons [42,61]. For example,
there is an excited state in the nucleus 12C (Z = N = 6)
with the same wave function and nuclear contribution to the
binding energy as the ground state of its isobar, 12B (Z = 5,
N = 7). This 12C excited state is called the isobaric analog
state (IAS) of the ground state of 12B, and its binding energy
differs from that of the 12B ground state by the difference in

their Coulomb energies. It follows from Eq. (4) that the energy
differences between the ground state for a nucleus with N > Z

and the isobaric analogs of the ground states of neighboring
isobars are given by the symmetry energy since the Coulomb
contributions to the binding energy can be determined using
the IAS.

To utilize this technique, however, one must realize mathe-
matically that the nuclear Hamiltonian is charge independent to
a good approximation. It depends on the total isospin operator
T 2 and not on its projection Tz which has the eigenvalue
(N − Z)/2 for a nucleus with neutron and proton number
N and Z, respectively. This can be accomplished by re-
placing Esym ≈ asym(A) (N−Z)2

A
with Esym = 4asym(A)

A
T (T + 1)

[42]. Here, we express asym as a function of A. This allows
the asymmetry coefficient asym(A) to be determined on a
nucleus-by-nucleus basis from

asym(A) ≈ − �B

4�T 2
A, (5)

where �T 2 = TIAS(TIAS + 1) − Tgs(Tgs + 1) is the difference
between the known T 2 eigenvalues for the isobaric analog
states and the ground state in the same nucleus, and �B is the
difference in the binding energies of these two states. Many
such states have been identified [69]. By fitting the available
data on the IAS, Danielewicz and Lee obtained the constraint
[42,61] shown as a parallelogram in Fig. 2, labeled IAS inside
the box. Further refinements to these fits are in progress [42].

D. Neutron skin thickness measurements

In light nuclei with N ≈ Z, the neutrons and protons have
similar density distributions. With increasing neutron number,
the radius of the neutron density distribution becomes larger
than that of the protons, reflecting the pressure of the symmetry
energy. The difference δRnp in the neutron and proton root-
mean-square radii is called the neutron skin, i.e.,

δRnp = 〈r2〉1/2
n − 〈r2〉1/2

p . (6)

Proton radii have been determined accurately for many
nuclei using electron scattering experiments [70]. This ac-
curacy reflects the accuracy of perturbative treatments of the
electromagnetic process. The neutron density distribution is
more difficult to measure accurately because it interacts mainly
with hadronic probes (protons, alphas, pions, and antiprotons)
through nonperturbative interactions, the theoretical descrip-
tion of which is model dependent.

The stable nucleus 208Pb is a very interesting candidate
for determining the neutron skin. With a closed neutron shell
at N = 126 and a closed proton shell at Z = 82, it is
very asymmetric with thick neutron skin. The closed shells
make its structure relatively well understood, allowing a clean
relationship between skin thickness and properties of the
symmetry energy. As the same physical mechanisms acting
on the neutrons in the lead nucleus also act on the neutrons
in the interior of neutron stars, the relationship between the
neutron skin thickness of ∼0.2 fm and the radius of neutron
star of ∼12 km, predicted by many models [6,10,59,60], has
stimulated many experiments to measure the neutron radius of
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208Pb [43–50]. We note, however, that the neutron star radius
reflects the pressure due to the symmetry energy at a range
of densities and is also highly sensitive to its pressure at 2–3
times saturation density [3].

In the following subsections, we discuss experimental mea-
surements that probe neutron skins using both electroweak and
hadronic probes. All of these experiments require theoretical
models to extract the neutron skin thickness of 208Pb from
the data. There is currently no consistent way to estimate the
theoretical errors arising from the models. Furthermore, the
models used may vary, often depending on the familiarity of
the authors with a certain type of model. However, in the
evaluation of the antiprotonic atom data in Ref. [71], Brown
et al. gave a rather detailed account of how the theoretical
uncertainty of 0.05 fm is deduced. Except for the Pb radius ex-
periment (PREX) at Jefferson Laboratory and the antiprotonic
experiments, the experimental uncertainties are much less
than 10%. Without a comprehensive study of the theoretical
and experimental uncertainties in the measurements described
below, we adopt a minimum error in δRnp of ±0.05 fm
(a rough estimate of the model uncertainties) in order not to
bias comparisons of various δRnp values towards values with
the most underestimated uncertainties.

1. Parity violating electron scattering

The possibility of measurements of the neutron radius in
208Pb by PREX at Jefferson Laboratory had been widely
discussed [72,73]. This experiment is designed to extract
the neutron radius in 208Pb from parity-violating electron
scattering. The electroweak probe has the advantage over
experiments using hadronic probes in that it allows a nearly
model-independent extraction of the neutron radius that is
independent of most strong interaction uncertainties [72].
The experimental signature, however, is very small, making
high-precision measurements very challenging [73]. Due to
technical problems in a recent measurement [43], which re-
duced the statistics severely, the extracted 208Pb skin thickness
had large statistical uncertainties of δRnp = 0.33(+0.16)

(−0.18) fm [43].
A second experimental run has now been approved for PREX
to run in a few years to achieve the original goal of measuring
the skin thickness of 208Pb with an uncertainty of ± 0.05 fm
in δRnp [74].

2. Proton elastic scattering of 208Pb ( �p, �p)

Zenihiro et al. recently reported an extraction of the
neutron skin thickness of 208Pb via polarized proton elastic
scattering [44]. Cross sections and vector analyzing powers
for polarized proton elastic scattering on 58Ni and 204,206,208Pb
were measured with high precision. A T -matrix parameter-
ization of the proton optical potential was constrained by
the 58Ni measurements and fit to the 204,206,208Pb data by
adjusting the neutron densities. The deduced neutron skin
thickness of 208Pb, δRnp = 0.211(+0.054)

(−0.063) fm. This uncertainty
includes an estimated theoretical uncertainty arising from us-
ing different models for the nucleon-nucleon interaction. The
symmetry energy constraints consistent with the determined
skin thickness of 208Pb were evaluated within both relativistic

and nonrelativistic models and plotted as the dashed blue
rectangular box labeled “Pb( �p, �p)” in Fig. 2.

3. Antiprotonic atoms

Neutron skins of many other nuclei have been probed by
measurements [47,48] of photons emitted during the decays of
antiprotonic states of high orbital angular momentum where
the angular momentum barrier restricts the interactions be-
tween the antiproton and the neutron density to large distances.
The root-mean-square neutron radius is not directly measured,
making the skin thickness results strongly dependent on
theoretical models. Nevertheless, systematic measurements
of the neutron skins of a range of nuclei can contribute
significantly to a global understanding of the evolution of
neutron density distributions with nuclear charge and mass.
A systematic analysis of the neutron skin of 26 antiprotonic
atoms ranging from 40Ca to 238U [47,49] suggests that there is a
correlation between the neutron skin thickness and the isospin
asymmetry. The adopted value of δRnp = 0.18 ± (0.04)exp

± (0.05)theo fm come from averaging the results of [47–49].
In Ref. [49] a droplet model is used to determine a correlation
between δRnp and L, resulting in the constraints L = 55 ± 25
MeV and S0 = 31.5 ± 2 MeV. The uncertainties of the results
from the antiproton experiments are larger than those in the
other experiments discussed here. Nonetheless, the method of
using the systematics of a range of nuclei to extract the skin
thicknesses of 208Pb remains attractive, especially if both the
experimental and theoretical uncertainties could be reduced
when good quality skin thickness measurements of a wide
range of nuclei become available.

4. Electric dipole strength function

a. Electric dipole polarizability. The electric dipole polariz-

ability (EDP) α is defined by the relationship
⇀

p = α
⇀

E between
the induced electric dipole moment

⇀

p of a nucleus and the static

electric field
⇀

E that induces it. While the polarizability of some
light nuclei has been determined by placing them in the field
of a heavy target nucleus [75], it is more common to excite the
nucleus by photoexcitation [76,77] or Coulomb excitation [50]
and use the relationship α = h̄c

2π2e2

∫
σABS
ω2 dω between α and the

photon absorption cross section σABS weighted with ω−2 and
integrated over the incident photon energy ω.

The interaction of nuclei with an electric dipole field leads
to the real or virtual excitation of nuclear excited states, many
of which contribute to the giant dipole resonance (GDR) in
nuclei [51]. Semiclassically, the GDR can be viewed as a
collective vibration in which neutrons and protons move in
opposite directions, displacing the neutron and proton densities
relative to each other and increasing the symmetry energy.
Thus, the symmetry energy contributes to the “restoring force”
for the vibration and strongly influences the excitation energies
of states that can be easily excited by an electric field [77,78].

In neutron-rich nuclei a significant enhancement in the EDP
can be expected due to the development of a neutron skin. In
such nuclei, one has the possibility of vibrations of the (N ,Z)
symmetric core against the neutrons in the skin. This leads
to the appearance of low-energy states that are easily excited
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by electric dipole radiation, i.e., low-energy dipole strength,
which greatly enhances α due to the ω−2 weighting in the
integral above. In fact, the low-energy dipole strength can
contribute as much as 25% to the dipole polarizability [79].
For very neutron-rich nuclei, this enhanced dipole strength
can be localized in energy and appears in the form of a PDR
discussed in the next section.

Reinhard and Nazarewicz predicted a strong correlation
between the neutron skin thickness in 208Pb and the EDP within
a model with a Skyrme interaction and an effective Lagrangian
[80]. Recent experiments using inelastic scattering of polarized
protons on 208Pb at very forward angles [50] have provided the
complete electric dipole response of 208Pb from low excitation
energies up to the GDR with high resolution. A precise value
of the EDP was extracted and the calculations from Ref. [80]
were used to predict a value for the neutron skin thickness
δRnp = 0.156(+0.025)

(−0.021) fm for 208Pb [50]. More recent calcula-
tions have shown the skin thickness results to be somewhat
model dependent [81].

b. Pygmy dipole resonances. In very neutron-rich nuclei
such as 68Ni and 132Sn, enhanced low-energy electric dipole
strength has been observed and attributed to a PDR that peaks
at excitation energies well below the GDR [52–54]. These PDR
peaks can exhaust in the order of 5% of the energy-weighted
sum rule (EWSR). In many models, the calculated percentage
of the EWSR exhausted by PDR is shown to be linearly related
to the slope parameter L of the symmetry energy. Carbone
et al. extracted a value of L = 64.8 ± 15.7 MeV [53] from
measurements of the PDR for 68Ni [54] and 132Sn [52]. They
utilized the correlations between L and δRnp within various
models to predict the skin thicknesses of 68Ni and 132Sn and
extrapolate δRnp = 0.194 ± 0.024 fm for 208Pb. In addition,
the authors [53] obtain a value of S0 = 32.3 ± 1.3 MeV
using the correlation between L and S0, calculated by the
same models. The PDR symmetry energy constraint is shown
as a dashed rectangle in Fig. 2 with the label PDR at the bottom
of the box.

III. THEORETICAL MODELS OF NUCLEI
AND NUCLEONIC MATTER

One of the outstanding problems in theoretical nuclear
physics is to determine the role of three- and more- body
forces in calculating the nuclear equation of state. In this
section, we discuss calculations of the symmetry energy using
representative theoretical models. We examine the range of
calculated symmetry energies and neutron skin thickness
predicted by calculations using phenomenological interactions
and by calculations using microscopic and phenomenological
two nucleon forces and phenomenological three- and more-
body forces. We also show that the experimental constraints
obtained in previous sections allow one to distinguish different
interactions and verify the importance of three-neutron (3n)
forces.

A. Phenomenological models

Many calculations employ effective, density-dependent
nucleon-nucleon interaction of a Skyrme or Gogny type

FIG. 3. (Color online) Symmetry energy correlations from dif-
ferent models (symbols). The dashed and solid lines represent the
linear relationship between L and S0 in the QMC and CEFT models,
respectively. The shaded region represents constraints obtained from
the HIC experiment. The axes are the same as Fig. 2.

[15–17] or meson exchange interactions based on a relativistic
mean-field model (RMF) Lagrangian approach [18,19]. The
strength and ranges of the various terms in these phenomeno-
logical interactions are adjusted to describe nuclear properties,
with little direct input from nucleon-nucleon scattering. One of
the ultimate goals for studies of the symmetry energy should be
to narrow the experimentally and theoretically allowed region
in the S0 − L plane.

The interactions utilized by these Skyrme, or RMF, ap-
proaches typically have a number of adjustable correlated
parameters, which have not been adequately constrained
by existing data, leading to a proliferation of different
parameterizations. In Fig. 3, we show a wide range of
possible S0 − L correlations predicted by a selection of these
phenomenological parameterizations. The open circles show
predictions of the S0 − L correlation for a set of Skyrme
interactions used in Ref. [68]. The experimental constraints
from HIC exclude some interactions.

In Ref. [20], Dutra et al. extended the set of constraints,
usually utilized in the development of Skyrme parame-
terization, to 11 macroscopic conditions, originating from
empirical properties of nuclear matter and experiments, and
four microscopic constraints including density dependence of
the effective mass and Landau parameters, to test the suitability
of 240 Skyrme interactions. The combined effect of these
constraints leaves only five Skyrme interactions that satisfied
nearly all the constraints. The L and S0 values calculated with
the selected interactions (solid circles) cluster along the lower
boundaries of the experimentally allowed regions in Fig. 3.

B. Microscopic models

Microscopic approaches start from free two-body nucleon-
nucleon interactions (NN) that reproduce nucleon-nucleon

015803-6



CONSTRAINTS ON THE SYMMETRY ENERGY AND . . . PHYSICAL REVIEW C 86, 015803 (2012)

scattering and three-body interactions, which together with
the two-body interactions, reproduce bound state properties
of selected light nuclei [21,22]. The in-medium correlations
to these interactions can then be calculated by many-body
techniques, such as the Brueckner-Hartree-Fock (BHF) or
its relativistic counterpart, the Dirac-Brueckner-Hartree-Fock
(DBHF) (see, e.g., [23,24]). We note that most of the bulk
of the relativistic effects typical of DBHF approaches can be
associated with the class of three-body forces originating from
virtual pair excitation.

The Quantum Monte Carlo (QMC) technique provides
another way to include the main-body correlations and solve
the many-body problem. This technique can tackle the problem
exactly when the interactions are local in configuration space.
However, it requires significant computational resources,
making large nuclei impossible at present to compute. QMC
calculations for nuclear matter have successfully demonstrated
a strong correlation between the symmetry energy and its
density dependence [25,26], shown as the dash line in Fig. 3.

Finally, chiral effective field theory (CEFT), with renor-
malization group (RG)-evolved interactions constrained by
nucleon scattering data [27], has recently been used to calculate
nuclear matter properties [28,29]. These calculations con-
strained the pressure of neutron matter at saturation densities
within ± 25%.

In Fig. 4 we plot several theoretical predictions of the
density dependence of the pressure in pure neutron matter.
The left panel shows results that include two-body potentials
without inclusion of three-body neutron (3n) forces. The
curves are calculated using the BHF approach with the Av18
potential [23], the QMC approach with the Av8′ potential [26],
and the CEFT approach [29]. In the right panel we demonstrate
the effect of including 3n forces and show results using the
BHF approach with the Av18 + UIX three-body potential
[23], the DBHF approach with the relativistic one-boson-

FIG. 4. (Color online) Density dependence of pressure in pure
neutron matter as predicted in BHF, QMC, and CEFT models without
(left panel) and with (right panel) 3n forces. The inset in the left
panel shows experimental data currently available on the neutron skin
thickness in 208Pb and the red star indicates their weighted average.
For more details see text.

exchange Bonn B potential [24], the QMC approach with
the Av8′ + V PW

2π + V R
m=150 potential (lower limit), and the

Av8′ + UIX potential (upper limit of the green shaded area)
[26]. These limits are derived from the spread of predictions,
calculated using different forms of the three-neutron force [26].
The lower and upper limit of the CEFT predictions reflect
the theoretical error of the model [28,29]. Even though the
calculations shown in the right panel of Fig. 4 have been
calculated with different models using different forms of three-
body potentials, all calculations lie within the uncertainties of
the CEFT calculations (blue shaded region). Furthermore, the
upper limits obtained for the QMC and CEFT approaches are
almost identical. Figure 4 also demonstrates that individual
contributions to observables are in general shifted between
two-body neutron-neutron (nn) and 3n forces (and higher-
body forces) by changing the RG resolution scale of the
Hamiltonian. Consequently only the sum of all contributions
is an observable. At low resolution scales (corresponding
to the CEFT calculations), the size of 3n contributions to
neutron matter pressure is significantly larger than at higher
RG resolution scales (corresponding to the QMC and BHF
results). Even after the theoretical uncertainties are taken into
account, the 3n force significantly increases the pressure of
neutron matter which affects the neutron skin thickness in
208Pb.

These models can also be used to predict the correlation
between S0 and L. Like the Skyme interactions, predictions
from the RMF models (solid diamonds) from Ref. [82] are
scattered on the plane. The S0 − L correlation predicted by
BHF [23] and DBHF [24] are shown as squares. Both the
QMC and CEFT models predict a linear dependence of S0 and
L as shown by the green dash and blue solid lines in Fig. 3,
respectively. Both lines are nearly the same and lie below
the lower boundary of the experimentally preferred S0 − L

correlation, intersecting it only at higher S0 > 34 MeV. Many
of the predicted values for L lie near the lower boundary of the
experimentally preferred S0 − L region. The strong correlation
from the QMC model has been recently combined with the
constraints on the mass and radius of neutron stars to give
31.2 MeV < S0 < 34.3 MeV and 36 MeV < L < 55 MeV
to 95% confidence level [57]. These constraints, derived from
theoretical analyses of x-ray data from satellite observatories,
are shown as a red dashed box labeled as n-star in Fig. 2.
The constraints tend to favor a weak density dependence of
symmetry energy, barely overlapping with the lower bound
of the boundaries determined from nuclear experiments. We
note that the small extracted values of the radii of neutron
stars depend on assumptions regarding the dynamics of
x-ray bursts and the emissivity of the stellar surface [83]. It
will be an important scientific objective that both laboratory
measurements and astrophysical observations can be described
consistently with the same assumptions about the density
dependence of the symmetry energy.

Neutron skin thickness values discussed in Sec. III are
shown in the left-hand panel inset of Fig. 4. The 208Pb skin
thicknesses determined from antiprotonic atom systematics,
the weighted energy sum-rule of Pygmy Dipole resonances, the
electric dipole polarizability and the proton elastic scattering
experiment are plotted as open circle, solid square, open square
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and solid circle respectively. As discussed earlier, we adopt a
minimum uncertainty of ±0.05 fm. The skin thickness deduced
from the symmetry energy constraints from nucleus-nucleus
collisions using various Skyme forces is plotted as a solid
diamond symbol in the inset. The red star in both panels depicts
the weighted average of these values, using the relationship
of Typel and Brown [59] between the pressure in neutron
matter (left axis) at ρ/ρ0 = 0.625 and the neutron skin
for 208Pb (right axis). The theoretical uncertainties in the
calculations are comparable to the experimental uncertainty.
The current experimental uncertainty is a factor of two smaller
than the designed error in the PREX experiment. It is probably
unrealistic to expect measurements with smaller uncertainties.
Nonetheless, this average value agrees better with calculations
that include 3n forces (right panel).

All the calculations lie lower than the experimental mea-
surements of the skin thickness of 208Pb, consistent with the
low L values plotted in Fig. 3. If future measurements do
not shift the S0 − L correlation to lower L, that may be an
indication of insufficient current understanding of the three
and higher-body forces.

IV. SUMMARY AND OUTLOOK

The density dependence of the symmetry energy has wide-
ranging ramifications in many branches of nuclear physics and
astrophysics, motivating serious efforts to constrain it. We have
shown that consistent results have been obtained from both
nuclear structure measurements and from the measurement of
heavy ion collisions. Our results provide a constraint centered

around (S0, L) ∼ (32.5, 70) MeV over the range of density
between 0.3ρ0 � ρ � ρ0. We also demonstrate that the neutron
skin thickness for 208Pb of δRnp = 0.18 ± 0.027 fm provide a
constraint on the 3n forces in macroscopic calculations of the
density dependence of pure neutron matter. Both the symmetry
energy constraints and neutron skin thickness measurements
are consistent with each other.

Further refinements of theory and experiments and the
extension of experimental data to higher and lower densities,
particularly relevant for astrophysics, are needed. The skin
thickness extracted in PREXII experiments [74] should have
much smaller theoretical uncertainties. After 208Pb measure-
ment, an additional measurement in 48Ca would be very
attractive because microscopic coupled cluster or no-core shell
model calculations can closely relate 3n forces to the skin
thickness in 48Ca [84]. Plans are underway to extend heavy-ion
collision experiments [35,85] to high energy to probe the
symmetry energy at densities of ρ ≈ 2ρ0 and beyond.
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R. Schmidt, T. von Egidy, and B. Kłos, Phys. Rev. Lett. 87,
082501 (2001).
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