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Neutrinoproduction of photons and pions from nucleons in a chiral effective field theory for nuclei
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Neutrino-induced production (neutrinoproduction) of photons and pions from nucleons and nuclei is important
for the interpretation of neutrino-oscillation experiments, as these photons and pions are potential backgrounds
in the MiniBooNE experiment [A. A. Aquilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. Lett. 100,
032301 (2008)]. These processes are studied at intermediate energies, where the �(1232) resonance becomes
important. The Lorentz-covariant effective field theory, which is the framework used in this series of studies,
contains nucleons, pions, �s, isoscalar scalar (σ ) and vector (ω) fields, and isovector vector (ρ) fields. The
Lagrangian exhibits a nonlinear realization of (approximate) SU(2)L ⊗ SU(2)R chiral symmetry and incorporates
vector meson dominance. In this paper, we focus on setting up the framework. Power counting for vertices and
Feynman diagrams is explained. Because of the built-in symmetries, the vector current is automatically conserved,
and the axial-vector current is partially conserved. To calibrate the axial-vector transition current (N ↔ �), pion
production from the nucleon is used as a benchmark and compared to bubble-chamber data from Argonne
and Brookhaven National Laboratories. At low energies, the convergence of our power-counting scheme is
investigated, and next-to-leading-order tree-level corrections are found to be small.
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I. INTRODUCTION

Neutrinoproduction of photons and pions from nucleons
and nuclei plays an important role in the interpretation of
neutrino-oscillation experiments, such as MiniBooNE [1].
The neutral current (NC) π0 and photon production produce
detector signals that resemble those of the desired e± signals.
Currently, it is still a question whether NC photon production
might explain the excess events seen at low reconstructed
neutrino energies in the MiniBooNE experiment, which the
MicroBooNE experiment plans to answer [2]. Moreover, pion
absorption after production could lead to events that mimic
quasielastic scattering.

Ultimately, the calculations must be done on nuclei, which
are the primary detector materials in oscillation experiments.
To separate the many-body effects from the reaction mech-
anism and to calibrate the elementary amplitude, we study
charged current (CC) and NC pion production from free nu-
cleons in this work, which serves as the benchmark. Moreover,
NC photon production, which is not a topic under intense
investigation, is studied within this calibrated framework. In
future papers, we will include the electroweak response of the
nuclear many-body system to discuss the productions from
nuclei in the same framework.

Here we use a recently proposed Lorentz-covariant meson-
baryon effective field theory (EFT) that was originally mo-
tivated by the nuclear many-body problem [3–10]. (This
formalism is often called quantum hadrodynamics or QHD.)
This QHD EFT includes all the relevant symmetries of
the underlying QCD; in particular, the approximate, sponta-
neously broken SU(2)L ⊗ SU(2)R chiral symmetry is realized
nonlinearly. The motivation for this EFT and some calculated
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results are discussed in Refs. [4,5,11–20]. In this EFT,
we have the � resonance consistently incorporated as an
explicit degree of freedom, while respecting the underlying
symmetries of QCD noted earlier. (The generation of mesons
and the � resonance through pion-pion interactions and
pion-nucleon interactions has been investigated in [21,22].) We
are concerned with the intermediate-energy region (ELab

ν �
0.5 GeV), where the resonant behavior of the � becomes
important. The details about introducing � degree of freedom,
the full Lagrangian, and electroweak interactions in this model
have been presented in [23,24]. The well-known pathologies
associated with introducing � are not relevant in the context
of EFT. The couplings to electroweak fields are included
using the external field technique [25], which allows us to
deduce the electroweak currents. Because of the approximate
symmetries in the Lagrangian, the vector currents are auto-
matically conserved and the axial-vector currents are partially
conserved. Form factors are generated within the theory by
vector meson dominance (VMD), which allows us to avoid
introducing phenomenological form factors and makes current
conservation manifest.1 We discuss the power counting of both
vertices and diagrams on and off resonance and consistently
keep all tree-level diagrams through next-to-leading order.
Explicit power counting of loop diagrams in this EFT has been
discussed in Refs. [17–19]. Here the contributions of the loops
are assumed to be (mostly) saturated by heavy mesons and
the � resonance, so the couplings of contact interactions are

1Meson dominance generates form factors for contact pion-
production vertices automatically, as shown in diagram (f) in Fig. 1. In
other approaches, for example [26], these form factors are introduced
by hand, which requires specific relations between the nucleon vector
current and the pion vector current form factors. This is explained in
Secs. II B and IV.
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viewed as being renormalized. The mesons’ role in effective
field theory has also been investigated in [27,28].

One major goal of this work is to calibrate electroweak in-
teractions on the nucleon level. It is typically assumed that the
vector part of the N → � transition current is well constrained
by electromagnetic interactions [29,30]. The uncertainty is
in the axial-vector part of the current, which is determined
by fitting to Argonne National Laboratory (ANL) [31] and
Brookhaven National Laboratory (BNL) [32] bubble-chamber
data. The data have large error bars, which leads to significant
model dependence in the fitted results [26,33,34]. Here we
choose one recently fitted parametrization [33] and use it to
determine the constants of our VMD parametrization (but note
that our basis of currents is different from the conventional one
as used in [26,33,34]). In addition, we make use of other form
factors, the ones in [26] for example. We then compare results
of using different current basis and form factors with the data
at low and intermediate neutrino energies.

There have been numerous earlier studies of neutrino-
production of pions from nucleons in the resonance region
[26,29,30,33,35–43]. They basically fall into two categories.
In the first one [29,30,33,38,39,41] resonance dominance
above intermediate energy is assumed. The contributions of
resonances are summed incoherently and hence it is difficult
to determine the interference effect. In the second category
[26,35,40,42,43], the contributions are summed coherently in-
cluding the background, since either an effective Hamiltonian
or Lagrangian is utilized.

Our approach belongs to the second category, while
differences from other models should be mentioned. First,
there exists a finite energy range in which EFT is valid, so
we insist on low-energy calculations. However, a different
attitude has been taken, for example, in Refs. [26,42], in which
the Born approximation based on an effective Lagrangian
has been extrapolated to the region of several GeV. Second,
we have discussed the consequence of higher-order contact
terms.2 Naturally, these contributions should obey naive
power counting [44,45]; however, some of them may play
an important role in scattering from nuclei. Third, electroweak
interactions of nucleons are calibrated in this work while the
strong interaction has been calibrated to nuclear properties.
This is a unique feature that is absent in other models targeting
the production from free nucleons only. Furthermore, the
calibration on the nucleon’s electroweak interaction impacts
the strong interaction. For example, the ρ π π coupling,
introduced because of VMD in the pion’s vector current, gives
rise to an interesting contribution in the two-body axial current
in a many-body calculation [46]. In our theory with �, it can
be quite interesting to investigate similar consequences, for
example, the �’s role in the two-body current, in which meson-
dominance couplings can give rise to relevant interactions.

This article is organized as follows: in Sec. II and III,
we introduce our Lagrangian without and with �, and we
calculate several current matrix elements that will be useful
for the subsequent Feynman diagram calculations. The theory

2Some of these terms have also been discussed in Ref. [42]; however,
the interpretation of these terms is different here from that in [42].

involving � is emphasized. Then the transition current basis
and form factors are discussed carefully. In Sec. IV, we discuss
our calculations for the CC and NC pion production and for
the NC photon production. After that, we show our results in
Sec. V. Whenever possible, we compare our results with avail-
able data and present our analysis. Finally, our conclusions are
summarized in Sec. VI.

In the Appendixes, we present the necessary information
about chiral symmetry and electroweak interactions in QHD
EFT, form factor calculations, power counting for the diagram
with �, and kinematics.

II. LAGRANGIAN WITHOUT �(1232)

In this work, the metric gμν = diag(1,−1,−1,−1)μν . The
convention for the Levi-Civita symbol εμναβ is ε0123 = 1.
We have introduced upper and lower isospin indices [23,24].
In this section, we focus on the Lagrangian without �

and study various matrix elements: 〈N |V i
μ,Ai

μ, J B
μ |N〉 and

〈N ; π |V i
μ,Ai

μ, J B
μ |N〉. Definitions of fields and currents can

be found in Appendix A.

A. Power counting and the Lagrangian

The organization of interaction terms is based on power
counting [5,17,18] and naive dimensional analysis (NDA)
[44,45]. We associate with each interaction term an index
ν̂ ≡ d + n/2 + b. Here d is the number of derivatives (small
momentum transfer) in the interaction, n is the number of
fermion fields, and b is the number of heavy-meson fields.
The Lagrangian is well developed in Refs. [10,23,24,47]. We
begin with the Lagrangian

LN(ν̂�3) = N (iγ μ [̃∂μ + igρρμ + igvVμ]

+ gAγ μγ 5 ãμ − M + gsφ)N

− fρgρ

4M
Nρμνσ

μνN − fvgv

4M
NVμνσ

μνN

− κπ

M
N ṽμνσ

μνN + 4βπ

M
NN Tr(̃aμãμ)

+ 1

4M
Nσμν(2λ(0)fsμν + λ(1)F (+)

μν )N

+ iκ1

2M2
Nγμ

↔
∂̃νN Tr (̃aμãν) . (1)

∂̃μ is defined in Eq. (A6),
↔
∂̃ν ≡ ∂̃ν − (

←
∂ν − iṽν + iv(s)ν), and

the field tensors are Vμν ≡ ∂μVν − ∂νVμ and ρμν ≡ ∂̃[μρν] +
igρ[ρμ , ρν]. The superscripts (0) and (1) denote the isospin.
Next is a purely mesonic piece:

Lmeson(ν̂�4) = 1
2 ∂μφ ∂μφ + 1

4f 2
π Tr[̃∂μU (̃∂μU )†]

+ 1
4f 2

π m2
π Tr(U + U † − 2)

− 1
2 Tr(ρμνρ

μν) − 1
4 V μνVμν

+ 1

2gγ

(
Tr(F (+)μνρμν) + 1

3 f
μν
s Vμν

)
. (2)

We only show the kinematic terms and photon couplings to the
vector fields. The latter are used to generate VMD. Other ν = 3
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and ν = 4 terms in Lmeson(ν̂�4) are important for describing
the bulk properties of nuclear many-body systems and can be
found in [5,23,24,48,49]. The only manifest chiral-symmetry

breaking is through the nonzero pion mass. Other chiral-
symmetry-violating terms and multiple pion interactions are
not considered in this calculation. Finally, we have

LN,π(ν̂=4) = 1

2M2
Nγμ

(
2β(0)∂νf

μν
s + β(1)̃∂νF

(+)μν + β
(1)
A γ 5∂̃νF

(−)μν
)
N − ω1 Tr(F (+)

μν ṽμν) + ω2 Tr(̃aμ∂̃νF
(−)μν)

+ ω3 Tr(̃aμi [̃aν, F (+)μν]) − gρππ

2f 2
π

m2
ρ

Tr(ρμνṽ
μν) + c1

M2
Nγ μN Tr(̃aν F

(+)
μν )

+ e1

M2
Nγ μ ãνN f sμν + c1ρgρ

M2
Nγ μN Tr(̃aν ρμν) + e1vgv

M2
Nγ μ ãνN V μν. (3)

Note that LN,π(ν̂=4) is not a complete list of all possible ν̂ = 4 interaction terms. The terms listed in the first two rows generate
the form factors of currents for nucleons and pions. gρππ is used for VMD. Special attention should be given to the c1, e1, c1ρ ,
and e1ρ couplings, since they are the only relevant ν̂ = 4 terms for NC photon production. Further discussion will be given in
Secs. IV C and V D.

B. Contributions to current matrix elements from irreducible diagrams

To calculate various current matrix elements, we need to understand the background fields in terms of electroweak boson fields;
this connection is given in Appendix A. Based on the Lagrangian, we can calculate the matrix elements 〈N |V i

μ,Ai
μ, JB

μ |N〉
and 〈N ; π |V i

μ, Ai
μ, JB

μ |N〉 [diagram (f) in Fig. 1] at tree level; loops are not included; only diagrams with contact structure are
included.3 Because of VMD, we can extrapolate the current to nonzero Q2 [10,20]. The results are given below, and the explicit
calculations are shown in Appendix A. Note that qμ is defined as the incoming momentum transfer at the vertex; in terms of
initial and final nucleon momenta, qμ ≡ p

μ

nf − p
μ

ni . Similarly, qμ + p
μ

ni = p
μ

nf + kμ
π for pion production.

First, the matrix elements of the nucleon’s vector and baryon current and the axial-vector current in pion production are the
following:

〈N,B|V i
μ|N,A〉 = 〈B|τ

i

2
|A〉 uf

(
γμ + 2δF

V,md
1

q2γμ− 	qqμ

q2
+ 2F

V,md
2

σμνiq
ν

2M

)
ui ≡ 〈B|τ

i

2
|A〉 uf �V μ(q)ui, (4)

〈N,B|JB
μ |N,A〉 = δA

B uf

(
γμ + 2δF

S,md
1

q2γμ− 	qqμ

q2
+ 2F

S,md
2

σμνiq
ν

2M

)
ui ≡ δA

B uf �Bμ(q)ui, (5)

〈N,B; π, j, kπ |Ai
μ|N,A〉 = −εi

jk

fπ

〈B|τ
k

2
|A〉 uf γ νui

[
gμν + 2δF

V,md
1 ((q − kπ )2)

q · (q − kπ )gμν − (q − kπ )μqν

(q − kπ )2

]
− εi

jk

fπ

〈B|τ
k

2
|A〉 uf

σμνiq
ν

2M
ui

[
2λ(1) + 2δF

V,md
2 ((q − kπ )2)

q · (q − kπ )

(q − kπ )2

]
≡ εi

jk

fπ

〈B|τ
k

2
|A〉 uf �Aπμ(q, kπ )ui. (6)

Here mρ = 0.776 GeV, mv = 0.783 GeV, δF ≡ F (q2) − F (0) (also true for other form factors), and

F
V,md
1 = 1

2

(
1 + β(1)

M2
q2 − gρ

gγ

q2

q2 − m2
ρ

)
, β(1) = −1.35,

gρ

gγ

= 2.48, (7)

F
V,md
2 = 1

2

(
2λ(1) − fρgρ

gγ

q2

q2 − m2
ρ

)
, λ(1) = 1.85, fρ = 3.04, (8)

F
S,md
1 = 1

2

(
1 + β(0)

M2
q2 − 2gv

3gγ

q2

q2 − m2
v

)
, β(0) = −1.40,

gv

gγ

= 3.95, (9)

F
S,md
2 = 1

2

(
2λ(0) − 2fvgv

3gγ

q2

q2 − m2
v

)
, λ(0) = −0.06, fv = −0.19. (10)

3The expressions for the currents listed below differ from those in Refs. [10,46] because contributions from nonminimal and vector-meson-
dominance terms are included here.
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We can also use this procedure to expand the axial-vector
current in powers of q2 using the Lagrangian constants gA

and β
(1)
A . In fact, we can improve on this by including the

axial-vector meson (a1μ) contribution to the matrix elements,

which would arise from the interactions ga1Nγ μγ 5a1μN and
ca1 Tr

(
F (−)μνa1μν

)
. Here a1μ = a1iμτ i/2 and a1μν ≡ ∂̃μa1ν −

∂̃νa1μ, where a1iμ are the fields of the a1 meson (with its mass
denoted as ma1 = 1.26 GeV). Then we obtain

〈N,B|Ai
μ|N,A〉 = −Gmd

A (q2) 〈B|τ
i

2
|A〉 uf

(
γμ − qμ 	q

q2 − m2
π

)
γ 5ui ≡ 〈B|τ

i

2
|A〉 uf �Aμ(q)ui, (11)

〈N,B, π, j |V i
μ|N,A〉 = εi

jk

fπ

〈B|τ
k

2
|A〉 uf

(
Gmd

A (0)γμγ 5 + δGmd
A ((q − kπ )2)

q · (q − kπ )gμν − (q − kπ )μqν

(q − kπ )2
γ νγ 5

)
ui

≡ εi
jk

fπ

〈B|τ
k

2
|A〉 uf �V πμ(q, kπ )ui, (12)

Gmd
A (q2) ≡ gA − β

(1)
A

q2

M2
− 2ca1ga1q

2

q2 − m2
a1

, gA = 1.26, β
(1)
A = 2.27, ca1ga1 = 3.85. (13)

For the pion’s vector current form factor [5],

〈π, k, kπ |V i
μ|π, j, kπ − q〉 = iε

ij

k

[
(2kπ − q)μ + 2δFmd

π (q2)

(
kπμ − q · kπ

q2
qμ

)]
≡ iε

ij

k PV μ(q, kπ ),

Fmd
π (q2) ≡

(
1 − gρππ

gγ

q2

q2 − m2
ρ

)
,

gρππ

gγ

= 1.20. (14)

To determine the couplings in Eqs. (7), (8), (9), (10), (13),
and (14), we compare our results with the fitted form factors
[5,50]. We require that the behavior of our vector- and baryon-
meson-dominance form factors near Q2 = 0 be close to that of
the fitted form factors [50]. The nucleon’s axial-vector current
used to fit our Gmd

A is parametrized as GA(q2) = gA/(1 −
q2/M2

A)2 with gA = 1.26 and MA = 1.05 GeV [51]. As shown
in Ref. [20], the form factors due to vector meson dominance
become inadequate at Q2 ≈ 0.3 GeV2. This is also true for
the axial vector’s parametrization. This indicates that the EFT
Lagrangian is only applicable for El � 0.5 GeV in lepton–
nucleon interactions, above which Q2 exceeds the limit. This
will be clarified in the kinematical analysis of Sec. V A.

III. LAGRANGIAN INVOLVING �(1232)

A. Lagrangian

Two remarks are in order here [23,24]: First, the theory is
self-consistent with general interactions involving ψμ; second,

the so-called off-shell couplings, which have the form γμψμ,
∂̃μψμ, ψ

μ
γμ, and ∂̃μψ

μ
, can be considered as redundant.

For the chiral symmetry realization, �∗a belong to an I =
3/2 multiplet [a = (±3/2,±1/2)]. Moreover, in the power
counting of vertices, the � is counted in the same way as
nucleons.

Consider first L� (ν̂ � 3):

L� = −i

2
�

a

μ{σμν, (i 	 ∂̃ − hρ 	ρ − hv 	V − m + hsφ)}ba �bν

+ h̃A�
a

μ 	 ãb
aγ

5�
μ

b

− f̃ρhρ

4m
�λ ρμνσ

μν�λ − f̃vhv

4m
�λVμνσ

μν�λ

− κ̃π

m
�λṽμνσ

μν�λ + 4β̃π

m
�λ�

λ Tr(̃aμ ãμ). (15)

This is essentially a copy of the corresponding Lagrangian for
nucleons.

To produce the N ↔ � transition currents, we construct
the following Lagrangians (ν̂ � 4):

L�,N,π = hA�
aμ

T † iA
a ãiμNA + c.c., (16)

L�,N,bg = ic1�

M
�

a

μγνγ
5 T † iA

a F
(+)μν

i NA + ic3�

M2
�

a

μ iγ 5 T † iA
a (̃∂νF

(+)μν)iNA + c6�

M2
�

a

λσμνT
† iA
a (̃∂λF

(+)μν
)iNA

− d2�

M2
�

a

μ T † iA
a (̃∂νF

(−)μν)iNA − id4�

M
�

a

μγν T † iA
a F

(−)μν

i NA − id7�

M2
�

a

λσμνT
† iA
a (̃∂λF (−)μν)iNA + c.c., (17)

L�,N,ρ = ic1�ρ

M
�

a

μ γνγ
5 T † iA

a ρ
μν

i NA + ic3�ρ

M2
�

a

μ iγ 5 T † iA
a (̃∂νρ

μν)iNA + c6�ρ

M2
�

a

λσμν T † iA
a (̃∂λ ρμν)iNA + c.c.. (18)
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Here T
† iA
a = 〈 3

2 ; a|1, 1
2 ; i, A〉, which are (complex conjugate

of) Clebsch-Gordan coefficients.

B. Transition currents

We can express the transition current’s matrix element as
follows:

〈�, a, p�|V iμ(Aiμ)|N,A, pN 〉
≡ T † iA

a u�α(p�) �
αμ

V (A)(q) uN (pN ). (19)

Based on the Lagrangians, we find (noting that σμνε
μναβ ∝

iσ αβγ 5)

�
αμ

V = 2c1�(q2)

M
(qαγ μ− 	qgαμ)γ 5

+ 2c3�(q2)

M2
(qαqμ − gαμq2)γ 5

− 8c6�(q2)

M2
qασμνiqνγ

5, (20)

�
αμ

A = −hA

(
gαμ − qαqμ

q2 − m2
π

)
+ 2d2�

M2
(qαqμ − gαμq2)

− 2d4�

M
(qαγ μ − gαμ 	q) − 4d7�

M2
qασμνiqν, (21)

ci�(q2) ≡ ci� + ci�ρ

2gγ

q2

q2 − m2
ρ

, i = 1, 3, 6,

c1� = 1.21, c3� = −0.61, c6� = −0.078, (22)
c1�ρ

gγ

= −4.58,
c3�ρ

gγ

= 2.32,
c6�ρ

gγ

= 0.30.

Similar to the ci�(q2), we can introduce axial-vector meson
exchange into the axial transition current, which leads to a
structure for the di�(q2) similar to that of the ci�(q2). There is
one subtlety associated with the realization of hA(q2): with our
Lagrangian, we have a pion-pole contribution associated with
the hA coupling, and all the higher-order terms contained in
δhA(q2) ≡ hA(q2) − hA conserve the axial transition current.
With the limited information about manifest chiral-symmetry
breaking, we ignore this subtlety and still use the form of the
c1�(q2) to parametrize hA(q2):

hA(q2) ≡ hA + h�a1

q2

q2 − m2
a1

,

(23)
hA = 1.40, h�a1 = −3.98,

di�(q2) ≡ di� + di�a1

q2

q2 − m2
a1

, i = 2, 4, 7,

d2� = −0.087, d4� = 0.20, d7� = −0.04, (24)

d2�a1 = 0.25, d4�a1 = −0.58, d7�a1 = 0.12.

To determine the coefficients in the transition form factors
shown in Eqs. (22), (23), and (24), we compare ours with one
of the conventional form factors used in the literature. In Refs.
[26,33] for example, the definition for 〈�, 1

2 |jμ
cc+|N,− 1

2 〉 [=
−√

2/3 uα(p�)
(
�

αμ

V + �
αμ

A

)
u(pN )] is

uα(p�)

{[
CV

3

M
(gαμ 	q − qαγ μ) + CV

4

M2
(q · p� gαμ − qαp

μ
�) + CV

5

M2

(
q · pN gαμ − qαp

μ

N

)]
γ 5

+
[
CA

3

M
(gαμ 	q − qαγ μ) + CA

4

M2
(q · p� gαμ − qαp

μ
�) + CA

5 gαμ + CA
6

M2
qμqα

]}
u(pN ). (25)

We use the “Adler parametrization” [35] in Ref. [33] to fit our
meson-dominance form factors. Now supposing the baryons
are on shell, we can represent the conventional basis as linear
combinations of our basis. For example,

qασμνiqνγ
5 = (m − M)(qαγ μ − gαμ 	q)γ 5

− (qαp
μ
� − q · p�gαμ)γ 5

− (qαp
μ

N − q · pNgαμ)γ 5. (26)

A similar relation holds with γ 5 deleted on both sides and
(m − M) changed to (m + M). We can obtain the relation
between form factors associated with the two bases:

c1� =
√

3

2

[
CV

3

2
+ m − M

2M

(
CV

4 + CV
5

)
2

]
, (27)

c3� =
√

3

2

(
CV

4 − CV
5

)
4

, c6� =
√

3

2

(
CV

4 + CV
5

)
16

, (28)

hA =
√

3

2
CA

5 , d2� =
√

3

2

CA
4

4
, (29)

d4� = −
√

3

2

(
CA

3

2
+ m + M

2M

CA
4

2

)
, d7� =

√
3

2

CA
4

8
.

(30)

We assume that these relations hold away from the resonance.
It can be shown that, at low energy, the differences in
observables due to using the two bases, with these relations
applied, are negligible. Moreover, the q2 dependence of these
ci� and di� form factors can be realized in terms of meson
dominance. We then require that the meson-dominance form
factors be as close as possible to the ones indicated in Eqs. (27)
to (30), and we get the couplings shown in Eqs. (22), (23), and
(24). However, we should expect the leading-order meson-
dominance expressions would fail above Q2 ≈ 0.3 GeV2.
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IV. FEYNMAN DIAGRAMS

Tree-level Feynman diagrams for pion production due to
the vector current, axial-vector current, and baryon current
are shown in Fig. 1. In this section, we calculate different
matrix elements for pion production and photon production.
The Feynman diagrams for photon production can be viewed as
diagrams in Fig. 1 with an outgoing π line changed to a γ line.
It turns out that diagram (e) in Fig. 1 is negligible in NC photon
production, since it is associated with 1 − 4 sin2 θw [42].

First let us outline the calculation of the interaction
amplitude M . Consider CC pion production (in the one-weak-
boson-exchange approximation):

M = 4
√

2 GF Vud

〈
J

(lep)
Liμ

〉〈
J

(had)iμ
L

〉
π
, (31)

where i = +1,−1. In Eq. (31), GF is the Fermi constant,
Vud is the CKM matrix element corresponding to u and
d quark mixing, and 〈J (had)iμ

L 〉π ≡ 〈NB,πj |J iμ

L |NA〉. (The
definitions of currents can be found in Appendix A.) 〈J (lep)

Liμ 〉 ≡
〈l(l̄)|JLiμ|νl(ν̄l)〉 is the well-known leptonic-charged-current
matrix element. For NC pion production, we need to set
Vud = 1, 〈J (had)iμ

L 〉π → 〈J (had)μ
NC 〉π , and 〈J (lep)

Liμ 〉 → 〈J (lep)
NCμ〉 in

Eq. (31). Here 〈J (lep)
NCμ〉 is the leptonic-neutral-current matrix

element, and 〈J (had)μ
NC 〉π ≡ 〈NB,πj |Jμ

NC |NA〉. For NC photon
production, we have an expression similar to that of NC pion
production with 〈J (had)μ

NC 〉π → 〈J (had)μ
NC 〉γ , while 〈J (had)μ

NC 〉γ ≡
〈NB, γ |Jμ

NC |NA〉.
Now consider the power counting for 〈J (had)μ〉π(γ ) in

Eq. (31) for various processes. The order of the diagram
(ν) is counted as [47] ν = 2L + 2 − En/2 + ∑

i #i(ν̂i − 2),
where L is the number of loops, En is the number of external
baryon lines, ν̂i ≡ di + ni/2 + bi is the order of the vertex
(ν̂) mentioned in Sec. II A, and #i is the number of times that
particular vertex appears. However, there is a subtlety related
with power counting of diagrams with �, which has been
carefully discussed in Ref. [52]. Compared to the normal power
counting mentioned above, in which the baryon propagator
scales as 1/O(Q), for diagrams involving one � in the s

channel, we take ν → ν − 1 in the resonance regime and

C

C

C

C C

C

(a) (b) (c) (d) (e) (f)

C

C

C

C C

C

FIG. 1. Feynman diagrams for pion production. Here, C stands
for various types of currents including vector, axial-vector, and baryon
currents. Some diagrams may be zero for some specific type of
current. For example, diagrams (a) and (b) will not contribute for
the (isoscalar) baryon current. Diagram (e) will be zero for the
axial-vector current. The pion-pole contributions to the axial current
in diagrams (a), (b), (c), (d), and (f) are included in the vertex functions
of the currents.

ν → ν + 1 away from the resonance. Details can be found
in Appendix C.

Finally, conservation of vector current, conservation of
baryon current, and partial conservation of axial-vector current
can be easily checked for the matrix elements shown in the
following.

A. Diagram (a) and (b)

Diagram (a) and (b) in Fig. 1 lead to currents

〈V iμ(Aiμ)〉π
= − ihA

fπ

T a
Bj T † iA

a uf kλ
π SFλα(p) �

αμ

V (A)(p; q, pi)ui

− ihA

fπ

T ai
B T

†A

ja uf �
μα

V (A)(pf ; q, p)SFαλ(p) kλ
π ui, (32)

where kπ is the outgoing pion’s momentum. �
αμ

V (A)(p; q, pi)
are defined in Eq. (19) while �’s momentum is p =
q + pi . �

μα

V (A)(pf ; q, p) ≡ γ 0�
†αμ

V (A)(p; −q, pf )γ 0 while p =
−q + pf . In the following, we always have this definition of
�. The �’s propagator, SFμν(p), is shown in Appendix D. The
subscript j denotes the isospin of the outgoing pion. For vector
current, in diagram (a) νnr � 3 in the lower-energy region
and νr � 1 in the resonance region; in diagram (b) νnr � 3.
For axial-vector current, in diagram (a) νnr � 2, νr � 0; in
diagram (b) νnr � 2. In the power counting, the higher-order
terms in ν come from including form factors at the vertices.
Moreover, the baryon current matrix element is zero (〈Jμ

B 〉π =
0) in both diagrams.

Now we examine the NC matrix element 〈J (had)μ
NC 〉γ . First,

based on the relations given in Eq. (A18), we define

�
αμ

N (p; q, pi) ≡ (
1
2 − sin2 θw

)
�

αμ

V (p; q, pi)

+ 1
2 �

αμ

A (p; q, pi), (33)

Then we find〈
J

μ

NC

〉
γ

= eT a
0B T † 0A

a uf ε∗
λ(k)�

λα

V (pf ; −k, p)

× SFαβ (p)�βμ

N (p; q, pi)ui

+ eT a0
B T

†A

a0 uf �
μα

N (pf ; q, p)

× SFαβ (p)�βλ

V (p; −k, pi) ε∗
λ(k) ui, (34)

where k is the outgoing photon’s momentum and ε∗
λ(k) is its

polarization. For the vector current in the NC, in diagram
(a) νnr � 4, νr � 2; in diagram (b) νnr � 4. For the axial-
vector current, in diagram (a) νnr � 3, νr � 1; in diagram (b)
νnr � 3.

B. Diagrams (c) and (d)

These two diagrams lead to currents

〈V iμ(Aiμ)〉π =− igA

fπ

〈B|τj

2

τ i

2
|A〉 uf 	kπγ 5SF (p)�μ

V (A)(q)ui

− igA

fπ

〈B|τ
i

2

τj

2
|A〉 uf �

μ

V (A)(q)SF (p) 	kπγ 5ui.

(35)
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For the nucleon propagator, p = q + pi in diagram (c) and
p = −q + pf in diagram (d). �

μ

V (A)(q) has been defined in
Eq. (4). For both currents in both diagrams ν � 1. For the

baryon current we just need to change τ i

2 �
μ

V (q) to �
μ

B(q) in
Eq. (35), and ν � 1.

For NC photon production, we get

〈
J

μ

NC

〉
γ

= e uf ε∗
λ(k)

((
τ 0

2

) C

B

�λ
V (−k) + δ C

B

2
�λ

B(−k)

)
SF (p)

×
((

τ 0

2

) A

C

[(
1

2
− sin2 θw

)
�

μ

V (q) + 1

2
�

μ

A(q)

]
− δ A

C

2
sin2 θw �

μ

B(q)

)
ui

+ e uf

((
τ 0

2

) C

B

[(
1

2
− sin2 θw

)
�

μ

V (q) + 1

2
�

μ

A(q)

]
− δ C

B

2
sin2 θw�

μ

B(q)

)

× SF (p) ε∗
λ(k)

((
τ 0

2

) A

C

�λ
V (−k) + δ A

C

2
�λ

B(−k)

)
ui, (36)

where we use the shorthand ( τ 0

2 ) A
B = 〈B| τ 0

2 |A〉. For all three currents, power counting gives ν � 1. However, this naive power
counting does not give an accurate comparison between the � contributions and the N contributions at low energies, as we
discuss later.

C. Diagrams (e) and (f)

The two diagrams lead to a vector current

〈V iμ〉π = gA

fπ

εi
jk〈B|τ

k

2
|A〉 P

μ

V (q, kπ )

(q − kπ )2 − m2
π

uf ( 	q− 	kπ )γ 5 ui + εi
jk

fπ

〈B|τ
k

2
|A〉 uf �

μ

V π (q, kπ ) ui. (37)

Here, P
μ

V (q, kπ ) is defined in Eq. (14), �
μ

V π (q, kπ ) is defined in Eq. (12), and ν � 1.
For the axial-vector current, diagram (e) does not contribute, and we find

〈Aiμ〉π = εi
jk

fπ

〈B|τ
k

2
|A〉 uf �

μ

Aπ (q, kπ ) ui + εi
jk

fπ

〈B|τ
k

2
|A〉 qμ

q2 − m2
π

uf

( 	q+ 	kπ )

2
ui

+ εi
jk

fπ

〈B|τ
k

2
|A〉 4κπ uf

(
σμνikπν

2M
+ qμ

q2 − m2
π

σαβikπαqβ

2M

)
ui

+ δ i
j

fπ

δ A
B (−4iβπ )

1

M

(
kμ
π − q · kπ qμ

q2 − m2
π

)
uf ui

+ δ i
j

fπ

δ A
B

−iκ1

4

1

M2
uf

(
qν(pf + pi)

{νγ μ} − q · (pf + pi) qμ

q2 − m2
π

( 	q+ 	kπ )

)
ui. (38)

Here, �
μ

Aπ (q, kπ ) is given in Eq. (6). The terms in the first
row lead to ν � 1 contributions. The contributions due to κπ ,
βπ , and κ1 are at ν = 2. We use values fitted in [53] for these
couplings. In the last row, A{μBν} = AμBν + AνBμ.

For the baryon current, diagrams (e) and (f) do not
contribute: 〈Jμ

B 〉π = 0.

For the NC photon production matrix element we find〈
J

μ

NC

〉
γ

= δA
B

−iec1

M2
εμναβ uf γνkαε∗

β(k)ui

+ δA
B

−iec1q
μ

M2
(
q2 − m2

π

) ελναβ uf γλqνkαε∗
β(k)ui

+
(

τ 0

2

) A

B

−iee1

2M2
εμναβ uf γνkαε∗

β(k)ui

+
(

τ 0

2

)A

B

−iee1q
μ

2M2
(
q2 − m2

π

) ελναβ uf γλqνkαε∗
β(k)ui.

Here ν = 3; for ν < 3, there are no contact vertices contribut-
ing in this channel. By power counting, we expect that, at low
energy, these terms can be neglected compared to the ν = 1
terms. However, according to Ref. [42], these terms may play
an important role in coherent photon production. Meanwhile, it
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is claimed in Ref. [42] that the origin of these contact vertices
is the anomalous interactions of the ω and ρ. But they can
also be induced by the off-shell terms in the � Lagrangian.
Moreover, we can construct meson-dominance terms by using
the interaction terms in the last row of Eq. (3) and photon-
meson coupling in Eq. (2), which leads to different off-shell
behavior of the vertex compared to that of the anomaly term.

V. RESULTS

In this section, after introducing the kinematics, we discuss
our results for CC and NC pion production, and also NC photon
production, and compare them with available data whenever
possible.

A. Kinematics

Figure 2 shows the configuration in the isobaric frame, i.e.,
the center-of-mass frame of the final nucleon and pion. The
momenta are measured in this frame, except those labeled
as pL, which are measured in the laboratory frame with the
initial nucleon being static. Detailed analysis of the kinematics
is given in Appendix E. The expression for the total cross
section is

σ =
∫ |M|2

32Mn

1

(2π )5

| �pπ |
Eπ + Enf

∣∣ �p L
lf

∣∣∣∣ �p L
li

∣∣ d�πdEL
lf d�L

lf

=
∫ |M|2

64M2
n

1

(2π )5

| �pπ |
Eπ + Enf

π∣∣ �p L
li

∣∣EL
li

d�πdM2
πndQ2.

(39)

where |M|2 is the average of the total interaction
amplitude squared. Based on the equations in Ap-
pendix E, we can make the following estimates. For CC
pion production, when EL

ν = 0.4 (0.5) GeV, (Mπn)max �

1.17 (1.24) GeV and Q2
max � 0.2 (0.3) GeV2. We can see

that above EL
ν = 0.4 GeV, the interaction begins to be dom-

inated by the � resonance. However, when EL
ν = 0.75 GeV,

(Mπn)max � 1.4 GeV, and higher resonances, for example
P11(1440), may play a role. The exception is νμ + p −→
μ− + p + π+: only I = 3/2 can contribute, and the next
resonance in this channel is the �(1600), which is accessible
only when EL

ν � 1.8 GeV. For NC pion production and pho-
ton production (EL

γ � 0.2 GeV), when EL
ν = 0.3 (0.5) GeV,

(Mπn)max �1.2 (1.35) GeV and Q2
max �0.1 (0.3) GeV2. Here,

p

p

p

pq

p

θ

li

lf

nf

ni

π

lf

ex

ey

ez

FIG. 2. The configuration in the isobaric frame.

above EL
ν = 0.3 GeV, the interaction begins to be domi-

nated by the �. However, when EL
ν = 0.6 GeV, (Mπn)max �

1.4 GeV, and higher resonances may play a role.
From this analysis, we expect our EFT to be valid at

EL
ν � 0.5 GeV, since only the � resonance can be excited, and

Q2 � 0.3 GeV2 where meson dominance works for various
current form factors [20]. To go beyond this energy regime
when we show our results, we require Mπn � 1.4 GeV and
use phenomenological form factors that work when Q2 �
0.3 GeV2.

B. CC pion production

In this section, we compare calculated cross sections of CC
pion production with ANL [31] and BNL [32] measurements.
In both experiments, the targets are hydrogen and deuterium.
[All the other experiments use much heavier nuclear targets in
(anti)neutrino scattering, and to explain this, we must examine
many-body effects.] The beam is composed of muon neutrinos,
the average energy of which is 1 and 1.6 GeV for ANL and
BNL, respectively. In the ANL data, there is a cut on the
invariant mass of the pion and final nucleon system: Mπn �
1.4 GeV; no such cut is applied in the BNL data. Based on
the previous phase-space analysis, this cut clearly reduces the
number of events when Eν is above ∼ 0.5 GeV. This can be
seen by comparing the two data sets in three different channels
shown in Figs. 3 and 4: the ANL data lie systemically below
the BNL data. Since the data stretch above 0.5 GeV, in Figs. 3
and 4, we show the “CFF” results (using the conventional form
factor in [33]) and the “HFF” results [using the form factor in
[26] with the reduced CA

5 (0)], with the Mπn constraint applied.
In these calculations, Fmd , Gmd , c�, and d� are substituted by
the form factors in the literature. The results of our framework,
i.e., using the meson-dominance form factor born out of the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.2  0.4  0.6  0.8  1  1.2  1.4

σ 
(1

0-3
9 cm

2 )

Eν(GeV)

νp->μ−pπ+

CFF only Δ
HFF only Δ

MDFF only Δ
CFF up to ν=1
HFF up to ν=1

MDFF up to ν=1
ANL with cut

BNL without cut

FIG. 3. (Color online) Total cross section for νμ + p −→ μ− +
p + π+. “Only �” indicates that only diagrams with � (both s and
u channels) are included. The “up to ν = 1” category includes all the
diagrams at leading order. The CFF calculations are done with one
of the conventional form factors [33]. The HFF calculations make
use of form factor used in [26] with the reduced CA

5 (0). The MDFF
calculations are based on the EFT Lagrangian with meson dominance.
In the ANL data, Mπn � 1.4 GeV is applied, while no such cut is
applied in the BNL data. For all calculations, Mπn � 1.4 GeV is
applied.
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FIG. 4. (Color online) Total cross section for (a) νμ + n −→
μ− + n + π+ and (b) νμ + n −→ μ− + p + π 0. In the ANL data,
Mπn � 1.4 GeV is applied, while no such cut is applied in the BNL
data. The curves are defined as in Fig. 3.

Lagrangian, are shown as “MDFF” calculations, and these are
extrapolated beyond 0.5-GeV limit also. The extrapolations of
both CFF and MDFF calculations enable us first to compare
our result with similar calculations in [26],4 and second to
see how meson-dominance form factors fail at higher energy.
By comparing CFF with MDFF calculations, we can see in
the MDFF calculation that the meson-dominance form factors
are inadequate for reproducing the conventional form factors
above Eν = 0.5 GeV (although it seems that MDFF results are
closer to the data). Hence in the following Fig. 5, we only show
the MDFF results with Eν � 0.5–0.6 GeV, for which Mπn �
1.4 GeV holds automatically. Since we believe the EFT is
applicable in this low-energy regime, in these plots, we show
results including Feynman diagrams up to order ν = 1 and
ν = 2.

In Fig. 3, we show the data and calculations for νμ + p −→
μ− + p + π+. As mentioned above, in the “CFF only �”
calculation, we make use of one set of conventional form
factors and include the Feynman diagrams with the � in
both s and u channels. In the “CFF up to ν = 1” calculation,
we use the same form factors and include all the Feynman
diagrams up to leading order. These two calculations are quite
similar to those done in Ref. [26] without reducing CA

5 . Indeed,

4The calculation in [26] without reduction of CA
5 (0) should be close

to the CFF calculation [33], although the details of the form factors
are different.

our results are consistent with theirs. (In Ref. [26], only the
s-channel contribution is included in the calculation with “only
�.”) Next, we show two different HFF calculations: one with
only � (in the s and u channels) and the other with all the
diagrams up to ν = 1. Finally, we also show two MDFF
calculations up to different order, so that we can compare
the MDFF approach with the CFF approach.

First, we can see that both CFF and MDFF calculations with
only � diagrams are consistent with the data at Eν � 0.5 GeV.
Introducing other diagrams up to order ν = 1 is still allowed
by the data at low energy, although they indeed increase the
cross section noticeably. Second, in Ref. [26], a reduced CA

5 (0)
is introduced, primarily to reduce the calculated cross sections
above Eν = 1 GeV, which can be seen by comparing CFF
calculations with HFF calculations. However, since we are
only concerned with the Eν � 0.5 GeV region, in which we
see satisfactory agreement between our calculations and the
data, we will keep the CA

5 (0) fitted from the �’s free width.
Furthermore, in the original spectrum-averaged dσ/dQ2 data
of ANL [31], the contributions from Eν � 0.5 GeV neutrinos
are excluded, so comparing calculations with data at low
energy is not feasible at this stage, and we will not show
our dσ/dQ2 here.

In Fig. 4, we show the data and calculations for νμ + n −→
μ− + n + π+ and νμ + n −→ μ− + p + π0. We can see that
the situations in these two processes are quite similar to that
in Fig. 3: the results of the CFF and MDFF approaches are
consistent with the data at low energy. Again the differences
between the two approaches with the same diagrams begin
to show up when the neutrino energy goes beyond 0.5 GeV.
Although the pion production is still dominated by the �,
if we compare cross sections (from the same calculation)
in Figs. 3 and 4, we see that other diagrams introduce
significant contributions and violate the naive estimate of the
ratio of the three channels’ cross sections based on isospin
symmetry and � dominance. Moreover, the reduction of CA

5
significantly reduces the cross section in these two channels if
we compare the two HFF calculations with the corresponding
CFF calculations.

In Fig. 5, we begin to investigate the convergence of our
calculations in different channels in neutrino and antineutrino
scattering. We show the MDFF calculations based on our EFT
Lagrangian up to different orders. We see that the power
counting makes sense systematically in different channels:
including N intermediate state and contact terms up to ν = 1
changes the “only �” calculation non-negligibly. Far below
resonance, the � contribution is less important compared
to that in other diagrams, and it begins to dominate around
0.4 GeV. This is consistent with the power counting discussed
in Sec. IV. Moreover, the ν = 2 terms do not change the “up
to ν = 1” results significantly. All the calculations of neutrino
scattering are consistent with the limited data from ANL. We
can see that the cross section for antineutrino scattering is
generally smaller than that of neutrino scattering, due to the
relative sign chosen between V iμ and Aiμ in the Feynman
diagrams having �. The sign between V iμ and Aiμ in other
diagrams is well defined in our Lagrangian. The relative
sign between �’s contribution and all the rest diagrams’
contributions is also well determined by the relation between
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FIG. 5. (Color online) Total cross section for CC pion production due to neutrino and antineutrino scattering off nucleons. Here “only �”
indicates that only diagrams with � (both s and u channels) are included, “up to ν = 1” includes all the diagrams at leading order, and “up to
ν = 2” includes higher-order contact terms, whose couplings are from Ref. [53]. In the ANL data, Mπn � 1.4 GeV. For calculations, Mπn �
1.4 GeV is applied.

hA and CA
5 in Eq. (29), although it has been investigated

phenomenologically in Ref. [26].

C. NC pion production

In this section, we discuss the results for NC pion
production in (anti)neutrino scattering. In Fig. 6, the results
in the MDFF approach are shown for calculations including
diagrams of different orders. The channels are explained in
each plot. Since all of the available data for NC pion production
are spectrum-averaged, and neutrinos with Eν � 0.5 GeV
have a small weight in such analyses, we do not compare
our results with data. Here we focus on the convergence
of our calculations; introducing the ν = 2 terms does not
change the total cross section significantly. However, we also
see the violation of isospin symmetry in the “up to ν = 1”
and “up to ν = 2” calculations in each plot, if we compare

each pair of channels in Fig. 6. In principle, if there is no
baryon current contribution in NC production, we should see
that the two channels in each plot yield the same results.
For example, isospin symmetry implies 〈p, π0|V 0μ,A0μ|p〉 =
〈n, π0|V 0μ,A0μ|n〉 and 〈p, π0|Jμ

B |p〉 = −〈n, π0|Jμ

B |n〉. So
with “only �,” we cannot see the difference between the
two cross sections, since the (isoscalar) baryon current cannot
induce transitions from N to �. After introducing nonresonant
diagrams, we would expect them to be different, as confirmed
in the first plot in Fig. 6 for example. This analysis can be
applied to other channels, and we clearly see the nonresonant
contributions.

D. NC photon production

In this section we focus on NC photon production. The
results are shown in Fig. 7. Besides NC π0 production,
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FIG. 6. (Color online) Total cross section for NC π production due to neutrino and antineutrino scattering off nucleons. The curves are
defined as in Fig. 5, and the channels are also indicated.

this process is another important background in neutrino
experiments. One important difference between NC photon
production and CC and NC pion production is that all of the
ν = 2 terms do not contribute in this process. Therefore, we
include the two ν = 3 terms in NC photon production, namely
the e1 and c1 couplings in Eq. (39), besides terms due to the
form factors. Moreover, these two couplings are singled out
in Ref. [42] as the low-energy manifestations of anomalous
interactions involving ρ and ω, and they are believed to
give important contributions in coherent photon production
from nuclei. Here we also investigate the consequences of
these two couplings. We emphasize that, from the EFT
perspective, the only way to determine these two couplings
is by comparing the final theoretical result with data, rather
than by calculating them from anomalous interactions, which
are not necessarily the only high-energy physics contributing
to these two operators. For example, as we discussed before, an
off-shell coupling between N , π , and � can introduce the same
matrix element as the c1 term. Changing the off-shell couplings
would also change the contact term to make the theory
independent of the choice of off-shell couplings. Nevertheless,
to perform concrete calculations without precise information
on the coupling strengths, we use the values from Ref. [42]
(c1 = 1.5, e1 = 0.8).

We can see the convergence of our calculations in Fig. 7.
The two couplings introduced in the “up to ν = 3” calculations
increase the total cross section in both channels for both
neutrino and antineutrino scattering, although the change is
quite small. This constructive behavior is consistent with the
results in Ref. [42].

Naive power counting, however, does not give an accurate
comparison between the � contributions and the N contribu-
tions at very low energy. First, the neutron does not have an
electric charge, so its current should appear at higher order
than the naive estimate would indicate. Second, for the proton,
due to the cancellation between the baryon current and the
vector current, the neutral current is mainly composed of the
axial-vector current, which reduces the strength of the neutral
current. Because of these two effects, the contributions of
Compton-like diagrams are smaller than the power counting
indicates.

VI. SUMMARY

Neutrinoproduction of photons and pions from nucle-
ons and nuclei produce important backgrounds in neutrino-
oscillation experiments and therefore must be understood
quantitatively. In this work, we studied the productions from
free nucleons in a Lorentz-covariant, chirally invariant, meson-
baryon EFT. For (anti)neutrino energy around 0.5 GeV, the �

resonance is important. We therefore included the � degrees of
freedom explicitly in our EFT Lagrangian, in a manner that is
consistent with both Lorentz covariance and chiral symmetry.

It is well known that in a Lagrangian with a finite number of
interaction terms, including the � as a Rarita-Schwinger field
leads to inconsistencies for strong couplings, strong fields,
or large field variations. In a modern EFT with an infinite
number of interaction terms, however, these pathologies can
be removed, if we work at low energies with weak boson
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FIG. 7. (Color online) Total cross section for NC photon production due to neutrino and antineutrino scattering off nucleons. Here “only
�” indicates that only diagrams with � (both s and u channels) are included, “up to ν = 1” includes all the diagrams at leading order, and “up
to ν = 3” includes higher-order diagrams.

fields. This is clarified in our previous work [23]. Ambiguous
and so-called off-shell couplings involving � have also been
shown to be redundant in the modern EFT framework, because
these couplings produce terms that can be absorbed into the
contact terms in the EFT Lagrangian. Thus the � resonance
can be introduced in our EFT Lagrangian in a consistent
way.

Because of the symmetries built into our Lagrangian, the
vector and baryon currents are conserved and the axial-vector
currents are partially conserved automatically, which is not
true in some other approaches to this problem (with special
constraints among different form factors having to be intro-
duced by hand to conserve vector current in other approaches).
Needless to say, the conserved vector and baryon currents
are crucial for computing photon production. We discussed
in detail how the meson-dominance mechanism works in
our matrix element calculations, which is the key ingredient
in current conservation. By using vector and axial-vector
transition currents that were calibrated in pion production
at high energies, we found results for pion production at
lower energies (ELab

ν � 0.5 GeV) that are consistent with the
(limited) data. This is also true when vertices described by
meson dominance were used. On the other hand, the couplings
introduced to generate meson dominance are relevant in other
problems. For example, the interactions in Eq. (18) lead to a
proper description of the vector transition current at nonzero
Q2 and meanwhile it is relevant to two-body currents: suppose
a photon is absorbed by one nucleon producing a � which
then interacts with other nucleon through the interactions
mentioned above.

Moreover, we studied the convergence of our power-
counting scheme at low energies (where the � needs to be
counted differently in different energy regions) and found that
next-to-leading-order tree-level corrections are small. This
power-counting scheme is different from the canonical one,
because it can be used in nuclear many-body problems. For
example, the lowest order in this scheme is the mean-field
approximation, if the calculation is done for the property of
the nuclear ground states. The discussion on this can be found
in [17–19]. It is certainly interesting to see how the power
counting that we have for scattering off nucleons works in the
scattering off nuclei.

Finally, we computed NC photon production and explored
the power counting in this problem. The difference between the
NC photon production and pion production is that, at ν = 2, no
diagrams contribute in the photon case, while there are several
in pion production. So we proceeded to include ν = 3 diagrams
induced by two contact interactions, c1 and e1 terms. They have
been studied in [42], and they are believed to be the low-energy
manifestation of anomalous ρ and ω interactions. We pointed
out the existence of other sources including off-shell couplings
of � and possible meson-dominance terms. Nevertheless, by
using two coupling strengths calibrated to anomalous ρ and ω

interactions [42], we found that, at least for a nucleon target,
their contributions are very small, as expected based on power
counting.

We are currently using this QHD EFT framework to
study the electroweak response of the nuclear many-body
system, so that we can extend our results to photon and pion
neutrinoproduction from nuclei, which are the true targets in
existing neutrino-oscillation experiments.
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APPENDIX A: CHIRAL SYMMETRY AND
ELECTROWEAK INTERACTIONS IN QHD EFT

Details on chiral symmetry and electroweak interactions in
QHD EFT can be found in [23,24]. We introduce background
fields including vμ ≡ viμτi/2 (isovector vector), vμ

(s) (isoscalar
vector), and aμ ≡ aiμτi/2 (isovector axial vector), where
i = x, y, z or + 1, 0,−1. They couple to the corresponding
currents in QCD. We define rμ = vμ + aμ and lμ = vμ − aμ.
Under SU(2)L ⊗ SU(2)R ⊗ U(1)B symmetry transformations,
these fields should change in the following way: lμ →
L lμL† + iL ∂μL† {L = exp[−iθLi(x) τ i

2 ]}, rμ → R rμR† +
iR ∂μR† {R = exp[−iθRi(x) τ i

2 ]}, and vμ

(s) → vμ

(s) − ∂μθ .
Here, θLi(x), θRi(x), and θ (x) are the rotation angles. We
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can construct field strength tensors fLμν ≡ ∂μlν − ∂νlμ −
i[lμ, lν] → LfLμνL

†, and fRμν and fsμν are constructed in
the same way.

Now we discuss nonlinear transformations of dynamical
degrees freedom in our model:

U ≡ exp

[
2i

πi(x)

fπ

t i
]

→ LUR†, (A1)

ξ ≡
√

U = exp

[
i
πi

fπ

t i
]

→ Lξh† = h ξR†, (A2)

ṽμ ≡ −i

2
[ξ †(∂μ − ilμ)ξ + ξ (∂μ − irμ)ξ †] ≡ ṽiμt i

→ h ṽμh† − ih ∂μh†, (A3)

ãμ ≡ −i

2
[ξ †(∂μ − ilμ)ξ − ξ (∂μ − irμ)ξ †] ≡ ãiμt i

→ h ãμh†, (A4)

∂̃μU ≡ ∂μU − ilμU + iUrμ → L ∂̃μUR†, (A5)

(̃∂μψ)α ≡ (∂μ + i ṽμ − iv(s)μB) β
α ψβ

→ exp [−iθ (x)B] h β
α (̃∂μψ)β, (A6)

ṽμν ≡ −i [̃aμ, ãν] → h ṽμνh
†, (A7)

F (±)
μν ≡ ξ †fLμν ξ ± ξfRμν ξ † → hF (±)

μν h†, (A8)

∂̃λF
(±)
μν ≡ ∂λF

(±)
μν + i [̃vλ, F (±)

μν ] → h ∂̃λF
(±)
μν h†. (A9)

In the preceding equations, t i are the generators of reducible
representations of SU(2). The fπ ≈ 93 MeV is the pion-
decay constant. We generically label non-Goldstone isospin
multiplets including the nucleon, ρ meson, and � by ψα =
(NA, ρi,�a)α . B is the baryon number of the particle. The
transformations of the isospin and chiral singlets Vμ and φ

are trivial. The dual field tensors are defined as F
(±) μν ≡

εμναβF
(±)
αβ , which have the same chiral transformations as the

ordinary field tensors. The objects shown here are the building
blocks for constructing the Lagrangian.

Electroweak interactions of quarks in the Standard Model
[23,24,54,55] determine the form of the background fields in

terms of the vector bosons W±
μ , Zμ, and Aμ:

lμ = −e
τ 0

2
Aμ + g

cos θw

sin2 θw

τ 0

2
Zμ − g

cos θw

τ 0

2
Zμ

−gVud

(
W+1

μ

τ+1

2
+ W−1

μ

τ−1

2

)
, (A10)

rμ = −e
τ 0

2
Aμ + g

cos θw

sin2 θw

τ 0

2
Zμ, (A11)

v(s)μ = −e
1

2
Aμ + g

cos θw

sin2 θw

1

2
Zμ, (A12)

where g is the SU(2) charge, θw is the weak mixing angle,
and Vud is the CKM matrix element corresponding to u and d

quark mixing.
If we define the interactions with background fields as

Lext ≡ viμV iμ − aiμAiμ + v(s)μJBμ

= JL
iμ liμ + JR

iμ riμ + v(s)μJBμ, (A13)

define electroweak interactions as

LI = −eJEM
μ Aμ − g

cos θw

JNC
μ Zμ

− gVud JL
+1μW+1μ − gVud JL

−1μW−1μ, (A14)

and use Eqs. (A10) to (A12), we can see that

JL
iμ ≡ 1

2 (Viμ + Aiμ), (A15)

JR
iμ ≡ 1

2 (Viμ − Aiμ), (A16)

JEM
μ = V 0

μ + 1
2 JB

μ , (A17)

JNC
μ = JL0

μ − sin2 θw JEM
μ . (A18)

Here, JB
μ is the baryon current, defined to be coupled to vμ

(s).
These relations are consistent with the charge algebra Q =
T 0 + B/2 (where B is the baryon number). V iμ and Aiμ are the
isovector vector current and the isovector axial-vector current,
respectively. We do not discuss “seagull” terms of higher order
in the couplings, i.e. two photons in one vertex, because they
do not enter in our calculations [10,24].

APPENDIX B: FORM FACTORS FOR CURRENTS

Here we use matrix elements of the various currents to
define the form factors produced by the Lagrangian [5].
By using information presented in Appendix. A and the
Lagrangian in Sec. II, we can determine the matrix elements:

〈N,B|V i
μ|N,A〉 =

[
uf γμui + β(1)

M2
uf (q2γμ− 	qqμ)ui − gρ

gγ

q2gμν − qμqν

q2 − m2
ρ

uf γ νui

]
〈B|τ

i

2
|A〉

+
[

2λ(1) uf

σμνiq
ν

2M
ui − fρgρ

gγ

q2

q2 − m2
ρ

uf

σμνiq
ν

2M
ui

]
〈B|τ

i

2
|A〉, (B1)

〈N,B|JB
μ |N,A〉 =

[
uf γμui + β(0)

M2
uf (q2γμ− 	qqμ)ui − 2gv

3gγ

q2gμν − qμqν

q2 − m2
v

uf γ νui

]
δA
B

+
[

2λ(0) uf

σμνiq
ν

2M
ui − 2fvgv

3gγ

q2

q2 − m2
v

uf

σμνiq
ν

2M
ui

]
δA
B , (B2)
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〈N,B; π, j, kπ |Ai
μ|N,A〉 = −εi

jk

fπ

〈B|τ
k

2
|A〉 uf γ νui

[
gμν + β(1)

M2
(q · (q − kπ )gμν − (q − kπ )μqν)

− gρ

gγ

q · (q − kπ )gμν − (q − kπ )μqν

(q − kπ )2 − m2
ρ

]

−εi
jk

fπ

〈B|τ
k

2
|A〉 uf

σμνiq
ν

2M
ui

[
2λ(1) − fρgρ

gγ

q · (q − kπ )

(q − kπ )2 − m2
ρ

]
. (B3)

Now we consider 〈N,B|Ai
μ|N,A〉 and 〈N,B; π, j |V i

μ|N,A〉. In the chiral limit, we find

〈N,B|Ai
μ|N,A〉 = −〈B|τ

i

2
|A〉uf γ νγ 5ui

[
gA

(
gμν − qμqν

q2

)
− β

(1)
A

M2
(q2gμν − qμqν) − 2ca1ga1

q2gμν − qμqν

q2 − m2
a1

]
, (B4)

〈N,B; π, j, kπ |V i
μ|N,A〉 = εi

jk

fπ

〈B|τ
k

2
|A〉 uf γ νγ 5ui

[
gAgμν − β

(1)
A

M2
(q · (q − kπ )gμν − (q − kπ )μqν)

−2ca1ga1

q · (q − kπ )gμν − (q − kπ )μqν

(q − kπ )2 − m2
a1

]
. (B5)

Suppose that there is only one manifestly chiral-symmetry-breaking term, i.e., the mass term for pions; then the pion-pole
contribution associated with the gA coupling in 〈N,B|Ai

μ|N,A〉 will become gA[gμν − qμqν/(q2 − m2
π )], while the other parts

in 〈N,B|Ai
μ|N,A〉, as well as the whole 〈N,B; π, j |V i

μ|N,A〉, will remain unchanged. However, we must realize that there are

other possible chiral-symmetry-breaking terms contributing to 〈N,B|Ai
μ|N,A〉. For example, (m2

π/M) Niγ 5(U − U †)N can
contribute to 〈N,B|Ai

μ|N,A〉 as

−2m2
π

M2

qμ 	qγ 5

q2 − m2
π

〈B|τ
i

2
|A〉.

To simplify the fitting procedures, we use the following form factors [where Gmd
A can be found in Eq. (13)]:

〈N,B|Ai
μ|N,A〉 = −Gmd

A (q2)〈B|τ
i

2
|A〉uf

(
gμν − qμqν

q2 − m2
π

)
γ νγ 5ui, (B6)

〈N,B; π, j, kπ |V i
μ|N,A〉 = εi

jk

fπ

〈B|τ
k

2
|A〉 uf γ νγ 5ui

[
gAgμν + δGmd

A [(q − kπ )2]
q · (q − kπ )gμν − (q − kπ )μqν

(q − kπ )2

]
. (B7)

Finally, we calculate the pion form factor 〈π, k|V i
μ|π, j 〉:

〈π, k, kπ |V i
μ|π, j, kπ − q〉 = iε

ij

k(2kπ − q)μ + 2i
gρππ

gγ

ε
ij

k

q2

m2
ρ

1

q2 − m2
ρ

(q · kπqμ − q2kπμ),

q2 → m2
ρ in numerator −→ iε

ij

k (2kπ − q)μ + 2i
gρππ

gγ

ε
ij

k

1

q2 − m2
ρ

(q · kπqμ − q2kπμ). (B8)

APPENDIX C: POWER COUNTING FOR DIAGRAMS
WITH �

Including � resonances in calculations, we have a new
mass scale δ ≡ m − M ≈ 300 MeV. We must also consider the
order of the � width �. Formally, it is counted as O(Q3/M2);
however, numerical calculations with Eq. (D2) indicate that
it should be counted as O(Q3 × 10/M2). Because of these
two issues, we have to rethink the power counting of diagrams
involving δ in two energy regimes. One is near the resonance,
while the other is at lower energies, away from the resonance.
In the resonance region, the � propagator scales like

SF ∼ 1

i�
+ O

(
1

M

)
≈ 1

10i O(Q3/M2)
≈ 1

i O(Q2/M)

∼ 1

O(Q)

M

i O(Q)
, (C1)

where the O(1/M) comes from nonpole terms. In the lower-
energy region,

SF ∼ 1

2[δ − O(Q)] − 10i O(Q3/M2)
+ O

(
1

M

)
∼ 1

O(Q)

O(Q)

2δ
+ O

(
1

M

)
≈ 1

O(Q)

O(Q)

M
. (C2)

So compared to the normal power counting mentioned above,
in which the nucleon propagator scales as 1/O(Q), for
diagrams involving one � in the s channel, we take ν →
ν − 1 in the resonance regime and ν → ν + 1 away from the
resonance.
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APPENDIX D: RENORMALIZED � PROPAGATOR

In this work, �’s propagator [47] is dressed as

S
μν

F (p) ≡ − 	p + m

p2 − m2 − �(p2) + im�(p2)
P ( 3

2 )μν

− 1√
3m

P
( 1

2 )μν

12 − 1√
3m

P
( 1

2 )μν

21

+ 2

3m2
( 	p + m)P

( 1
2 )μν

22

+O(�/m) × nonpole terms, (D1)

�(p2) = π

12mp4

h2
A

(4πfπ )2
(p2 + M2 + 2Mm)

× [(p2 − M2)2 − (p2 + 3M2)m2
π ]

×
√

(p2 − M2)2 − 4p2m2
π . (D2)

Here,

P ( 3
2 )μν = gμν − 1

3
γ μγ ν + 1

3p2
γ [μpν] 	p − 2

3p2
pμpν, (D3)

P
( 1

2 )μν

11 = 1

3
γ μγ ν − 1

3p2
γ [μpν] 	p − 1

3p2
pμpν, (D4)

P
( 1

2 )μν

12 = 1√
3p2

(−pμpν + γ μpν 	p), (D5)

P
( 1

2 )μν

21 = −P
( 1

2 )νμ

12 , (D6)

P
( 1

2 )μν

22 = 1
p2 pμpν. (D7)

We take m = 1232 MeV as the Breit–Wigner mass [56] and
set � = 0. Note that � is implicitly associated with a factor
of �[p2 − (M + mπ )2]. And no singularity exists in this
propagator at p2 = 0.

APPENDIX E: KINEMATICS

Following a standard calculation, we find the total cross
section:

σ =
∫ |M|2

4
∣∣pL

li · pL
ni

∣∣ (2π )4δ(4)

(∑
i

pL
i

)
d3 �pL

lf

(2π )32EL
lf

d3 �pL
π

(2π )32EL
π

d3 �pL
nf

(2π )32EL
nf

=
∫ |M|2

4
∣∣pL

li · pL
ni

∣∣ (2π )4δ
(
q0 + p0

ni − p0
nf − p0

π

) 1

(2π )32Enf

d3 �pL
lf

(2π )32EL
lf

d3 �pπ

(2π )32Eπ

=
∫ |M|2

32Mn

1

(2π )5

| �pπ |
Eπ + Enf

∣∣ �pL
lf

∣∣∣∣ �pL
li

∣∣ d�π dEL
lf d�L

lf . (E1)

The variables without an “L′’ superscript are measured in
the isobaric frame (where � is static). It is quite complicated
to calculate the boundary of phase space in terms of the
integration variables in the preceding equations. Later, we will
work out the boundary of phase space in terms of the invariant
variables Q2 and Mπn in the c.m. frame of the whole system,
so we would like to have the following:

Q2 = −M2
lf + 2EL

li

(
EL

lf − ∣∣ �pL
lf

∣∣ cos θL
lf

)
, (E2)

M2
πn = (

qL + pL
ni

)2 = −Q2 + M2
n + 2Mn

(
EL

li − EL
lf

)
, (E3)

dQ2dM2
πn = 4MnE

L
li

∣∣ �pL
lf

∣∣dEL
lf d cos θL

lf . (E4)

By using the invariance of the cross section with respect
to rotations around the incoming lepton direction, we have∫

d�L
lf = ∫

d cos θL
lf 2π , and thus

σ =
∫ |M|2

64M2
n

1

(2π )5

| �pπ |
Eπ + Enf

π∣∣ �pL
li

∣∣EL
li

d�π dM2
πn dQ2.

(E5)

In the isobaric frame, there is no constraint on the direction
of the outgoing pion due to the kinematics. Thus the boundary

of �π is the whole solid angle in the isobaric frame. Now let
us work out the boundary of phase space in the c.m. frame.
We have

M2
A ≡ p2

A = (
pL

ni + pL
li

)2 = (
Mn + EL

li

)2 − (
EL

li

)2

= M2
n + 2MnE

L
li , (E6)

M2
πn ≡ (pπ + pnf )2 = (

pC
A − pC

lf

)2

= M2
A + M2

lf − 2MAEC
lf . (E7)

Here, EC
lf is the final lepton’s energy in the c.m. frame. From

now on, all the quantities in the c.m. frame will be labeled in
this way. So, for given EL

li , i.e., MA, we can see that

Mn + Mπ � Mπn � MA − Mlf . (E8)

By using Eq. (E7), we find

(
EC

lf

)
max(min) =

M2
A + M2

lf − (
M2

πn

)
min(max)

2MA

. (E9)

Then, for given EL
li and Mπn (or EC

lf ), using Q2 = −M2
lf +

2EC
li E

C
lf − 2EC

li | �plf |C cos θC
lf [where θC

lf is the angle between
the outgoing lepton’s direction and the incoming lepton’s
direction in the c.m. frame, and EC

li = (M2
A − M2

n)/2MA is
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the initial lepton’s energy in the c.m. frame], we finally arrive
at [

Q2(EC
lf

)]
min = −M2

lf + 2EC
li M

2
lf

EC
lf +

√(
EC

lf

)2 − M2
lf

,

(E10)

[
Q2

(
EC

lf

)]
max = −M2

lf + 2EC
li

(
EC

lf +
√(

EC
lf

)2 − M2
lf

)
.

(E11)

These equations give a description of the phase-space bound-
ary in terms of the invariants Mπn and Q2.
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