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Bayesian analysis of kaon photoproduction with the Regge-plus-resonance model
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We address the issue of unbiased model selection and propose a methodology based on Bayesian inference
to extract physical information from kaon photoproduction γp → K+� data. We use the single-channel Regge-
plus-resonance (RPR) framework for γp → K+� to illustrate the proposed strategy. The Bayesian evidenceZ is a
quantitative measure for the model’s fitness given the world’s data. We present a numerical method for performing
the multidimensional integrals in the expression for the Bayesian evidence. We use the γp → K+� data with an
invariant energy W > 2.6 GeV in order to constrain the background contributions in the RPR framework with
Bayesian inference. Next, the resonance information is extracted from the analysis of differential cross sections
and single- and double-polarization observables. This background and resonance content constitutes the basis
of a model, which is coined RPR-2011. It is shown that RPR-2011 yields a comprehensive account of the kaon
photoproduction data and provides reasonable predictions for e + p → e′ + K+ + � observables.
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I. INTRODUCTION

How to extract the nucleon resonance (N∗) content of the
open strangeness photoproduction reactions γp → K+� is
a long-standing question. Various analyses lead to disparate
outcomes concerning the set of resonances that are likely to
contribute [1–8]. The recent availability of abundant high-
statistics data has not profoundly changed the situation so
far. This indeterminacy for the open strangeness channel is
in stark contrast to the situation for pionic channels, where
the contributing resonances can be successfully identified by
means of a partial wave analysis for invariant energies W <

1.8 GeV. In open strangeness channels, this technique is less
powerful as the nonresonant, or background, contributions are
larger. The importance of background contributions calls for
a framework which accounts for resonant and nonresonant
processes and which provides a means to constrain both classes
of reaction mechanisms independently.

An efficient way of pinpointing the background amplitude
involves Regge phenomenology [9,10]. We will describe the
γp → K+� reaction in the so-called Regge-plus-resonance
(RPR) model, which combines ingredients of Regge phe-
nomenology with elements of a typical isobar approach. The
latter belongs to the class of tree-level effective Lagrangian
models. In the RPR framework, the background amplitude
is constrained by optimizing the adjustable parameters of a
Reggeized background model to data obtained at sufficiently
high energies so that the contribution of individual resonances
is projected to become marginal [9,11].

Even with a properly constrained background contribution,
the identification of the contributing resonances to γp →
K+� remains a precarious task. Adding resonances increases
the amount of adjustable parameters and improves the quality
of the fit to the data. It stands to reason that one should not add
more resonances than strictly necessary, in order to obtain a
good model. One of the guiding principles for model selection
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is Occam’s razor [12]. This principle dictates that if one has to
choose between a simple and a more complex model, all else
being equal, the simpler one should be preferred. In a realistic
situation, however, all else is not equal, and this guiding
principle should somehow be translated to a quantitative
measure which balances between model complexity on the
one hand and accuracy on the other hand. Such a measure can
be derived from first principles using Bayesian inference. This
measure, called the Bayesian evidence Z , evaluates the overall
performance of the model while penalizing for excessive
complexity.

In recent years, much effort has been directed toward a
more comprehensive description of both electromagnetic and
hadronic meson production reactions from the nucleon within
coupled-channels frameworks [3,10,13]. Ideally, one would
like to apply Bayesian inference to a state-of-the-art dynamical
coupled-channels model. However, due to the multidimen-
sional integrals involved in the computation of the Bayesian
evidence, one is stricken by the curse of dimensionality: at
worst, the computational cost increases exponentially with
the number of adjustable parameters. Even if the number
of adjustable parameters is kept in check, the sheer number
of model evaluations required for a Monte Carlo integration
calls for a realistic model of modest complexity. In this work,
we will apply Bayesian inference to the single-channel RPR
framework for kaon photoproduction. We will consider several
variants of the RPR model and use Bayesian inference to select
the most probable model given the world’s data. The RPR
model has been shown to efficiently describe the γp → K+�

observables over a broad energy range [9,14,15]. The RPR
framework, as it will be used in this work, has a modest
number of adjustable parameters. The background in the RPR
framework consists of Reggeized K+(494) and K∗+(892)
exchange in the t channel. With these assumptions, the
background part has two unknown phases and three unknown
coupling constants. In addition to the background, the RPR
model incorporates N∗ in the s channel. The improved version
of the RPR model, as it will be introduced in this work, uses
consistent N∗ interaction Lagrangians and this is an enormous
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asset in order to reduce the number of coupling strengths [16].
For each added N∗ one introduces one unknown coupling
constant for J = 1

2 and two unknown coupling constants for
J � 3

2 .
The outline of the remainder of this paper is as follows.

In Sec. II A the observables and kinematics of the γ + N →
K + Y and e + N → e′ + K + Y reactions are introduced.
In Sec. II B we summarize the underlying assumptions of
the Regge-plus-resonance formalism used to describe these
reactions. Section III discusses a Bayesian approach to model
selection. The computation of the Bayesian evidence is a
high-dimensional problem which requires dedicated numerical
methods and strategies. In Sec. III D we provide details of
these methods. A proof of principle of the adopted numerical
strategy is described in Sec. III E. Bayesian methodology is
applied to determine the Reggeized background amplitude
in Sec. IV. In Sec. V, we determine the optimal resonant
content for γp → K+� by evaluating a set of 11 candidate
resonances. For each of them we compute the relative
resonance probability and the results are presented in Sec. V C.
The results for the various photoproduction observables and
predictions for electroproduction observables are presented in
Secs. V D and V E. A conclusion is given in Sec. VI.

II. REGGE-PLUS-RESONANCE FORMALISM

A. Observables and kinematics

1. Photoproduction

The unpolarized cross section for γ + N → K + Y has the
following expression:

dσ =
∫

1

νrel(2ω)(2EN )

d3 pK

(2π )3

1

2EK

d3 pY

(2π )3

1

2EY

(2π )4

×δ(4)(pN + k − pK − pY )
1

4

∑
λγ ,λN ,λY

∣∣MλN λY

λγ

∣∣2
, (1)

where νrel is the relative photon-nucleon energy, pN (EN, �pN ),
k(ω, �k), pK (EK, �pK ), and pY (EY , �pY ) are the four-momenta
of the nucleon, photon, kaon, and hyperon, respectively, and
λγ , λN , and λY denote the photon, nucleon, and hyperon
polarization.

In the center-of-momentum (c.m.) frame, the particles’
four-momenta are defined as follows:

k∗ = (ω∗, k∗), p∗
K = (E∗

K, p∗
K ),

(2)
p∗

N = (E∗
N,−k∗), p∗

Y = (E∗
Y , p∗

Y ) = (E∗
Y ,− p∗

K ).

The z axis is the propagation direction of the incident photon,
and the xz plane is the reaction plane.

Inserting the c.m. momenta of Eq. (2) into Eq. (1) yields
the expression for the unpolarized differential cross section at
fixed [s = W 2 = (k∗ + p∗

N )2, t = (p∗
K − k∗)2]:

dσ

d
∗
K

= 1

64π2

| p∗
K |

ω∗
1

(E∗
N + ω∗)2

1

4

∑
λγ ,λN ,λY

∣∣MλN λY

λγ

∣∣2
, (3)

where the transition amplitude can be written as the product
of the photon polarization vector ε

μ
λ and the hadronic current

MλNλY

λγ
= ε

μ
λγ

J λN λY
μ . The hadronic current adopts the form

J λNλY

μ = uY
λY

(pY ) Tμ uN
λN

(pN ), (4)

where uY
λY

(pY ) and uN
λN

(pN ) are the hyperon and nucleon
spinors.

The target (T ) and recoil (P ) asymmetries are defined as

T , P = dσλX=+ 1
2 − dσλX=− 1

2

dσλX=+ 1
2 + dσλX=− 1

2

, (5)

where dσ ≡ dσ
d
∗

K

and λX is the nucleon and hyperon spin
projection on the y axis, respectively. The beam asymmetry �

follows the definition

� = dσ⊥ − dσ ‖

2dσ
, (6)

where σ⊥ (σ ‖) refers to a linear photon polarization along the
y (x) axis.

Double-polarization observables are defined as

dσ (++) + dσ (−−) − dσ (+−) − dσ (−+)

dσ (++) + dσ (−−) + dσ (+−) + dσ (−+)
, (7)

where (+−) is a shorthand notation for (λA = +sA, λB =
−sB), the polarizations of the particles A and B that de-
termine the asymmetry. Beam-recoil γp → K+� double-
polarization data are available for circularly (Cx,Cz) and
obliquely (Ox,Oz) polarized photon beams. These are more
commonly expressed in the “primed” reference frame, which
is rotated about the y = y′ axis over an angle θ∗

K , with θ∗
K

the angle between the incoming photon and the outgoing kaon
momentum in the c.m. frame.

2. Electroproduction

For incoming and outgoing electron four-momenta
k1(ε1, �k1) and k2(ε2, �k2) the electroproduction cross section
in the one-photon exchange approximation (OPEA) has the
following form:

dσ =
∫

1

νrel2ε12EN

d3 pY

(2π )3

1

2EY

d3k2

(2π )3

1

2ε2

d3 pK

(2π )3

1

2EK

× (2π )4δ(4)(pN + k1 − pK − pY − k2)
1

4

∑
λi

∣∣Tλi

∣∣2
,

(8)

where the hadronic part of the reaction is evaluated in the
γ ∗N c.m. frame and the leptonic part in the laboratory frame
[plab

N ≡ (mN, 0)]. This yields the following expression for the
unpolarized differential cross section:

d3σ

dεlab
2 d
lab

2 d
∗
K

= 1

32(2π )5

1

mN

| p∗
K |

W

εlab
2

εlab
1

1

4

∑
λ1λ2λNλY

∣∣T λ1λ2
λNλY

∣∣2
,

(9)

where εlab
1 (εlab

2 ) is the incoming (outgoing) electron energy in
the laboratory frame and W is the invariant energy.

In the transition amplitude T λ1λ2
λNλY

, λ1 and λ2 are the
polarizations (for high-energy electrons equal to the helicities)
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of the incoming and outgoing electrons. This amplitude has
a leptonic and a hadronic current, connected by a photon
propagator:

T λ1λ2
λNλY

= e lλ1λ2
μ

(−gμν

k2

)
J λNλY

ν , (10)

where the hadronic current J λN λY
ν is defined in Eq. (4), lλ1λ2

μ is
the leptonic current, and k2 = (k2 − k1)2 = −Q2.

Therefore, T λ1λ2
λNλY

can be linked to MλNλY

λγ
and one can write

T λ1λ2
λNλY

= e

Q2

∑
λγ =−1,0,+1

(−1)λγ L
λ1λ2∗
λγ

MλNλY

λγ
, (11)

where the photon propagator was rewritten using the relation∑
λγ =0,±1

(−1)λγ ε
∗μ
λγ

εν
λγ

= gμν + kμkν

Q2
, (12)

and Q2 = −k2 is the photon virtuality.
The tensor L

λ1λ2
λγ

is defined as a contraction between the
photon polarization four-vector and the leptonic current:

L
λ1λ2∗
λγ

= lλ1λ2
μ ε

∗μ
λγ

. (13)

Using Eq. (11) in the OPEA, one can conveniently separate
the quantum electrodynamics (QED) part from the hadronic
part, by defining the two tensors

Lλγ λγ
′ =

∑
λ1,λ2

(−1)λγ +λγ
′
L

λ1λ2
λγ

(
L

λ1λ2
λγ

)†
, (14)

Hλγ λγ
′ =

∑
λN ,λY

MλNλY

λγ

(
MλNλY

λγ
′

)†
. (15)

This allows one to replace the squared transition amplitude in
Eq. (9) by∑

λ1,λ2,λN ,λY

∣∣T λ1λ2
λNλY

∣∣2 = e2

Q4

∑
λγ ,λγ

′=0,±1

Lλγ λγ
′Hλγ λγ

′ . (16)

After this replacement, the separated cross sections or structure
functions emerge. They do not depend on the kaon azimuthal
angle φ∗

K and are defined as

dσT

d
∗
K

= χ (H1,1 + H−1,−1), (17)

dσL

d
∗
K

= 2χH0,0, (18)

dσT T

d
∗
K

= −χ (H1,−1 + H−1,1), (19)

dσLT

d
∗
K

= −χ (H0,1 + H1,0 − H−1,0 − H0,−1), (20)

where χ = 1
(16π)2WmN

| p∗
K |

(ωlab− Q2

2mN
)
.

Expressing Eq. (9) in terms of the separated cross sections,
we obtain

d3σ

dεlab
2 d
lab

2 d
∗
K

= �

(
dσT

d
∗
K

+ ε
dσL

d
∗
K

+ ε
dσT T

d
∗
K

cos (2φ∗
K )

+
√

ε(1 + ε)
dσLT

d
∗
K

cos (φ∗
K )

)
, (21)

in which the dependence on φ∗
K has been made explicit. The

virtual photon flux,

� = α

2π2

εlab
2

εlab
1

(
ωlab − Q2

2mN

)
Q2

1

1 − ε
, (22)

and the virtual photon (transverse) polarization,

ε =
(

1 + 2|klab|2
Q2

tan2 θe

2

)−1

, (23)

are defined in terms of the electron scattering angle θe and the
virtual photon three-momentum in the laboratory frame klab.

B. Regge-plus-resonance formalism

This section deals with the dynamics of kaon production
as described by the RPR framework introduced in Refs. [9,
14,17,18]. The RPR model conjoins the economic description
of high-energy data by means of Regge phenomenology with
a single-channel hadrodynamical approach in the resonance
region. We have stressed the importance of the background
diagrams in KY photoproduction for a correct determination
of the resonance parameters. In an isobar model, in which the
amplitude is described as a sum of tree-level s, t , and u channel
diagrams [1,19], the determination of the background is highly
model dependent [20]. Another issue with isobar models is
their violation of the Froissart bound [21–23]. Indeed, the
background amplitude of isobar models displays a power-law
sα dependence at large energies where the exponent α depends
linearly on the spin of the exchanged particles [21]. The RPR
approach overcomes these shortcomings by describing the
nonresonant contributions to the total amplitude by means of
Regge theory [9].

1. Regge background

Guidal, Laget, and Vanderhaeghen showed that the ex-
change of a limited number of Regge trajectories in the
t channel reproduces the high-energy, forward-angle data of
both photoproduction [24] and electroproduction [25–27] of
pions and kaons off the nucleon. Along those lines, the RPR
background is obtained by Reggeizing the first materializations
of the lightest kaon trajectories, K+(494) and K∗+(892). The
Reggeized amplitudes are obtained by replacing the t channel
Feynman propagator by a Regge one with the appropriate
signature.

The odd-spin and even-spin kaon trajectories are observed
to coincide. The measured t dependence of dσ/d
∗

K at large
s does not display any pronounced structure, and this gives
additional support to the strong degeneracy of the trajectories.
Therefore, the Regge propagator reduces to

PK
Regge(s, t) =

(
s

s0

)αK (t)
πα′

K

sin [παK (t)]

{
1

e−iπαK (t)

}
× 1

� [1 + αK (t)]
, (24)

where α′
K is the slope of the trajectory and the scale factor s0

is fixed at 1 GeV2.
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FIG. 1. (Color online) The γp → K+� differential cross section
as a function of cos θ∗

K for the laboratory photon-energy bins ωlab =
1575, 1875, and 2175 MeV. The line denotes the RPR-2007 result and
the data are from Refs. [32–35]. The RPR-2007 model is optimized
against the cos θ∗

K > 0.35 data (indicated with the arrow).

The relative sign between the odd-spin and even-spin
propagators determines the phase (1 or e−iπαK (t)) of PK

Regge
and cannot be determined from first principles. The issue of
determining this phase by comparing model predictions with
data will be addressed in Sec. IV.

For vector mesons, we obtain the proper pole positions
by subtracting the spin from the trajectories in the Regge
propagator. For the K∗+(892), the resulting propagator is

PK∗
Regge(s, t) =

(
s

s0

)αK∗ (t)−α0 πα′
K∗

sin {π [αK∗ (t) − α0]}
×

{
1

e−iπ[αK∗ (t)−α0]

}
1

� [1 + α(t)K∗ − α0]
, (25)

where α0 = 1. The employed parametrization for the K+(494)
and K∗+(892) trajectories is given by [20]

αK (t) = 0.70 GeV−2
(
t − m2

K

)
, (26)

αK∗ (t) = 1 + 0.85 GeV−2
(
t − m2

K∗
)
. (27)

2. Gauge restoration

The K+(494) exchange diagram in the t channel breaks
gauge invariance. One way of restoring it is to add the electric
part of the s channel Born diagram with the same coupling
constant as in the K+ exchange diagram. This procedure is
also applicable for a Reggeized t channel. It turns out to
be essential for a proper description of the forward-angle
differential cross sections and of the beam asymmetries in
charged pion photoproduction [24].

For γp → K+�, the gauge-restoring s channel contribu-
tion is pivotal to account for the plateau in the differential
cross sections at very forward kaon angles or small |t | [24].
The differential cross section for γp → K+� is shown
in Fig. 1.

Along similar lines, gauge invariance for electroproduction
can be restored by adopting the same Q2 dependence in both

the electromagnetic coupling of the K+ exchange diagram
and the electric part of the s channel Born term. In practice,
this implies that a monopole kaon form factor is assigned to
the electric part of the proton exchange diagram [28]. This
procedure has been shown to result in a reasonable prediction
of the σL/σT ratio [26].

3. Adding resonance contributions

While Regge theory provides a fair description of meson
photoproduction observables at high energies and forward
angles, there are arguments that it can also be applied in the
resonance region. Indeed, the notion of Reggeon-resonance
duality states that the amplitude should be reproduced by
summing over all diagrams of a certain channel, be it the
s, u, or t channel [29].

Even though the smooth s dependence of the Regge
amplitude does not allow one to describe the structures in the
resonance region, the global trends can be fairly reproduced
[26]. Furthermore, the forward peaking of the differential cross
sections supports large contributions from the nonresonant
t channel background.

Inspired by these observations, Corthals and co-workers
[9,14,17,18] developed a hybrid model for KY photopro-
duction dubbed Regge-plus-resonance. We will refer to this
model as RPR-2007. The RPR-2007 model uses amplitudes
which consist of s channel resonances and Reggeized t channel
background terms. This approach has also been successfully
applied to the electromagnetic production of ππ [30], as well
as η and η′ [31].

The Regge background amplitude of RPR-2007 is con-
strained to above-resonance (

√
s > 3 GeV), forward-angle

(cos θ∗
K > 0.35) data. By extrapolating the resulting amplitude

to smaller
√

s, one gets a parameter-free background for the
resonance region. The s channel resonances are coherently
added to the background amplitude, resulting in a hybrid
amplitude for the resonance and high-s region. RPR-2007
describes the data for forward-angle photo- and electropro-
duction of K+� and K+�0 [9,14,18]. With regard to the
N∗’s, it includes the established PDG resonances S11(1650),
P11(1710), P13(1720), the less established P13(1900), as well
as the missing D13(1900). The resonance parameters of the
RPR-2007 model are constrained to the cos θ∗

K > 0.35 data.
In Fig. 1 we confront the predictions of the RPR-2007

model with a selection of differential cross-section data. At
forward angles the data are nicely described, in stark contrast
to the situation at backward kaon angles. This failure of the
model at backward angles can be largely attributed to the
adopted description for the spin-3/2 resonance diagrams in
RPR-2007 [16]. Obviously, unphysical bumps at backward
angles manifest themselves and the situation worsens with
increasing laboratory photon energy ωlab. In the forthcoming
section it is pointed out how the introduction of consistent
high-spin interactions can remedy this situation.

4. Consistent high-spin interactions

In the RPR-2007 framework, spin-3/2 resonances are
described by the Rarita-Schwinger formalism [36]. Rarita-
Schwinger fields, however, contain lower-spin components,
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which are not physical. In the noninteracting Rarita-Schwinger
theory these unphysical components are eliminated by impos-
ing the so-called Rarita-Schwinger constraints. These con-
straints, however, do not prevent the unphysical components
from participating in the interacting theory. The spurious
lower-spin components generate nonlocalities, violate causal-
ity [37], and must therefore be avoided.

The spin-3/2 interaction Lagrangians that are used in the
RPR-2007 model are inconsistent since they allow for the
propagation of the unphysical spin-1/2 modes of the Rarita-
Schwinger field. These Lagrangians involve the coupling of
the spin-3/2 Rarita-Schwinger field through the so-called
off-shell tensor, which contains a free parameter. This off-shell
parameter is associated with the unphysical contribution to
the spin-3/2 interaction. The spin-3/2 resonance exchange
diagrams of the RPR-2007 model contain three off-shell
parameters.

In Ref. [16] a consistent theory for the interaction of high-
spin fermions was devised. There it was shown that an interac-
tion theory that is invariant under the so-called unconstrained
Rarita-Schwinger gauge is consequently a consistent theory;
i.e., the unphysical components of the Rarita-Schwinger field
decouple from a gauge-invariant interaction.

In the updated version of the RPR framework, dubbed RPR-
2011, the exchange of spin-3/2 resonances is described by
the consistent interaction theory of Ref. [16]. In addition, the
RPR model has been extended to include the exchange of
spin-5/2 resonances. The expressions for the KYR(3/2) and
KYR(5/2) interaction Lagrangians read [16]

LKYR(3/2) = ifKYR(3/2)

m2
K

�
μ

R�ψY ∂μφK + H.c., (28)

LKYR(5/2) = −fKYR(5/2)

m4
K

�
μν

R �′ψY ∂μ∂νφK + H.c. (29)

Here, ψY and φK represent the hyperon spinor and the
kaon field, respectively. The factors fKYR(3/2) and fKYR(5/2)

are strong coupling constants. Further, � = 1, �′ = γ5 for
even-parity resonances and � = γ5, �

′ = 1 for odd-parity
resonances. The explicitly gauge-invariant fields �

μ

R and �
μν

R

describe the consistent spin-3/2 and the spin-5/2 resonances
and read

�
μ

R = i
(
∂μγνψ

ν
R − ∂/ψ

μ

R

)
, (30)

�
μν

R = ∂μ∂λψ
νλ
R + ∂ν∂λψ

μλ

R − ∂μ∂νγλγρψ
λρ

R − ∂2ψ
μν

R , (31)

where ψ
μ

R and ψ
μν

R denote the spin-3/2 and spin-5/2
Rarita-Schwinger fields. The interaction Lagrangians for the
γpR(3/2) and γpR(5/2) couplings are given by

L(1)
γpR(3/2) = ieκ

(1)
pR(3/2)

4m2
p

�
μ

R�′γ νψpFνμ + H.c., (32)

L(2)
γpR(3/2) = −eκ

(2)
pR(3/2)

8m3
p

�
μ

R�′∂νψpFνμ + H.c., (33)

and

L(1)
γpR(5/2) = −eκ

(1)
pR(5/2)

16m4
p

�
μν

R �γ λ∂μψpFλμ + H.c., (34)

L(2)
γpR(5/2) = − ieκ

(2)
pR(5/2)

32m5
p

�
μν

R �∂λ∂μψpFλμ + H.c. (35)

The electromagnetic tensor Fμν contains the photon field Aμ

and is given by Fμν = ∂μAν − ∂νAμ. Further, ψp represents
the proton spinor and κ

(1)
pR(3/2), κ

(2)
pR(3/2), κ

(1)
pR(5/2), and κ

(2)
pR(5/2)

are electromagnetic coupling constants.
The RPR-2007 model employs a Gaussian hadronic form

factor (HFF) to regularize the transition amplitude beyond a
certain energy scale. From the expressions (30) and (31) for
the explicitly gauge-invariant fields, it is seen that the power
of the momentum dependence of a consistent interaction rises
with the spin of the exchanged particle. In Ref. [16] it is shown
that unlike a Gaussian HFF a “multidipole-Gauss form factor”
is capable of suppressing this momentum dependence. The
functional form of this HFF reads

FmG(s; mR,�R, �R, JR)

= exp

(
−

(
s − m2

R

)2

�4
R

) (
m2

R�̃2
R(JR)(

s − m2
R

)2 + m2
R�̃2

R(JR)

)JR− 1
2

,

(36)

where �̃R(JR) is defined as

�̃R(JR) = �R√
2

1
2JR

−1
. (37)

In this expression, mR, �R, �R, and JR denote the mass, the
cutoff energy, the decay width, and the spin of the exchanged
resonance, respectively. For JR = 1/2, Eq. (36) reduces to
the familiar Gaussian HFF. The RPR-2011 model uses the
multidipole-Gauss HFF of Eq. (36) in order to regularize the
high-energy behavior of the consistent spin-3/2 and spin-5/2
transition amplitudes. We use one common cutoff �R for all
resonances.

III. BAYESIAN INFERENCE

In this section we outline how Bayesian inference can be
used to constrain a framework such as RPR against a set of data.

A. Model comparison

Using Bayes’ theorem, P (A|B) P (B) = P (B|A) P (A),
one can straightforwardly derive a quantity of interest for
model comparison: the probability P (M| {dk}) of a model M ,
given a set of experimental data {dk}, is given by

P (M| {dk}) = P ({dk} |M) P (M)

P ({dk}) . (38)

The quantity P ({dk} |M) is referred to as the marginal
likelihood or the Bayesian evidence (Z). If the model M can
have different outcomes, which are parametrized with a set of
numbers αM , marginalization yields

Z ≡ P ({dk} |M) =
∫

P ({dk} ,αM |M) dαM (39)

=
∫

L(αM ) π (αM ) dαM . (40)
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TABLE I. Jeffreys’ scale for the natural logarithms of evidence
ratios � lnZ = ln ZA

ZB
[38,39]. It provides a translation between the

evidence ratio or Bayes factor and a qualitative assessment of the
premise that model A is more probable than model B.

|� lnZ| < 1 Not worth more than a bare mention

1 < |� lnZ| < 2.5 Significant
2.5 < |� lnZ| < 5 Strong to very strong
5 < |� lnZ| Decisive

This expression states that the Bayesian evidence is the integral
of the product of two distributions: (i) the probability of the
data set {dk}, given the set of parameters αM and the model M ,
and (ii) the probability of the set of parameters αM , given the
model M . The first factor, P ({dk} |αM ,M), can be identified
as the likelihood function, L(αM ). Any prior knowledge of
the parameters’ probability distribution before considering the
data {dk} is contained in the second factor P (αM |M), which is
referred to as the prior distribution π (αM ).

The quantity of interest for model comparison is the
relative probability of a model MA versus a model MB , given
the available experimental data {dk}. By applying Bayes’
theorem (38), the evidence ratio or Bayes factor readily
emerges from the expression for this probability ratio:

P (MA|{dk})
P (MB |{dk}) = P ({dk}|MA)

P ({dk}|MB)

P (MA)

P (MB)
(41)

= ZA
ZB

for P (MA) = P (MB). (42)

The natural logarithm of the evidence ratio can be interpreted
qualitatively with the aid of Jeffreys’ scale [38,39], given in
Table I.

B. Probability of a resonance

Bayesian inference can also be used to extract the physical
properties from the data. For example, does the fit to a set
of photoproduction data provide evidence for the introduction
of a hitherto unknown resonance? We present a procedure to
calculate the relative probability of a certain nucleon resonance
within a model for KY production, such as the RPR model.
This procedure will help fill the need for an unbiased quantity
that expresses the need for introducing an unknown resonance.

Note that all probabilities mentioned in this section are
implicitly conditional on a given framework. The dependence
on the RPR framework MRPR is implied from now on but will
be omitted for the sake of clarity, i.e., P (X) ≡ P (X | MRPR).
One can write the probability of a given resonance R, given
experimental data {dk}, as

P (R | {dk}) =
∑
Mi

P (R,Mi | {dk}) (43)

=
∑
Mi

P (R |Mi, {dk}) P (Mi | {dk}) . (44)

The conditional probability P (R |Mi, {dk}) simply reduces to
one if the resonance R is included in the set of resonances
Si used in the model variant Mi , and it is zero otherwise.

Therefore, the summation covers only a limited set of
models,

P (R | {dk}) =
∑

Mi |R∈Si

P (Mi | {dk}) (45)

=
∑

Mi |R∈Si

P ({dk} |Mi)
P (Mi)

P ({dk}) . (46)

Applying Bayes’ theorem, one finds that the evidence
P ({dk} |Mi) appears in Eq. (46). Assuming that there is no
preference for any specific model before comparing it to data,
the factor P (Mi )

P ({dk}) is equal for all model variants i. Therefore,
the factor can be omitted in all subsequent calculations for the
probability ratios. This again reduces the calculation of relative
probabilities P (R1 | {dk}) /P (R2 | {dk}) to the evaluation of
the evidence integrals of the form of Eq. (40).

C. Likelihood function

Experimental data are usually reported to have normally
distributed errors and to be independent. The addition of N

squared normally distributed, independent random variables
with mean 0 and variance 1 results in a variable X = ∑N

i=1 x2
i

that obeys a chi-square distribution [40,41]

f N (X) = XN/2−1e−X/2

2N/2�
(

N
2

) . (47)

The quantity χ2(αM ) is defined as

χ2(αM ) =
N∑

i=1

[di − fi(αM )]2

σ 2
i

, (48)

where N is the total number of data points, σi is the error
on data point di , and fi(αM ) is the corresponding model
prediction. The quantity χ2(αM ) represents a sum of squares
of normally distributed variables and is expected to obey the
chi-square distribution of Eq. (47).

With a likelihood function of the form (47), we get the
log-likelihood

lnL(αM ) =
(

k

2
− 1

)
ln χ2(αM ) − k

2
ln 2

− ln �

(
k

2

)
− χ2(αM )

2
, (49)

where k is the number of degrees of freedom: this is equal to the
number of data points, N , minus the number of free parameters.
This correction is necessary because by constraining the
free parameters using the data, one effectively decreases the
number of degrees of freedom.

The χ2(αM ) and L(αM ) are unknown functions of the
model parameters αM and the numerical computation of
the Bayesian evidence Z with the aid of Eq. (40) involves
a multidimensional integral

∫
dαM over the full parameter

space. This is highly nontrivial from the numerical point of
view. In the forthcoming Sec. III D we outline the adopted
strategy in order to compute the Bayesian evidence.
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FIG. 2. (Color online) The likelihood function L(α) (green sur-
face) and the proposal distribution determined by VEGAS, represented
by a grid (red lines) with a number of bins per dimension (here 8).

D. Numerical computation of the Bayesian evidence

For low-dimensional problems (d � 10), the nested sam-
pling (NS) Monte Carlo algorithm by Skilling [42,43] provides
an efficient means to compute the Bayesian evidence. The
posterior distribution P (αM | {dk} ,M) can also be computed
by this algorithm. We employ this method to determine the
Reggeized background amplitude of the RPR-2011 model
[44]. The results of this analysis are reported in Sec. IV.

In high-dimensional problems, NS has been criticized for
having a sharply decreasing acceptance rate as the likelihood
constraint becomes more exclusive [45]. Therefore, high-
dimensional problems call for an alternative numerical tech-
nique. If there is no need to determine the posterior distribution,
or if the parameters are so-called nuisance parameters, whose
value are of no interest, other Monte Carlo integration methods
can be employed. One such method is the VEGAS algorithm by
Lepage [46]. VEGAS uses importance sampling: the points are
sampled from a proposal distribution which approximates the
normalized integrand. The proposal distribution is discretized
in the form of an adaptive grid, in which each cell is sampled
with an equal probability. This idea is illustrated in Fig. 2. The
VEGAS algorithm is most suitable if the integrand L(αM ) can
be approximated by a separable function.

We have adapted the GNU Scientific Library (GSL)
implementation [47] of the VEGAS algorithm to the integrand
of the evidence integral, which can assume very small values.
This adapted VEGAS method, which we will refer to as log-
VEGAS, requires a function which returns the natural logarithm
of the integrand. The integral is computed while ensuring
minimal loss of numerical accuracy that would occur by
exponentiation of this function. This measure is indispensable
for the integration of small quantities such as a likelihood.

Like any stochastic integration method, the log-VEGAS

algorithm is apt to miss a highly localized maximum. We
remedy this by locating the maximum with a genetic algorithm
(GA) before performing the integration. We combine a rough
search in the full parameter space using a GA and a subsequent

fine search in a selected part of the parameter space using the
gradient-based methods of MINUIT, the optimization module
of the ROOT library [48]. This strategy has been successfully
applied to a precise determination of resonance parameters by
Ireland et al. [2].

The next step is to reduce the integration space to the volume
around the peak, with a range of the order of three standard
deviations in each dimension. The standard deviation around
the maximum can be calculated using the MINOS routine of
MINUIT [48].

The first question that springs to mind is whether we do not
risk underestimating the evidence by limiting the integration
domain to the peak volume. We have addressed this concern
by applying this method to a toy example, which is detailed in
the following section.

E. Toy example

As a proof of principle, we apply the methods outlined in
Sec. III D to a tractable and realistic-sized problem. To this
end, we use an event described by the function md (x) which
is expressed in terms of a sum of d Legendre polynomials:

md (x) =
d−1∑
l=0

alPl(x), x ∈ [−1, 1]. (50)

The parameters al(l = 0, . . . , d − 1) are uniformly distributed
in [−10, 10] and randomly generated. A mock data set with
Gaussian noise is generated from md (x). The effectiveness
of the GA is assessed by testing whether the values al can
be determined from the mock data. In the next step it is
investigated whether Bayesian inference can determine which
model was used to generate a particular set of mock data.
In essence, this amounts to using Bayesian inference to find
the dimension d of the model from which the mock data are
generated.

We investigate the performance of a GA for models with a
complexity ranging from d = 1 to d = 12. We consider 4000
data points, a size comparable to that of the world’s K+�

photoproduction data set. For each data set, we attempt to
determine the parameters of the underlying model. We scale
the population size in the GA linearly with d. Due to its random
character, convergence times can vary greatly between the
different GA runs. To account for this, we have repeated the
GA 40 times for each value of d, using a different, random set
of parameters for each run. We have found that convergence
occurs for all trial runs and that the original parameters are
reproduced by the GA with an error per parameter of the order
of 0.5%.

Can one determine the model which best describes a given
data set from a number of model variants? This key question
can be rigorously addressed using Bayesian inference. To
illustrate the potential of this method, we generate mock data
using the toy model of Eq. (50) at a fixed d. In a next step, we try
to determine the underlying model (including its dimension d)
by calculating the Bayesian evidences for different trial models
using the log-VEGAS method. This procedure is tested for data
sets generated by models of different complexity: from d = 1
to d = 12.
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FIG. 3. (Color online) The − lnZ values calculated with
the log-VEGAS algorithm (red squares) and with a combined
GA + MINUIT + log-VEGAS integration (blue diamonds), for different
model dimensions. Each box corresponds to a model with dimension
d , indicated with the gray band. The mock data set has 100 points.

The results of the log-VEGAS integrations over the entire
parameter space are compared to those limited to the peak
volume in Fig. 3. We find that the maximum evidence value
corresponds to the correct model up to at least d = 12.

Two striking conclusions can be drawn from Fig. 3. A first
observation is that in the low-dimensional problems (d � 10),
where the log-VEGAS result can be considered accurate, the
two methods provide a comparable value for the computed
integrals. This means that the likelihood in the parameter
space outside the peak region is small compared to the
maximum likelihood. Second, the results for high-dimensional
models (d � 10) indicate that the bulk of the evidence is
somehow overlooked by the global log-VEGAS integration.
The global integrals for high-dimensional problems can be
orders of magnitudes smaller than those that cover only the
region around the peak. This indicates that the search space
for the log-VEGAS integration is too large in these high-
dimensional problems, and a more dedicated search strategy
is required. The results of Fig. 3 indicate that a combined
GA + MINUIT + log-VEGAS integration strategy is appropriate
for the task of dealing with high-dimensional problems.

IV. BACKGROUND SELECTION IN THE RPR MODEL

In this section, we apply Bayesian inference to select the
optimum model variant for the RPR background amplitude.

A. Parameters of the Reggeized background model

The unknown phases in Eqs. (24) and (25) give rise to
several model candidates. The possibility of the K+ and K∗+
trajectories having a constant phase is excluded, as this gives
rise to a recoil asymmetry P = 0, which disagrees with the
data. In the forthcoming, the remaining three possibilities,
namely (rotating K+/rotating K∗+), (rotating K+/constant
K∗+), and (constant K+/rotating K∗+), will be referred as
RR, RC, and CR. Apart from these variants, the background
model has three continuous parameters proportional to the
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-310

-210

-110
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μ
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FIG. 4. (Color online) The γp → K+� differential cross sec-
tions as a function of W for various cos θ∗

K . The dashed lines represent
the best model (RR) of Ref. [44] which follows from a Bayesian
analysis of the W > 3 GeV data. The full lines correspond to the
best model (RR) from Table II, optimized against the 2.6 < W < 3
GeV CLAS data. The lines and the data are color coded according
to cos θ∗

K : from 0.4 (blue) to 1.0 (red). The orange lines correspond
to cos θ∗

K = 0.95; the other lines have a value that corresponds to the
CLAS cos θ∗

K bins, i.e., 0.865, 0.8, 0.7, 0.6, 0.5, and 0.4. The data are
from Refs. [35] and [51].

product of the strong and electromagnetic couplings,

egK+�p, e G
v,t
K∗+ = e g

v,t
K∗+ �p κK+K∗+ . (51)

Here, κK+K∗+ is the transition magnetic moment for
K∗+(892) → γK+(494) decay. Further, the parameters fea-
ture the strong coupling constant gK+�p of the K+ trajectory
and the tensor and vector couplings g

v,t
K∗+ �p of the K∗+

trajectory.

1. Likelihood distribution and data

As discussed in Sec. III C, the likelihood distribution of
the model parameters with regard to the data is the chi-square
distribution of Eq. (47). Recently, the CLAS Collaboration
published K+� [35] and K+�0 [49] photoproduction data,
featuring high-statistics differential cross-sections and recoil
polarizations. The data covers nearly the full angular range
and has 1.620 � W � 2.840 GeV. The broad energy range
makes it a great testing ground for isobar, Regge, and hybrid
models such as RPR. Indeed, it includes measurements taken
at energies up to W = 2.840 GeV, which is well above the
resonance region.

Sibirtsev et al. [11] demonstrated that the γ + p → π+ + n

and γ + n → π− + p reactions display Regge-like behavior
for invariant-mass energies as low as 2.6 GeV. Furthermore,
Schumacher and Sargsian [50] pointed out that in the small-|t |
limit, the differential cross section for γp → K+� exhibits
Regge-like scaling behavior ∝s−2 down to W ≈ 2.3 GeV.
One would therefore expect that a Regge background model
optimized to the W > 3 GeV SLAC and DESY data [44]
provides a fair description of the W > 2.6 GeV CLAS data.
However, this is not the case. Figure 4 shows the W > 2.6 GeV
K+� photoproduction data, as well as the prediction of the
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Reggeized background model optimized to the W > 3 GeV
data. Clearly, the Regge model overshoots the CLAS data by
at least a factor of 2. There is an obvious discontinuity in the
W dependence between the SLAC and CLAS data at cos θ∗

K ≈
0.865, 0.8, and 0.7.

Dey and Meyer [52] showed that a small set of γp → K+�

data from CEA [53] is inconsistent with the CLAS data.
They find similar discrepancies between new CLAS data
and old high-energy data from SLAC, DESY, and CEA
for other pseudoscalar meson production reactions. They
conclude that there is a persistent normalization issue in the
old high-energy differential cross-section data for a number
of reactions, including γp → K+� and γ + p → K+ + �0.
The observations of Fig. 4 add support to these findings.

Because of these observations, we opt to use the data
from CLAS, which are consistent with other differential
cross-section measurements in the resonance region [34,54], in
order to constrain the adjustable parameters in the Reggeized
background model. We employ the statistical methods de-
scribed in Ref. [44], using the 2.6 < W < 3 GeV CLAS data
to compute the likelihood function. Below this energy region,
resonance contributions become more important [11]. Because
the validity of Regge theory is limited to small |t |, we use
cos θ∗

K > 0.35 data to constrain the background parameters.
With these criteria, we retain 132 differential cross sections
and 130 recoil polarizations P . This is over a factor of 4 more
data than for the combined SLAC/DESY data used in the
analysis reported in Ref. [44].

2. Prior distribution

We opt to use a uniform prior distribution U for the coupling
constants of Eq. (51). Under conditions of highly concentrated
likelihood, compared to which the prior distribution varies
mildly, the likelihood dominates the shape of the posterior
distribution [42]. Accordingly, the evidence calculations will
not be largely affected by the choice with regard to the shape
of the prior distribution. A sensitivity analysis will verify this
assumption.

The assumption that SU(3) symmetry is broken at the 20%
level yields the following prior ranges for gK+�p [55,56]:

−4.5 � gK+�p√
4π

� −3.0. (52)

To our knowledge, for the K∗+�p vertex, no reliable theo-
retical constraints are available [27]. We choose a uniform
distribution between −100 and + 100 as the initial prior for
(Gv

K∗+ ,Gt
K∗+ ). To test the sensitivity of the results to the prior

width, the calculations are repeated for a prior width of 2000
and 20 000.

3. Asymptotic behavior

In the Regge (large s and small |t |) limit, one can
approximate s by −u for fixed values of t . This implies that
the energy dependence of the cross section, which follows the
power law sα(t) according to Regge theory, can be replaced
by ( s−u

2 )α(t) [20,57]. In an analysis of W > 3 GeV data, this
difference is not relevant, but at the energies considered here
the difference between the two asymptotic behaviors becomes
noticeable. Therefore, we have investigated both options using
Bayesian inference.

B. Results

1. Optimum background model variant

The results of our analysis are listed in Table II. The data
clearly favor a model featuring an sα(t) dependence in the cross
section and two rotating trajectories. Indeed, the difference in
lnZ with the second-best variant is 32.7 ± 1.4, which exceeds
the value of 5 required for a decisive statement.

The values of the coupling constants from the best model
variant are

gK+�p√
4π

= −3.6 ± 0.3,

Gv
K∗+ = 9.0 ± 0.5, (53)

Gt
K∗+ = 20.9 ± 0.4.

In comparison with the Bayesian analysis of Ref. [44], which
was based on the W > 3 GeV data, the tensor coupling Gt

K∗+
has changed sign, and its magnitude has decreased by about a
factor of 2. In Ref. [44], the likelihood hypersurface exhibited
a distinct multimodal behavior, with different combinations
of the coupling constants’ relative signs giving similar likeli-
hoods. Interestingly, the increased amount of data used here
causes the likelihood to be concentrated in only one quadrant
of the parameter space in (Gv

K∗+ ,Gt
K∗+ ) and all sign issues for

the coupling constants can be resolved.

TABLE II. Logarithms of the evidence ratios [� lnZ ≡ ln (Z/Zmax)] for the six model variants resulting from phase combinations and
asymptotic behavior options in the two-trajectory Regge model for γp → K+�. The prior for the coupling constant gK+�p is defined by
Eq. (52). The results are listed in order of decreasing probability for the lowest prior width, π = U (−100, 100), for the G

t,v

K∗+ couplings.

K+/K∗+ phase Asymp. π = U (−100, 100) π = U (−1000, 1000) π = U (−10000, 10000)

RR s 0.0 0.0 0.0
RC s −32.7 ± 1.4 −33.5 ± 2.7 −31 ± 13
RR (s − u)/2 −359.7 ± 1.1 −360.8 ± 7.2 −389 ± 57
RC (s − u)/2 −432.9 ± 1.1 −435 ± 8.9 −472 ± 58
CR s −2257.2 ± 1.1 −2259.3 ± 6.4 −2282 ± 31
CR (s − u)/2 −2425.5 ± 1.1 −2426.3 ± 2.6 −2440 ± 27
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TABLE III. Logarithms of the evidence ratios [� lnZ ≡ ln (Z/Zmax)] for the six model variants resulting from phase combinations and
asymptotic behavior options in the two-trajectory Regge model for γp → K+�. A deviation of up to 40% from the SU(3) prediction for gK+�p

is allowed. The results are listed in order of decreasing probability for the lowest prior width, π = U (−100, 100), for the G
t,v

K∗+ couplings.

K+/K∗+ phase Asymp. π = U (−100, 100) π = U (−1000, 1000) π = U (−10000, 10000)

RR s 0.0 0.0 0.0
RC s −17.8 ± 1.1 −17.4 ± 2.9 −15 ± 18
RR (s − u)/2 −359.7 ± 1.0 −364.0 ± 16.0 −387 ± 37
RC (s − u)/2 −432.7 ± 1.2 −434.9 ± 5.3 −474 ± 68
CR s −2257.1 ± 1.2 −2261.5 ± 7.7 −2272 ± 28
CR (s − u)/2 −2425.6 ± 1.1 −2426.3 ± 3.0 −2426 ± 22

The expectation value (53) for gK+�p is close to its SU(3)
prediction of Eq. (52). Nevertheless, we have repeated the
analyses with a prior for gK+�p broader than the condition
of Eq. (52) in order to test whether stronger SU(3) flavor
symmetry breaking is compatible with the data. The results of
this analysis are listed in Table III. By comparing the results of
Tables II and III one can conclude that the order of the models
is unaffected by the operation of broadening the boundaries
for the gK+�p priors. Also the extracted value for gK+�p is
not significantly affected by the broader limits on its prior
distribution. Its expectation value becomes

gK+�p√
4π

= −3.7 ±
0.3, which is again compatible with the SU(3) value of −3.75.

2. High-energy predictions

The high-energy differential cross section as calculated
by the best model variant for γp → K+� is represented
by the full lines in Fig. 4. As expected, the predictions
are incompatible with the SLAC data. We attribute this to
the normalization discrepancy discussed in Ref. [52] and
Sec. IV A1. The polarization observables � [51,58] and P [59]
are not sensitive to normalization issues. Predictions for � at
ωlab = 16 GeV are shown in Fig. 5(a) for K+�. Figure 5(b)
shows the predictions for P at ωlab = 5 GeV. These predictions
display an excellent agreement with data. By constraining the
Reggeized background at 2.6 < W < 3 GeV, one can predict
P and � at W > 3 GeV. This highlights the predictive power of
a Regge model at high W and corroborates the assumption that
the Reggeized background model can be constrained against
W � 2.5 GeV observables.
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FIG. 5. (Color online) Predictions of the best Regge model from
Table II (full red line) for the γp → K+� observables � and P at
W > 3 GeV, as a function of −t . (a) � at ωlab = 16 GeV. The data are
from Ref. [51]. (b) P at ωlab = 5 GeV. The data are from Ref. [59].

Summarizing the background evaluations, we find that
the optimum two-trajectory Regge model for γp → K+�

features two rotating phases and positive vector and tensor cou-
plings. We also find that an asymptotic sα(t) dependence of the
Regge amplitude is preferred over a [(s − u)/2]α(t) one. This
model will be referred to as Regge-2011 and determines the
prior for the background amplitude of the RPR-2011 model.

V. RESONANCE SELECTION IN THE RPR MODEL

Given the world’s γp → K+� data, this section addresses
the following questions: (a) From a proposed set of resonances,
what subset is featured in the most probable model? (b) What is
the probability of a proposed resonance R? Bayesian inference
allows one to answer these questions in a quantitative way.

A. Data and resonances

An overview of the available γp → K+� data is listed
in Table IV. In view of the normalization issue discussed in
Sec. IV, the data from SLAC [51] and DESY [59] are not
included in the analysis presented below. The total number of

TABLE IV. Overview of the published experimental data for the
reaction γp → K+�.

Observable Number of data Experiment Year Reference

dσ

d

56 SLAC 1969 Boyarski [51]
720 SAPHIR 2004 Glander [32]
1377 CLAS 2006 Bradford [34]
12 LEPS 2007 Hicks [33]
2066 CLAS 2010 McCracken [35]

� 9 SLAC 1979 Quinn [58]
45 LEPS 2003 Zegers [60]
54 LEPS 2006 Sumihama [54]
4 LEPS 2007 Hicks [33]
66 GRAAL 2007 Lleres [61]

T 3 BONN 1978 Althoff [62]
66 GRAAL 2008 Lleres [63]

P 7 DESY 1972 Vogel [59]
233 CLAS 2004 McNabb [64]
66 GRAAL 2007 Lleres [61]
1707 CLAS 2010 McCracken [35]

Cx, Cz 320 CLAS 2007 Bradford [65]
Ox′ ,Oz′ 132 GRAAL 2008 Lleres [63]
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data points which we incorporate is 6148, of which 3455 are
differential cross sections, 2241 are single-polarization results,
and 452 are double-polarization results. We stress that after
accounting for the error bars all data carry the same weight.

We use the differential cross section data measured by the
CLAS Collaboration [34,35] and LEPS [33]. Due to unre-
solved discrepancies with other data sets [66], the SAPHIR
differential cross-section data [32] are excluded. This decision
is motivated by the fact that the different cross-section
measurements by CLAS are internally consistent [35] and
consistent with the LEPS data [33]. To date, there is no
independent measurement that confirms the SAPHIR data.

The single-polarization data consist of two sets of re-
coil polarization data published by the CLAS Collaboration
[35,64], as well as a set from GRAAL [61]. The beam asymme-
try data used in our analysis include results from LEPS [33,54,
60] and GRAAL [61]. The included target asymmetries were
determined by means of beam-recoil measurements by the
GRAAL Collaboration [63]. The included double-polarization
observables are beam-recoil asymmetries, consisting of Cx and
Cz data by CLAS [65] and GRAAL’s measurements of Ox ′

and Oz′ [63].
The 11 resonances considered in this work and their

properties are listed in Table V. We have “established” as
well as “missing” nucleon resonances. As for their quantum
numbers, mass, width, and transition form factors, we take the
values quoted by the Particle Data Group (PDG). If these are
not available, we employ the values determined by analyses
based on constituent-quark model (CQM) predictions [4]. This
allows us to keep the number of adjustable parameters small.

The established four-star resonances listed by the PDG are
S11(1650), D15(1675), F15(1680), and P13(1720). The four-star
S11(1535) lies below the kaon production threshold, but it
is included because of its large decay width and its strong
predicted coupling to the open strangeness sector [67]. To
our knowledge, the contribution of the three-star D13(1700) to
γp → K+� is confirmed only by the Giessen analysis [5]. The
P11(1710), which is found in some K+� analyses, is evaluated
as well. The importance of this resonance in the πN system

TABLE V. The nucleon resonances evaluated in the analysis given
in the notation L2I,2J (M), along with their PDG status, spin (J ) and
parity (π ), Breit-Wigner mass (M), width (�), and the uncertainty on
the width (��).

Resonance PDGstatus J π M(MeV) �(MeV) ��(MeV)

S11(1535) **** 1/2− 1535 150 ±25
S11(1650) **** 1/2− 1650 150 ±20
D15(1675) **** 5/2− 1675 150 –20/ + 15
F15(1680) **** 5/2+ 1685 130 ±10
D13(1700) *** 3/2− 1700 100 ±50
P11(1710) *** 1/2+ 1710 100 –50/ + 150
P13(1720) **** 3/2+ 1720 150 –50/ + 100
D13(1900) missing 3/2− 1895 200 –
P13(1900) ** 3/2+ 1900 500 –360/ + 80
P11(1900) missing 1/2+ 1895 200 –
F15(2000) ** 5/2+ 2000 140 –40/ + 30

FIG. 6. (Color online) The integral over the likelihood function
(black curve) as approximated by the contribution for which L(α) ≈
Lmax, or conversely, for which χ 2(α) = χ 2

min (gray box).

was questioned in the most recent SAID analyses [68–70]. The
P11(1710) has also been identified in the ππN system [71].

Furthermore, the two-star resonances P13(1900) and
F15(2000)1 are evaluated. The first of these, P13(1900), was
found to couple to K+� by the Giessen group [72] and by
the RPR-2007 model, and it accounts for the structure in the
energy dependence of the differential cross-section data at
W ≈ 1900 MeV. Schumacher and Sargsian [50] show that the
differential cross section data from CLAS [35] supports one or
more resonances at W ≈ 2 GeV. Therefore, the consideration
of the F15(2000) seems justified. The missing D13(1900)
and P11(1900) resonances earlier introduced in the Ghent
isobar model [19,20], the RPR-2007 model [9,17], and the
Kaon-MAID model [4] are also evaluated.

1The latest Review of Particle Physics [85] lists this resonance
with a lower mass than the 2008 Review [86]; the new estimate is
1850−1950 MeV.
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FIG. 7. (Color online) The evidences (− lnZ ′) of the 2048 model
variants in the RPR model space (blue circles), as a function of the
number of free N∗ parameters. The latter value equals the number of
N∗ couplings plus one for the �R . The smaller the value of − lnZ ′

the higher is the evidence. The best model for a fixed number of
parameters is indicated with a red square. The model with the highest
evidence, RPR-2011, is denoted with a black diamond.
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FIG. 8. (Color online) The evidences (− lnZ ′) of the 2048 model variants in the RPR model space (blue circles). The purple diamonds
correspond to the subset of models which contain the resonance indicated in the top right corner of each panel.

A conclusive statement with regard to the M ≈ 1900 MeV
resonances is extremely useful to improve our understanding
of the nucleon’s structure. Indeed, quark-diquark models do
not predict a resonance at this energy [73,74]. By contrast, a
number of resonances with a mass of around 1900 MeV are
predicted by CQMs [75,76].

B. Likelihood function

When calculating the likelihood function against a single
data set, one usually does not take systematic errors σsys into
account. However, this course of action is not valid when
multiple data sets are combined, as it would result in an

underestimate of the likelihood. Assuming that systematic
errors are independent and normally distributed, one can
determine the total errors by adding the systematic and
statistical contributions in quadrature,

σ 2
tot = σ 2

stat + σ 2
sys. (54)

A more conservative estimate is to add the systematic and
statistical errors linearly:

σ ′
tot = σstat + σsys. (55)

The numerical calculations for the Bayesian evidences are
very demanding and it is prohibitive to run the calculations
with various choices for the values of σtot. In what follows, we
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FIG. 9. (Color online) The evidences (− lnZ ′) of the 2048 model variants in the RPR model space (blue circles). The orange diamonds
correspond to the subset of models which do not contain the resonance indicated in the top right corner of each panel.

outline an approximate method which allows one to relate the
evidences computed with Eq. (54) to those which use Eq. (55).

Most often, the systematic errors σsys are computed by
taking the squared sum of a number of partial systematic
errors σ i

sys from different sources. This approach is prone to
underestimate σsys. For a systematic error that is dominated by
two errors with a comparable magnitude, σsys,1 ≈ σsys,2, one
obtains in the conservative approach

σ ′
sys =

∑
i

σsys,i ≈ 2σsys,1 ≈
√

2σsys. (56)

In a scenario where σstat ≈ σsys, the estimate (54) leads
to σtot ≈ √

2σstat and to the following value for a more

conservative estimate of σ ′
tot:

σ ′
tot = σstat + σ ′

sys ≈ σstat +
√

2σsys ≈ 1 + √
2√

2
σtot. (57)

One can convert the Z values computed with the errors of
Eq. (54) into a Z ′ which use σ ′

tot. If the errors are multiplied
by c, the log-chi-square distribution lnL(αM ) of Eq. (49)
scales as

S
(
k, χ2

R(αM ), c
) ≡ ln

( L(αM )

L′
c(αM )

)
= (k − 2) ln c − χ2

R

k

2

c2 − 1

c2
. (58)
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Here, k denotes the number of degrees of freedom, and χ2
R ≡

χ2/k is the reduced chi-squared as computed with the values
σtot. One can estimate the evidence resulting from the scaled
likelihood function L′

c(αM ) as follows. Inserting a uniform
prior into Eq. (40) yields the following expression for Z:

Z = 1

�

∫ α1

α0

L(α)dα ≈ 1

�

∫
D

L(αmax)dα, (59)

where � ≡ ∏
i (�αi) is the volume of the prior hypercube.

Indeed, if L(α) is the chi-square distribution with χ2
R(α) far

from its optimal value of 1 (e.g., χ2
R = 4), it falls rapidly with

increasing χ2(α), and the bulk of the likelihood originates
from a volume D where L(α) ≈ Lmax, or χ2

R(α) ≈ χ2
R,min, as

illustrated in Fig. 6.
By expressing the corrected likelihood L′

c(α) in terms of
the likelihood L(α) and the scaling factor of Eq. (58), the
expression for Z ′ becomes

Z ′ ≈ 1

�

∫
D

L′
c(αmax)dα

≈ 1

�

∫
D

L(αmax)e−S(k,χ2
R(αmax),c) dα (60)

≈ Z e−S(k,χ2
R,min,c), (61)

which yields our final result

lnZ ′ ≈ lnZ − S
(
k, χ2

R,min, c
)
. (62)

The expression (54) for σtot presupposes stringent indepen-
dencies between the various contributions. The σ ′

tot of Eq. (55)
provides a more conservative estimate of the evidence. In
order to avoid overestimating the amount of information that
is provided by the data, we will use σ ′

tot in the forthcoming
analyses.

C. Identifying the resonance content of γ p → K+�

The 11 proposed resonances of Table V give rise to 211 =
2048 model variants. The Bayesian evidence Z ′ of Eq. (62)
is computed for each model, resulting in a map of the RPR
model space, shown in Fig. 7.

The parameters of the Reggeized background are assigned
localized priors of 20% around the values determined in
Sec. IV. Therefore, the total number of adjustable parameters
is the sum of the number of N∗ couplings, of the three
background parameters, and of the cutoff value �R of Eq. (37).
The number of fitted N∗ couplings extends from 1 (one
spin-1/2 coupling) to 18 (4 × 1 spin-1/2, 4 × 2 spin-3/2, and
3 × 2 spin-5/2 couplings). We adopt one common value for
�R for all resonances with a uniform prior between 1.0 and 3.5
GeV. When selecting a prior distribution, it is good practice to
ignore the data. Often an overestimation of the evidence results
from determining the likelihood and the prior with a particular
data set. In this work, the ranges of the prior distributions of the
resonance couplings are selected on the basis of naturalness
arguments. Indeed, the contribution of a single resonance
is unlikely to exceed the total γp → K+� cross section
(σ ≈ 5μb) by a large factor. We performed calculations of
the total cross sections (σR) in a model which includes a single

resonance R and the Reggeized background. It is observed
that the criterion σR < 25 μb leads to absolute values of
the coupling constants smaller than 100 in the adopted units
convention. Therefore, we adopt a uniform distribution for
the priors of the resonance coupling constants in the range
[−100, 100].

Jeffreys’ scale allows us to determine the “best” model
from the 2048 variants. The model with the highest evidence
has 14 N∗ parameters (13 couplings and �R) and features
the S11(1535), S11(1650), F15(1680), P13(1720), P11(1900),
F15(2000), and the missing D13(1900) and P13(1900). This
model variant will be referred to as RPR-2011 [77]. The
“second-best” model has two fewer parameters due to the
absence of the D13(1900). The difference in − lnZ between
the “best” and “second-best” models is 2.3. This corresponds
to significant to strong evidence in favor of RPR-2011. The
difference with the other models is at least 6.8, which is
consistent with decisive evidence for RPR-2011.

In a next step, one can quantify the probability of each
resonance separately by evaluating P (R | {dk}) of Eq. (46).
Figure 8 visualizes which models are included in the sum. It
is also instructive to calculate P (∼R |{dk}), the probability
that a resonance is not required to describe the reaction. The
calculation of this quantity is completely analogous to Eq. (46).
In Fig. 9, the models which do not include a resonance R are
visualized for each proposed resonance.

The probability ratios,

ln [P (R | {dk}) /P (∼R | {dk})] , (63)

are plotted in Fig. 10. A positive ratio indicates that the
probability that the resonance R contributes to the reaction
γp → K+� is greater than the probability that it does not.
Conversely, a negative ratio means that the data do not support
the possibility that R contributes to the reaction.

The results indicate that the resonances in RPR-2011 are
those that have a positive probability ratio. Moreover, the
two resonances with the highest probabilities are P13(1720)
and S11(1650). These are the two resonances that are also
deemed important for the description of γp → K+� by most
other models. There is decisive evidence that the D15(1675),
D13(1700), and P11(1710) are not required to describe the
γp → K+� data. With regard to the resonance content in the
1800- to 2000-MeV mass range several suggestions have been
made in the literature, but no consensus has been reached. We
have evaluated four states in that mass region (Table V): two
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FIG. 10. The relative resonance probabilities of Eq. (63) for each
resonance listed in Table V.
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have a two-star status and two are labeled as “missing.” Our
analysis provides decisive evidence for three of these states:
P13(1900), P11(1900), and F15(2000). Note that the evidence
for the “missing” D13(1900) is significant to strong, but it is
not decisive.

D. Photoproduction with RPR-2011

The γp → K+� observables presented in this section
are calculated with the RPR-2011 model parameters fixed at
their maximum likelihood values. The RPR-2011 results are
compared to the Reggeized background model Regge-2011
that was determined in Sec. IV. From the difference between
the Regge-2011 and the RPR-2011 results one can infer
conclusions about the role of the resonances for the various
observables.

The γp → K+� differential cross section is displayed as
a function of cos θ∗

K in Fig. 11. RPR-2011 provides a good
description over a wide range of kinematics. For the lowest
energies and backward angles there are deviations between
the model and the data, hinting at possible missing dynamics
such as u channel contributions. It is striking that the t channel
background of the Regge-2011 model already provides a
reasonable description of the gross features of both the ωlab

and cos θ∗
K dependence of the differential cross sections. The

biggest effect from the resonance contributions is observed at
the forward and backward kaon angles.

Both RPR-2011 and Regge-2011 models exhibit a steep rise
at extremely forward angles. At the three lowest ωlab energies
considered in Fig. 11 the inclusion of the resonances softens
this rise and improves the goodness of the fit to the data. Note
that the SAPHIR data (Fig. 1) suggest a plateau at forward
kaon angles and that this feature is absent in the CLAS data.

The angular dependence of the single-polarization observ-
ables �, P , and T is shown for three representative energies
in Fig. 12. The �, P , and T receive stronger contributions
from the N∗’s than the differential cross sections. In contrast
to the high-energy situation considered in Fig. 5, the photon
asymmetries in the resonance region are relatively small. The
Regge-2011 reproduces the trend of increasing � with growing
ωlab. The inclusion of the N∗’s does not lead to a considerably
improved quality of the fit. The recoil polarization P and
target polarization T are highly sensitive to the resonance
contributions.

We now turn our attention to the double-polarization
observables. We stress that they represent but 7% of the
total amount of data and that we give each data point an
equal weight. As the bulk of the data are in the differential
cross sections and to a lesser extent in the single-polarization
observables, the double-polarization observables represent
stringent tests of the RPR-2011 model. Perhaps somewhat
surprisingly, Regge-2011 provides a good approximation to
the double-polarization observables Cx and Cz, as is shown
in Fig. 13. The observed trends Cz ≈ 1 and Cx ≈ Cz − 1
[78] are well reproduced by both the Reggeized background
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FIG. 11. (Color online) Angular dependence of the differential cross section at various incident photon energies ωlab. The full red line
represents the RPR-2011 model; the blue dashed line corresponds to Regge-2011. The data are from Refs. [32–35].
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FIG. 12. (Color online) Angular dependence of the single-polarization observables: beam asymmetry � (top row), recoil polarization P

(middle row), and target asymmetry T (bottom row), at various incident photon energies ωlab. Line conventions are as in Fig. 11. The data are
from Refs. [35,60,61,63,64].

(Regge-2011) and RPR-2011. This observation hints at the
fact that the Cx,Cz are very background dominated. A large
sensitivity to resonance contributions is observed for Ox ′ and
Ox ′ , which are considerably better described by RPR-2011
than by Regge-2011.

E. Electroproduction predictions with RPR-2011

Electroproduction reactions have the potential to probe
the hadron’s electromagnetic substructure. The existence of
this substructure can be parametrized by introducing a Q2

dependence in the electromagnetic coupling constants. In ad-
dition, the e + p → e′ + K+ + � reaction dynamics becomes
sensitive to longitudinal couplings. In part, these couplings
arise naturally from the photoproduction amplitudes when
gauge invariance is imposed. A peculiar class of longitudinal
couplings vanishes for photoproduction reactions and cannot
be constrained against real-photon data. The latter class of
longitudinal couplings is neglected in the RPR model. In
brief, we fix the basic reaction mechanism to the γp → K+�

data and treat the electroproduction data as a test of the
model. Thereby, we make some reasonable assumptions with
regard to the electromagnetic form factors of the t channel
kaons and s channel N∗’s. Such an extrapolation of the
γp → K+� amplitude to e + p → e′ + K+ + � has been
shown as reasonably successful for the RPR-2007 model [14].

We use the same N∗ helicity amplitudes (HA) as in Ref. [14].
Also the transition form factors for the spin-1/2 particles
are those from Ref. [14]. The transition form factors for the
spin-3/2 particles are derived from the consistent Lagrangians
of Eqs. (32) and (33). For the spin 3/2 and 5/2 particles, the
HA are calculated in the Bonn CQM [76], and the transition
form factors are derived using Eqs. (34) and (35).

A comparison between recent low Q2 =
0.030−0.055 GeV2 measurements and RPR-2011 predictions
can be found in Ref. [83]. It was observed that RPR-2011
provides a fair description of those data. Unseparated
structure functions σT + ε σL at very forward kaon angles
obtained in the 1970s are shown as a function of W and
Q2 in Fig. 14 together with Regge-2011 and RPR-2011
predictions. Obviously, at cos θ∗

K ≈ 1 the major impact of
the intermediate resonances is to reduce the cross section
by some modest factor. This is in line with the observations
made for the real-photon differential cross sections of
Fig. 11. The electromagnetic form factors of the intermediate
resonances reduce the effect of the N∗’s with growing
photon virtuality Q2. The RPR-2011 model provides a
fair prediction for both the Q2 and W dependence of
the data.

Figure 15 shows the energy dependence of the separated
structure functions σL and σT . In line with the data, RPR-2011
predicts σL and σT of almost equal magnitude. σT appears
to be systematically underpredicted while σL is somewhat
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FIG. 13. (Color online) Angular dependence of the beam-recoil double-polarization observables with circular beam polarization, Cx and
Cz (top rows), and with oblique beam polarization, Ox′ and Ox′ (bottom rows), at various incident photon energies ωlab. Line conventions are
as in Fig. 11. The data are from Refs. [63,65].

overpredicted. The fair reproduction of both the magnitude and
the W dependence of σL provides support for our assumptions
with regard to the longitudinal couplings.

Predictions for the transferred polarization are presented
in Fig. 16. The Reggeized background model Regge-2011, as
was determined in Sec. IV B1, predicts the flat W dependence
and the magnitude of P ′

z ≈ 0.0 and P ′
x ≈ 0.5. For P ′

z , the in-
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FIG. 14. (Color online) The unseparated structure functions σT +
ε σL for e + p → e′ + K+ + � at cos θ∗

K ≈ 1 as a function of W at
Q2 = 2.9 GeV2 (left panel) and as a function of Q2 at W = 2160 MeV
(right panel). Line conventions are as in Fig. 11. The data are from
Refs. [79–81].

troduction of resonances worsens the quality of the agreement
with the data obtained in Regge-2011. For P ′

x the effect of the
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FIG. 15. (Color online) The separated structure functions σT

(top panels) and σL (bottom panels) for e + p → e′ + K+ + � at
cos θ∗

K ≈ 1 as a function of W at Q2 = 1.90 GeV2 (left panels) and
at Q2 = 2.35 GeV2 (right panels). Line conventions are as in Fig. 11.
The data are from Ref. [82].
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x (bottom panels) as defined in Table III of Ref. [84] for �e + p →

e′ + K+ + �� at (a) Q2 = 1.56 GeV2 and εlab
1 = 4.261 GeV and (b)

Q2 = 2.54 GeV2 and εlab
1 = 5.754 GeV. The W dependence of cos θ∗

K

can be captured by the following functions: (a) cos θ∗
K = −4.1 +

3.92W − 0.84W 2 and (b) cos θ∗
K = −3.74 + 3.48W − 0.69W 2. Line

conventions are as in Fig. 11. The data are from Ref. [84].

N∗ is smaller and the quality of the agreement is better than
for P ′

z .

VI. CONCLUSION

The RPR framework conjoins a Reggeized t channel
background with tree-level s channel nucleon resonances from
an isobar approach into an economical model for kaon photo-
production in and above the resonance region. The RPR model
clearly separates nonresonant from resonant amplitudes, which
is an asset when searching for the properties of those (missing)
resonances which contribute to γp → K+�.

We have used Bayesian inference to perform model
selection with regard to both the resonant and nonresonant
content of the RPR framework. It was shown that the
Bayesian evidence Z is a quantitative measure for a model’s
fitness to given data. The computation of Z requires in-
volving multidimensional integrals, which demand dedicated
numerical methods. To that purpose we have proposed the
“GA + MINUIT + log-VEGAS” integration strategy. With this
method one can reliably compute Z for models with a

moderate number of adjustable parameters such as the RPR
framework.

First, the most probable model variant for the Reggeized
background was determined against the 2.6 < W < 3.0 GeV
data. This involves the determination of three continuous
and two discrete adjustable parameters. The extracted value
for gK+�p is compatible with the one predicted by SU(3)
symmetry. Next, we have considered a set of 11 nucleon
resonances to determine the optimum resonant contribu-
tion in the RPR γp → K+� framework. To this end, the
Bayesian evidence was calculated for all 2048 model variants
resulting from the various resonance combinations. The
model with the highest evidence, dubbed RPR-2011, includes
the resonances S11(1535), S11(1650), F15(1680), P13(1720),
P11(1900), F15(2000), D13(1900), and P13(1900). An evalua-
tion of the individual resonances’ probabilities reveals that the
two resonances with the highest evidence of contributing to
γp → K+� are the S11(1650) and P13(1720). There is deci-
sive evidence that the D15(1675), D13(1700), and P11(1710)
are not required to describe the current γp → K+� world’s
data. The computed evidence for the two-star P13(1900), the
two-star F15(2000), and the “missing” P11(1900) is decisive,
whereas for the “missing” D13(1900) it is significant but not
decisive.

After fixing the basic reaction reaction mechanism to the
γp → K+� data, the electroproduction data serve as a test of
the model. In general our predictions for the electroproduction
data are reasonably good, which proves that the RPR-2011
model possesses predictive power and goes beyond a mere
analysis framework. Therefore, we consider RPR-2011 as an
efficient and robust model which can, for example, be used as
an elementary production operator in strangeness production
reactions involving the deuteron and finite nuclei.
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