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Resonance model study on K+N → K pη near threshold
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By using resonance model, we investigate K+N → KNη reactions with the assumption that these reactions
are dominated by the excitation of N∗(1535) near threshold. It is found that the hyperon and ρ exchange diagrams
give the most important contributions to these reactions. Thus, these reactions may be a good place to study the
coupling of N∗(1535) with K�, K�, and Nρ channels. We demonstrate that the angular distributions of final
particles provide useful information about the different mechanisms of the N∗(1535) excitations, which could be
useful for future experimental analysis on these reactions.
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I. INTRODUCTION

The negative parity nucleon resonance N∗(1535) is particu-
larly interesting in light hadron physics because of its peculiar
properties. It is the chiral partner (JP = 1

2
−

) of the nucleon and
has strong decay channels for both πN and ηN . Although it is
ranked as a four-star state in Particle Data Group (PDG) [1], the
nature and property of N∗(1535) are still not well understood.
Besides the conventional constituent quark model interpreta-
tion, it has also been argued that N∗(1535) is a quasibound
(K� − K�) state [2] and has large effective couplings to K�

and K� [3]. To check these model predictions, experimental
information on the coupling of N∗(1535) with KY (kaon-
hyperon) states should be necessary. Unfortunately, current
experimental knowledge on these kaon-hyperon couplings is
still poor, partly because of a lack of data on the experimental
side and partly owing to the complication of various inter-
fering t-channel exchange contributions [4] in πN and γN

scatterings.
In recent years, the decay of J/� is also utilized to study

the properties of nucleon resonances [5]. Because the isospin
of J/� is zero, its decay offers a natural isospin filter which
makes it a unique place to study the properties of nucleon
resonances. In the reaction J/� → pK−�̄, it is found that
there is an enhancement in K� invariant mass spectrum near
threshold [6]. If this enhancement is caused by N∗(1535), it
will imply that N∗(1535) has a large coupling to K� and
will have important implications on the property and nature of
N∗(1535) [7,8]. Based on a similar picture, it is also argued
that N∗(1535) probably has large coupling to Nφ [9–11].
Obviously, some further studies on the coupling of N∗(1535)
with KY states will be helpful to understand the nature of
N∗(1535) and relevant reaction mechanisms.

Besides the KY couplings, the coupling of N∗(1535) with
vector meson and nucleon is also not well determined, which
causes the debate that whether π [12–14] or ρ [15–19] meson
exchange diagram dominates η production in nucleon-nucleon
collisions. The differences between these two kinds of models
are generally related to the uncertainties of the coupling
constant gN∗(1535)Nρ . Even though the uncertainties of this
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coupling constant are examined in detail in Ref. [20], it is
still interesting and important to constrain the value of this
coupling constant in some other channels.

With the problems mentioned above, it is natural to ask
whether there are some other channels that are suitable for
studying the properties of N∗(1535). In this work, by using
a resonance model we study the reactions K+p → K+pη,
K+n → K0pη, and K+n → K+nη with the assumption that
the excitation of N∗(1535) dominates these reactions near
threshold. Some other contributions to this channel are mainly
from the excitation of the K∗ resonances and other nucleon
resonances besides N∗(1535). Because we are only interested
in the energy range near threshold, it is reasonable to expect
that only the states which have S-wave coupling to Kη or Nη

channel can give significant contributions. For the Kη channel,
the K∗ state in the relevant energy range that has S-wave
coupling with Kη is K∗

0 (1430), which is about 400 MeV above
the Kη threshold and should have minor effects near threshold.
Furthermore, there is also some indirect evidence from the
Dalitz plots [21,22] that show that K∗’s do not give significant
contribution near threshold. For the subthreshold contribution
from K∗(892), we note that it has p-wave coupling to Kη

and its mass is about 150 MeV below threshold. In view of
its relatively small width, that is, 50 MeV, we expect that
the contribution from K∗(892) should also have minor effects
near threshold. Meanwhile, according to PDG [1], we find that
near the ηN threshold the S11 states N∗(1535) and N∗(1650)
have significant decay branch ratios to both Nρ and Nη

channels and may give sizable contributions to these reactions.
With the parameters and formulas offered in Ref. [23], we
calculate the contribution from N∗(1650) and find that its
contribution is very small compared to the contribution from
N∗(1535) because of its larger mass and relatively weak
coupling with the Nη channel. The dominance of N∗(1535)
in the Nη channel near threshold is also well identified
in relevant experimental studies of J/� → pp̄η [24] and
pp → ppη [25] reactions. Based on the considerations given
above, we ignore the contribution from K∗’s and other nucleon
resonances in present work. Owing to no clear evidence of
the existence of pentaquark, we also ignore the s-channel
pentaquark contributions.

In next section, we give the formalism and ingredients in our
calculation, and then numerical results and some discussions
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are given in Sec. III. A short summary is given in the last
section.

II. THEORETICAL FORMALISM

In this work, we study the reactions K+p → K+pη,
K+n → K0pη, and K+n → K+nη in an effective La-
grangian approach. We assume that these reactions are
dominated by the intermediate excitation of the N∗(1535)
near threshold and then N∗(1535) decays to Nη. The basic
Feynman diagrams for the K+N → KNη are depicted in
Fig. 1.

We use the commonly used interaction Lagrangians for
ρKK , ωKK , and φKK couplings [26],

LρKK̄ = iGV [K̄ �τ (∂μK) − (∂μK̄)�τK] · �ρμ, (1)

LωKK̄ = iGV [K̄(∂μK) − (∂μK̄)K]ωμ, (2)

LφKK̄ = −
√

2iGV [K̄(∂μK) − (∂μK̄)K]φμ. (3)

At each vertex a relevant off-shell form factor is used. In our
computation, we take the same form factors as that widely
used [27]

FKK
V = �2

V − m2
V

�2
V − q2

V

, (4)

where �V , mV , and qV are the cutoff parameter, mass, and
four-momentum for the exchanged meson (V ) respectively.
We adopt the coupling constant GV and �V as GV = 3.02
and �V = 2 GeV in the calculations [27].

To calculate the Feynman diagrams in Fig. 1, we still
need to know the interaction Lagrangian involving N∗(1535)
resonance. In Ref. [28], a Lorentz covariant orbital-spin (L-S)
scheme for N∗NM couplings has been given in detail. With
this scheme, we can easily write the effective N∗(1535)Nη,

K+ N

K

N η ηN

V Y

K

N K+

N∗(1535) N∗(1535)

(a) (b)

FIG. 1. Feynman diagrams for the excitation of N∗(1535) through
(a) vector meson exchange and (b) hyperon exchange in K+N →
KNη reactions. For K+p → K+pη, V = ρ0, φ, or ω and Y = �

or �0; for K+n → K0pη, V = ρ± and Y = � or �0; for K+n →
K+nη, V = ρ0, φ, or ω and Y = �−.

N∗(1535)Nρ, N∗(1535)Nω, and N∗(1535)Nφ vertex func-
tions,

VN∗(1535)Nη = igN∗(1535)NηūNuN∗(1535) + H.c., (5)

VN∗(1535)Nρ = igN∗(1535)NρūNγ5

(
γμ − qμγ νqν

q2

)

× εμ(pρ)uN∗(1535) + H.c., (6)

VN∗(1535)Nω = igN∗(1535)NωūNγ5

(
γμ − qμγ νqν

q2

)

× εμ(pω)uN∗(1535) + H.c., (7)

VN∗(1535)Nφ = igN∗(1535)NφūNγ5

(
γμ − qμγ νqν

q2

)

× εμ(pφ)uN∗(1535) + H.c. (8)

Here uN and uN∗ are the spin-wave functions for the nucleon
and N∗(1535) resonance; εμ(pρ), εμ(pω), and εμ(pφ) are the
polarization vectors of the ρ, ω, and φ mesons, respectively.
It is worth noting that because the spin of vector meson is 1,
both S-wave and D-wave L-S couplings are possible for the
N∗(1535)Nρ, N∗(1535)Nω, and N∗(1535)Nφ interactions. It
was found that the S-wave coupling has significant contribu-
tion to the N∗(1535) decaying to Nρ compared with the D

wave [1,29]. In our calculations we consider only the S-wave
N∗(1535) resonance coupling to Nρ and neglect the D-wave
coupling. We also neglect the D-wave N∗(1535) resonance
couplings to Nω and Nφ for simplicity as it was done in
Ref. [9,10]. The monopole form factors for N∗(1535)N -meson
vertices are used,

FN∗
NM = �∗2 − m2

V

�∗2 − q2
V

, (9)

where mV and qV are the mass and four-momentum of
the exchanging vector mesons and we adopt �∗ = 1.3 GeV
[9] in our work. For the coupling constant gN∗(1535)Nρ , we
take g2

N∗(1535)Nρ/4π = 0.1 [9] in our calculation which is
determined by the partial decay width �N∗(1535)→Nρ→Nππ . It
is shown in Ref. [20] that this value is also consistent with
the prediction of the radiation decay of N∗(1535) within
vector meson dominance model. For the coupling constant
gN∗(1535)Nη, we use the value g2

N∗(1535)Nη/4π = 0.28 [9], which
is obtained from the partial decay width of N∗(1535) to Nη.
The coupling constant gN∗(1535)Nω is still not well constrained
by experimental data. In the literature, the ratio of gN∗(1535)Nρ

to gN∗(1535)Nω varies from 1.77 to 2.6 [30–32]. In this work, we
adopt the value of ratio as 2, which gives g2

N∗(1535)Nω/4π =
0.25. Another coupling constant gN∗(1535)Nφ is also not well
known. However, in Ref. [9] it is shown that if assuming a
large coupling of N∗(1535) with Nφ, both π−p → nφ and
pp → ppφ data can be well described. So in this work,
we adopt g2

N∗(1535)Nφ/4π = 0.13, as suggested in Ref. [9].
Concrete calculations show that, even with this large coupling
constant, φ exchange diagram only plays a minor role in these
reactions.

The other class of Feynman diagram considered in this
work is Fig. 1(b). The effective Lagrangians describing the
couplings of N∗(1535) to KY and N to KY are taken from
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Ref. [7,8]:

LN∗(1535)K� = −igN∗(1535)K��̄N∗(1535)���K + H.c., (10)

LN∗(1535)K� = −igN∗(1535)K��̄N∗(1535) �τ · ����K + H.c.,

(11)

LNK� = igNK��̄Nγ5���K + H.c., (12)

LNK� = igNK��̄Nγ5���K + H.c. (13)

For the value of coupling constants gNK� and gNK� , one
popular choice is to use SU(3) predictions. It has been shown
that pp → pKY [33,34] and Kp scattering [35] can be
understood in terms of gK�p and gK�p values which are in
good agreement with the SU(3) predictions. Also from a Regge
analysis of the high-energy γp → KY data [36], it seems
that the coupling constants are still in agreement with SU(3)
predictions. So we adopt the SU(3) predicted values, that is,
g2

NK�/4π = 14.06 and g2
NK�/4π = 1.21, in our calculations.

For the coupling constants gN∗K� and gN∗K� , one option is to
determine them from SU(3) predictions, because it was shown
in Ref. [37] that the SU(3) relations may hold for N∗(1535).
Within this option, one can follow the logic and results given
in Ref. [38]. With the parameters given in that work, that
is, α = −0.28 and |A8| = 5.2, we get g2

N∗(1535)K�/4π = 0.14
and g2

N∗(1535)K�/4π = 5.24 (Option I). The other option is to
follow the results given in Ref. [3], where the ratio between
|gN∗(1535)K�|, |gN∗(1535)K� | and |gN∗(1535)Nη| can be obtained
as 0.92 : 1.5 : 1.84. With the value of gN∗(1535)Nη given above,
then we get g2

N∗(1535)K�/4π = 0.069 and g2
N∗(1535)K�/4π =

0.19 (Option II). By comparing these two options, we find
that for the coupling constant gN∗(1535)K� these two options
give some similar predictions, while, for the coupling constant
gN∗(1535)K� , the predictions from these two options are very
different. The SU(3) prediction for gN∗(1535)K� is about
5.3 times larger than that obtained from Ref. [3]. With this
uncertainty in mind, we adopt Option II in the following
calculations, because with a very large gN∗(1535)K� it may
cause problems in consistently describing some other relevant
processes, such as γp → K� or π−p → K� reactions,
where N∗(1535) also contributes. The final conclusion on the
value of gN∗(1535)K� should be made with a thorough analysis
of all relevant channels. The form factors for the vertices NKY

and N∗KY are taken from Ref. [39]:

FKY = �4
u

�4
u + (q2 − m2)2

. (14)

For the cutoff parameter of vertex KN�, it is known that
to control the Born amplitudes of reaction γp → K+� in
a reasonable range the introduction of a mechanism that
reduces the Born strength is necessary [39]. One possible
way is to introduce a rather small �u, and it is shown
that the experimental data can be described fairly well with
�u = 0.4 GeV [40,41]. However, with such a small �u, the
form factors play a predominant role in the reaction dynamics
and may cause serious questions about the validity of the
theoretical framework. Also, using such a small value of

TABLE I. Coupling constants and cutoff parameters adopted in
present work.

Vertex g � (GeV) Vertex g2/4π � (GeV)

ρKK GV = 3.02 2.0 N∗(1535)Nρ 0.1 1.3
ωKK GV 2.0 N∗(1535)Nω 0.25 1.3
φKK

√
2GV 2.0 N∗(1535)Nφ 0.13 1.3

NK� −13.29 1.5 N∗(1535)K� 0.069 1.3
NK� 3.9 1.5 N∗(1535)K� 0.19 1.3

N∗(1535)Nη 0.28

�u one cannot give consistent descriptions of the reaction
ep → eK+� as well [42]. So we adopt �u = 1.5 GeV for
vertex KN� in our work as suggested in Ref. [39]. To
reduce the number of free parameters, we use the same cutoff
parameter for the vertex KN� as well. For the vertices
N∗(1535)K� and N∗(1535)K� in a u channel, we use the
same form factor as that defined in Eq. (14). However, the
cutoff parameter (�∗

u) for these vertices is not well determined
in the literature. In this work, we adopt �∗

u = 1.3 GeV for
these vertices, and the uncertainties owing to this parameter
are discussed below. For easy comparison with other works,
all the coupling constants and cutoff parameters adopted in our
work are collected in Table I.

The N∗(1535) propagator is written in a Breit-Wigner form
[43]:

GN∗ (q) = i(q/ + MN∗ )

q2 − M2
N∗ + iMN∗�N∗ (q2)

, (15)

where �N∗ (q2) is the energy-dependent total width and q is
the four-momentum of N∗(1535). Keeping only the dominant
πN and ηN decay channels [1], this can be decomposed as

�N∗ (q2) = aπN ρπN (q2) + bηN ρηN (q2), (16)

where aπN = 0.12 GeV/c2, bηN = 0.32 GeV/c2, and the two-
body phase space factors, ρπ(η)N (q2), are

ρ(q2) = 2p cm(q2) �
(
q2 − q2

thr

)√
q2 , (17)

and qthr is the threshold value for the decay channel.
The propagators of vector meson and hyperon are also

needed in the calculations and can be written in the form

G
μν

V (qV ) = −i

(
gμν − q

μ

V qν
V /q2

V

q2
V − m2

V

)
, (18)

GY (qY ) = i
q/Y + MY

q2
Y − m2

Y

, (19)

where qV and qY are the four-momentum of the exchanged
vector meson and hyperon (Y = � or �), respectively.

After having established the effective Lagrangians, cou-
pling constants, and form of the propagators, the invariant
scattering amplitudes can be written by following the standard
Feynman rules. The calculations of the differential and total
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cross sections are then straightforward,

dσ = 1

16

m2
N√

(pK · pN )2 − m2
Nm2

K

1

(2π )5

∑
si ,sf

|Mfi|2

×
3∏

a=1

d3pa

Ea

δ4(Pi − Pf ), (20)

where Mfi represents the total amplitude, Pi and Pf represent
the sum of all the momenta in the initial and final states,
respectively, and pa denotes the momenta of the three particles
in the final state.

III. RESULTS AND DISCUSSIONS

With the formalism and ingredients given above, the total
cross sections versus excess energy Q for the K+p → K+pη,
K+n → K+nη, and K+n → K0pη are calculated by using a
Monte Carlo multiparticle phase space integration program.
In Fig. 2, we show the results of cross sections obtained by
considering vector meson exchange and hyperon exchange
diagrams.

From Fig. 2, it can be found that the �, �, and ρ exchanges
give the most important contributions to these reactions. The
φ exchange contribution only plays a minor role, although
we adopt a large value for gN∗(1535)Nφ . The strength of ω

exchange is a little smaller than φ exchange within our model.

In K+p → K+pη, the � exchange dominates this reaction
near threshold. The contribution from � exchange is much
smaller than � exchange, which is mainly attributable to
the large difference between the values of gKN� and gKN� .
While for the reaction K+n → K+nη, � exchange plays the
most important role. This is partly because � exchange is
forbidden in this reaction and partly because � exchange
is enhanced in this channel because of the isospin Clebsch-
Gordan coefficients appearing in the vertex functions. In the
reaction K+n → K0pη, ω and φ exchanges are forbidden
and ρ exchange becomes more important compared to other
channels. The ρ exchange gives equally important contribution
as � exchange. It is also because of the isospin Clebsch-
Gordan coefficients appearing in the vertices that make ρ

exchange much more favored in this reaction.
To check the dependence of the results on the cutoff

parameter �∗
u adopted for N∗(1535)KY vertex, we also per-

form the calculations with �∗
u = 1.0 GeV and �∗

u = 2.0 GeV,
respectively. With a smaller cutoff value, that is, 1.0 GeV, the
strength of the � and � exchange amplitudes is suppressed
and their contributions to the cross section are reduced by a
factor of 3. However, with �∗

u = 2.0 GeV, the contributions
from � and � exchanges are enhanced by a factor of 2. The
uncertainties owing to this parameter, which are obtained by
varying the �∗

u from 1.0 to 2.0 GeV, are shown in Fig. 2 by the
gray and shadowed area for � exchange and � exchange,
respectively. The error bands show that the value of this
cutoff parameter is important for determining the magnitudes

(a)

(c)

(b)

FIG. 2. The total cross section obtained by considering individual diagrams for reactions (a) K+p → K+pη, (b) K+n → K+nη, and
(c) K+n → K0pη, where the gray and shadowed areas denote the uncertainties owing to the cutoff parameters on N∗(1535)K� and
N∗(1535)K�, respectively.
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FIG. 3. Angular distribution of final proton (a), η (b), and K0 (c) of the reaction K+n → K0pη, where θ denotes the angle of the outgoing
particles relative to the incident K+ beam direction in the c.m. frame. The solid, dashed, and dotted lines represent the contribution from ρ, �,
and � exchange amplitudes, respectively.

of amplitudes. Unfortunately, because the cutoff parameter is
introduced phenomenologically, it only can be determined by
fitting to experimental data. Without experimental data near
threshold, this parameter cannot be well determined in the
present model. However, the above calculations may offer us
some estimation about the uncertainties of the present model.

With the uncertainties mentioned above, it still can be
expected from the results shown in Fig. 2 that the �, �, and
ρ exchanges play the most important roles in the reactions
K+N → KNη near threshold. Thus, these reactions may
constitute a good basis for investigating the couplings of
N∗(1535) with KY and Nρ channels. Owing to the charge
conservation law, � exchange is forbidden in K+n → K+nη.
Because � exchange dominates this reaction, this reaction may
be a good place to extract the coupling constant gN∗(1535)K� .
Similarly, because � and ρ exchanges give the most important
contributions to the reactions K+p → K+pη and K+n →
K0pη, these reactions are suitable to study the coupling
constants gN∗(1535)K� and gN∗(1535)Nρ .

To distinguish the contributions between hyperon and
ρ exchanges, one possible way is to utilize the angular
distribution of final particles in the c.m. frame. To illustrate this
possibility, we show the angular distribution of final particles in
the reaction K+n → K0pη in c.m. system at Q = 15 MeV in
Fig. 3 by considering �, �, and ρ exchanges, respectively,
where ρ and � exchanges have similar strength and �

exchange only plays a minor role. Note that here we choose

the energy Q = 15 MeV just as an example, and the angular
distributions do not change significantly near threshold. As can
be seen from Fig. 3, the angular distribution from ρ exchange
amplitude and hyperon exchange amplitude are distinct from
each other. The pattern of angular distributions shown in Fig. 3
can be understood in the following way. If we ignore the
decay of N∗(1535), the ρ and hyperon exchange diagrams
are corresponding to t-channel and u-channel diagrams,
respectively. So one may expect that the angular distribution
of the final K meson should have a forward peak for the ρ

exchange amplitude and have a backward peak for the hyperon
exchange amplitude. This is what we get in Fig. 3.

To investigate the interference effects, we need to fix the
relative phase among individual amplitudes which, in princi-
ple, should be done by fitting to the data within an effective
Lagrangian approach. To get an estimation of the interference
effects, in this work we assume that the relative phase between
� exchange amplitude and � exchange amplitude is fixed by
the SU(3) symmetry; that is, we adopt the SU(3) predicted
sign for the relevant coupling constants. The relative phase
between ρ exchange amplitude and � exchange amplitude is
taken to be either +1 or −1, corresponding to the constructive
and destructive interference, respectively. In this way, we can
fix the relative phases among individual amplitudes and the
corresponding results for the angular distributions are shown in
Fig. 4, where we present the results by considering the coherent
sum of the ρ and � exchanges [Fig. 4(a)], ρ and � exchanges

FIG. 4. Illustration of the interference effects on the angular distribution of final K meson in the c.m. frame in the K+n → K0pη reaction
by considering the interference among ρ, �, and � exchange amplitudes. The solid and dashed lines represent the results corresponding to
destructive and constructive interference, respectively. θ is defined in the same way as in Fig. 3.
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[Fig. 4(b)], and the full mechanisms [Fig. 4(c)], respectively.
It needs to be noted that significant interference effects among
individual amplitudes are also found in the calculation of
total cross sections. However, to show the interference effects
on the shape of the angular distribution more clearly, we
normalize individual results to the same quantity. As can
be seen from Fig. 4, the interference between individual
mechanisms may alter the angular distribution considerably
compared to the distribution from the individual mechanisms
without interference effects in Fig. 3. This shows clearly that
the interference effects may have important influence on the
physical observables.

Based on the above discussions, it can be expected that
the experimental data of angular distributions may present
very different pattern as compared to the angular distributions
shown in Fig. 3 where interference effects are not taken into
account. This will make it difficult to extract the relevant
couplings from the experimental data directly. Here we want
to note that the strength and relative roles of � and ρ

exchanges change in different reactions. This means that if
the angular distributions are sensitive to the relative phase and
magnitude of individual amplitudes as shown in Fig. 4, the
angular distributions of final particles would vary significantly
in different reactions. Because the three reactions considered
in this work are related by isospin symmetry, the strength
of individual mechanism in different reactions is related by
isospin relations. Thus, a combined analysis of all these three
reactions can put strong constraints on the magnitude and
relative phase of individual amplitudes, which will help us
understand the coupling of N∗(1535) with various channels

better. The specific features of angular distributions owing to
individual mechanisms given in present work could be helpful
for analyzing the reaction mechanisms when experimental data
are available.

IV. SUMMARY

In this work, we study the reactions K+N → KNη near
threshold within an effective Lagrangian approach. Based
on the assumption that this reaction is dominated by the
excitation of N∗(1535) resonance, we find that the �, �, and
ρ exchange diagrams give the most important contributions
to these reactions near threshold. Thus, the reactions under
study may constitute a good basis to study the coupling of
N∗(1535) with Nρ, K�, and K� channels. It is also found
that interference effects among individual mechanisms are
important and may alter the angular distributions significantly.
A combined analysis on all the three reactions can help us
better understand the relative roles of individual mechanisms,
and the results of this work should be useful for analyzing and
entangling the different mechanisms when the experimental
data are available in the future.
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