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Analysis of the near-threshold peak structure in the differential cross section of φ-meson
photoproduction: Indication of a missing resonance with non-negligible strangeness content
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The details of the analysis of the near-threshold bump structure in the forward differential cross section of the
φ-meson photoproduction to determine whether it is a signature of a resonance, together with more extensive
results, are presented. The analysis is carried out in an effective Lagrangian approach which includes Pomeron and
(π, η) exchanges in the t channel and contributions from the s- and u-channel excitations of a postulated nucleon
resonance. In addition to the differential cross sections, we use the nine spin-density matrix elements as recently
measured, instead of the φ-meson decay angular distributions which depend only on six spin-density matrix
elements as was done before, to constrain the resonance parameters. We conclude that indeed the nonmonotonic
behavior, along with the other experimental data as reported by LEPS, can only be explained with an assumption of
the excitation of a resonance of spin 3/2, as previously reported. However, both parities of (±) can account for the
data equally well with almost identical mass of 2.08 ± 0.04 GeV and width of 0.501 ± 0.117 and 0.570 ± 0.159
for 3/2+ and 3/2−, respectively. The ratio of the helicity amplitudes A1/2/A3/2 calculated from the resulting
coupling constants differs in sign from that of the known D13(2080). More experimental data on single and
double polarization observables are needed to resolve the parity. We further find that with an assumption of large
values of the OZI-evading parameters xOZI = 12 for J P = 3/2− and xOZI = 9 for J P = 3/2+, the discrepancy
between the recent experimental data on ω-meson photoproduction and the theoretical model can be considerably
reduced. We argue that the large value of xOZI indicates that the postulated resonance contains a non-negligible
amount of strangeness content.

DOI: 10.1103/PhysRevC.86.015203 PACS number(s): 13.60.Le, 25.20.Lj, 14.20.Gk

I. INTRODUCTION

The φ-meson photoproduction reaction has long been
extensively studied. At high energy, the diffractive process
dominates and it can be well described by t-channel Pomeron
(P ) exchange [1,2]. In the low-energy region, the nondiffrac-
tive processes of the pseudoscalar (π, η)-meson exchanges
are also known to contribute [1]. Other processes, such as
nucleon exchange [3,4], nucleon resonances [5,6], second
Pomeron exchange, t-channel scalar meson and glueball ex-
changes [6,7], and ss̄-cluster knockout [4,8,9], have also been
investigated. However, a peak in the differential cross sections
of φ photoproduction on protons at forward angles around
Eγ ∼ 2.0 GeV as recently observed by the LEPS collaboration
[10] cannot be explained by the processes mentioned above.

Since a bump in the cross sections is often associated with
excitation of resonances, it is then tempting to see whether the
peak observed in Ref. [10] can be described by a resonance.
There exist previous works studying the effects of resonances
in s and u channels with masses up to 2 GeV [5,6]. Reference
[5] employs SU(6) ⊗ O(3) symmetry within a constituent
quark model and includes explicitly excited resonances with
quantum numbers n � 2. On the other hand, Ref. [6] includes
all the known 12 resonances below 2 GeV listed by the Particle
Data Group (PDG) [11], with coupling constants determined
by available experimental data [12,13] at large momentum
transfers. The resonances are found to play significant roles
in the polarization observables. Nevertheless, the resonances
considered, either listed in the PDG table or predicted by some
quark model, cannot account for the nonmonotonic behavior
as reported in Ref. [10].

In Ref. [14], we tried to explore the possibility of whether
such a nonmonotonic behavior could be explained by a
postulated resonance by fiat in the neighborhood of the
observed peak position. We found that with an addition of
a resonance of spin 3/2 to a background mechanism which
consists of Pomeron and (π, η)-meson exchanges in the t

channel, not only the peak in the forward differential cross
section but also the t dependence of the differential cross
section (DCS) and φ meson decay angular distribution can be
well described. A similar attempt was also made in Ref. [15],
where the effect of the K�(1520) is taken into account in a
coupled-channel analysis. Their results preferred a resonance
of JP = 1/2−. However, the calculation is marred by a mistake
in the phase of the Pomeron amplitude.

In this paper, we give the details of our previous analysis
[14] and present more extensive results of our calculation. In
addition, we employ the new LEPS data [16] which consist of
nine spin-density matrix elements measured at three different
energies to determine the resonance parameters, instead of the
decay angular distributions of the φ meson, which involve only
six spin-density matrix elements, taken only at two energies
given in Ref. [10], as was done before. The use of a larger
data set with better precision should provide a more stringent
constraint on the model and give rise to more reliable extracted
resonance properties. We also provide an estimation of the
strangeness content of the postulated resonance.

This paper is organized as follows. The model used in
our analysis, which consists of Pomeron and (π, η)-meson
exchanges in the t channel, and a postulated resonance
are given in Sec. II. The extracted resonance parameters,
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their possible effects in the polarization observables and ω

photoproduction, and an estimation of the strangeness content
of the resonance are presented in Sec. III. The summary is
given in Sec. IV.

II. THE MODEL FOR φ-MESON PHOTOPRODUCTION

We first introduce the kinematic variables k, pi , q, and pf

for the four-momenta of the incoming photon, initial proton,
outgoing φ meson, and final proton, respectively, with s =
(k + pi)2 = (q + pf )2, t = (q − k)2 = (pf − pi)2, and u =
(pf − k)2 = (q − pi)2.

We follow the convention of the PDG [11] and define the
invariant amplitude −iM as related to the S matrix by

Sf i = δf i − i
(2π )4δ(4)(pf + q − pi − k)(

2Epf

)1/2(
2Epi

)1/2
(2Eq)1/2(2Ek)1/2

Mf i,

(1)

with normalization 〈pf |pi〉 = (2π )3δ(3)(pf − pi) for free-
particle momentum state and ū(p, s)u(p, s) = 2m for Dirac
spinor with mass m. In addition to the background mechanism
of Pomeron exchange, t-channel π and η exchange, we will
postulate the existence of a resonance by fiat and see whether
we could describe the data of LEPS [10,16]. We can then write
the full amplitude M as

Mf i = MP + Mπ+η + MN∗ , (2)

as shown in Fig. 1, where MN∗ contains both s- and u-channel
contributions. The unpolarized differential cross section is
related to the invariant amplitude by

dσ

dt
= 1

64πs|kc.m.|2
1

4

∑
λN ,λγ

∑
λN ′ ,λφ

|Mf i |2, (3)

where kc.m. is the photon three-momentum in the center-
of-mass (CM) frame and λN , λN ′ , λγ , and λφ denote the
helicities of the initial proton, final proton, incoming photon,
and outgoing φ meson, respectively.

A. Pomeron exchange

Following Refs. [6,17], we can easily write down the
Pomeron-exchange amplitude of Fig. 1(d),

MP = −ū(pf , λN ′ )M(s, t)�μνu(pi, λN )ε∗
μ(q, λφ)εν(k, λγ ),

(4)

where εμ(q, λφ) and εν(k, λγ ) are the polarization vectors
of the φ meson and photon with λφ and λγ , respectively,
and u(pi, λN )[u(pf , λN ′ )] is the Dirac spinor of the nucleon
with momentum pi(pf ) and helicity λN (λN ′). The transition
operator �μν in Eq. (4) is

�μν =
(

gμν − qμqν

q2

)
�k −

(
kμ − k · qqμ

q2

)
γ ν

−
(

γ μ − �qqμ

q2

)[
qν − k · q

(
pν

i + pν
f

)
k · (pi + pf )

]
. (5)

The scalar function M(s, t) is described by the Reggeon
parametrization,

M(s, t) = CP F1(t)F2(t)
1

s

(
s − sth

s0

)αP (t)

exp

[
− iπ

2
αP (t)

]
,

(6)

where the Pomeron trajectory is taken to be αP (t) = 1.08 +
0.25t and s0 = (mN + mφ)2. F1(t), the isoscalar form factor
of the nucleon, and F2(t), the form factor of the φ-photon-
Pomeron coupling, are given as [2,6]

F1(t) = 4m2
N − a2

Nt(
4m2

N − t
)
(1 − t/t0)2

, (7)

F2(t) = 2μ2
0(

1 − t/m2
φ

)(
2μ2

0 + m2
φ − t

) , (8)

with μ2
0 = 1.1 GeV2, a2

N = 2.8, and t0 = 0.7 GeV2.
In this study, we follow Ref. [6] by choosing the strength

factor CP = 3.65, which is obtained by fitting to the total
cross sections data at high energy, as shown in the upper panel
in Fig. 2, where the inset shows the enlarged view of the
region for Eγ � 7 GeV. We include a threshold factor sth as
was done in Refs. [3,6] in order to get a better agreement
with experimental data near the threshold region. If sth = 0 is
chosen as done in Ref. [6], a problem arises. Namely, the results
for forward differential cross sections would overestimate the
experimental data [18] by about 20% as seen in the lower
panel of Fig. 2 around Eγ = 6 GeV. Since Pomeron properties
and behaviors at lower energies are not well established,
we adjust this parameter to fit the experimental data on the
differential cross sections around Eγ = 6 GeV. Eγ = 6 GeV
is chosen because at this energy, one can reasonably expect
that all other contributions from hadronic intermediate states
would become negligible and only the Pomeron contributes.
Furthermore, around this energy, experimental data are quite
reliable in that they have relatively small error bars and rise

p

(b) (c) (d)(a)

γ φ

p pp

φ

p

γ

Pomeron

γ

p

φ

N*

φγ

pp N*

π,η

FIG. 1. Pomeron, (π, η) exchanges, s-, u-channel N∗ excitation diagrams for γp → φp reaction are labeled (a)–(d), respectively.
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FIG. 2. (a) Total cross sections of φ photoproduction as a function
of photon laboratory energy Eγ . The inset gives an enlarged view for
the region with Eγ � 7 GeV. (b) Differential cross sections of φ

photoproduction at forward angle as a function of photon laboratory
energy Eγ . Results of this work (our) and Ref. [6] (Titov-Lee) are
drawn as full and dashed lines, respectively. Data are taken from
Ref. [18].

steadily without much fluctuation. These give us confidence
to match the Pomeron contribution to the experimental data at
this energy by fixing sth = 1.3 GeV2.

B. π - and η-meson exchanges

The amplitudes for the π and η exchanges in the t channel,
Fig. 1(c), are calculated in a straightforward manner [8,9] and
are given by

Mπ+η = −egγφπgπNNF 2
π (t)

mφ

ū(pf , λN ′ )γ5
εμνρσ qμkρ

t − m2
π

× u(pi, λN )ε∗
ν (q, λφ)εσ (k, λγ )

− egγφηgηNNF 2
η (t)

mφ

ū(pf , λN ′ )γ5
εμνρσ qμkρ

t − m2
η

× u(pi, λN )ε∗
ν (q, λφ)εσ (k, λγ ), (9)

where the coupling constants gπNN , gγφπ , and gγφη, as well
as the form factors Fπ (t) and Fη(t) for the virtually exchanged
mesons at the MNN and γφM (M = π, η) vertices, respec-

tively, are taken to be the same as in Ref. [17]. We choose
gηNN = 1.12 [19] and �π = �η = 1.2 GeV which are slightly
different from the values given in Ref. [17]. The choice of
the cutoff parameter �π = 1.2 GeV would lead to a Fπ (t)
which agrees well with the πNN form factors as obtained
in the meson-exchange πN model Ref. [20] in the region of
−0.5 < t < 0 GeV2 where most of the data considered in this
present work lie.

C. Excitation of a baryon resonance

The Feynman diagrams with an N∗ in the intermediate
state in the s and u channels are shown in Figs. 1(a) and 1(b).
To evaluate the invariant amplitudes involving N∗, we use the
following interaction Lagrangians. For the coupling of spin-
1/2 and spin-3/2 resonances to γN , we choose the commonly
used interaction Lagrangians [19,21,22]

L1/2±
γNN∗ = eg

(2)
γNN∗ψ̄N�±σμνF

μνψN∗ + H.c., (10)

L3/2±
γNN∗ = ieg

(1)
γNN∗ψ̄N�±(

∂μψν
N∗

)
F̃μν

+ eg
(2)
γNN∗ψ̄N�±γ 5

(
∂μψν

N∗
)
Fμν + H.c., (11)

where Fμν = ∂μAν − ∂νAμ is the electromagnetic field tensor,
and σμν = i

2 (γμγν − γνγμ). Also, F̃μν = 1
2εμναβF αβ denotes

the dual electromagnetic field tensor with ε0123 = +1. The
operators �± are given by �+ = 1 and �− = γ5. For the φNN∗
interaction Lagrangians, we have

L1/2±
φNN∗ = g

(1)
φNN∗ψ̄N�±γ μψN∗φμ

+ g
(2)
φNN∗ψ̄N�±σμνG

μνψN∗ + H.c., (12)

L3/2±
φNN∗ = ig

(1)
φNN∗ψ̄N�±(

∂μψν
N∗

)
G̃μν

+ g
(2)
φNN∗ψ̄N�±γ 5

(
∂μψν

N∗
)
Gμν

+ ig
(3)
φNN∗ψ̄N�±γ 5γα

(
∂αψν

N∗ − ∂νψα
N∗

)
(∂μGμν)

+ H.c., (13)

where Gμν is defined as Gμν = ∂μφν − ∂νφμ with φμ the field
of the φ meson. The dual field tensor G̃μν is again defined in the
same way as its electromagnetic counterpart with Fαβ → Gαβ .
Notice that we could have chosen to describe the γNN∗ in the
same way as we describe the φNN∗ interactions. However,
current conservation consideration fixes g

(1)
γNN∗ for JP = 1/2±

resonances to be zero. In addition, the term proportional to
g

(3)
γNN∗ in the Lagrangian densities of Eq. (13) vanishes in

the case of a real photon. With the Lagrangians given in
Eqs. (11)–(13), the full invariant amplitude of s and u channels
can readily be written down straightforwardly by following the
Feynman rules.

The form factor for the vertices used in the s- and u-channel
diagrams, FN∗ (p2), is taken to be similar to that in Ref. [20],

FN∗ (p2) = �4

�4 + (
p2 − M2

N∗
)2 , (14)

where � is the cutoff parameter for the virtual N∗. In this work,
we choose � = 1.2 GeV for all resonances. The spin-1/2 N∗
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propagator can be written in a Breit-Wigner form as

G(1/2)(p) = i( �p + MN∗ )

p2 − M2
N∗ + iMN∗�N∗

, (15)

with �N∗ the total decay width of N∗. The Rarita-Schwinger
propagator is used for the spin-3/2 N∗,

G(3/2)
μν (p) = i( �p + MN∗ )

p2 − M2
N∗ + iMN∗�N∗

[
−gμν + 1

3
γμγν

− 1

3MN∗
(pμγν − pνγμ) + 2

3M2
N∗

pμpν

]
. (16)

Because u < 0, we take �N∗ = 0 MeV for the propagator in
the u channel.

It should, however, be stressed that we do not know the value
of the coupling constants gφNN∗ and gγNN∗ , as our calculations
are done in the tree level. Therefore, in the present calculation,
we show the values of gγNN∗gφNN∗ obtained by fitting the
experimental data.

III. RESULTS AND DISCUSSION

With the model presented in Sec. II, one can easily
obtain the full amplitude of γp → φp reaction and calculate
the scattering observables straightforwardly with a specific
assignment of spin parity of the resonance. Since the peak
appears to lie close to the φN threshold, only the lower
partial waves are important and we shall consider only
JP = 1/2±, 3/2± as the possible candidates for the spin-parity
assignment of the resonance. In this work, we fit our model
simultaneously to the differential cross section at the forward
angle as a function of photon energy and the differential cross
section’s dependence on t at eight photon energies reported
in Ref. [10], as well as to nine spin-density matrix elements
ρα

ij [23] as a function of t at three photon energies [16]. We
use the Gottfried-Jackson system, in which the φ meson is at
rest, as depicted in Fig. 3, to analyze the spin-density matrix
elements. The zGJ axis is taken to be along the incoming
photon momentum while the yGJ axis is taken to be along the
pf × pi direction, with pf and pi the three-momentum of final

production planeφ

polarization planeγ

directionγ

φ at rest

GJx

GJy

GJz

K

Θ

Φ

Ψ

γ

p

p

FIG. 3. (Color online) The φ photoproduction in Gottfried-
Jackson system.

and initial proton, respectively. The xGJ axis is chosen to form
a right-handed coordinate system.

Notice that in our previous work [14], decay angular
distributions W , instead of the spin-density matrix elements
ρα

ij , were used in the data set to which we fit our model
parameters. Even though the decay angular distributions are
also functions of spin-density matrix elements (SDME), they
depend on only six out of a total of nine SDMEs. Furthermore,
the decay angular distributions used in Ref. [14], as presented
in Ref. [10], are taken only at two photon energies and
averaged over t , while the nine SDMEs used in this work as
presented in Ref. [16] are taken at three photon energies and are
functions of t . We expect that the larger set of data considered
in this work would provide a more stringent constraint on our
model and results.

In the tree-level approximation, only products like
gγNN∗gφNN∗ enter. The other parameters in our model are the
resonance mass and width. They are determined with the use
of MINUIT by fitting to the data measured at SPring8 [10,16]
as described in the previous paragraphs.

We find that with assignments of spin parity JP = 1/2±
for the resonance, the nonmonotonic behavior in the forward
differential cross section near the threshold can be explained
only with considerably stronger resonance contributions. As a
result, the differential cross section as a function of t , as well as
spin-density matrix elements, would be in disagreement with
the experimental data [10,16]. The resulting χ2/N from such
fit will be around 5 ∼ 9, which is definitely far above those
obtained by fitting using JP = 3/2± resonances, as seen in
Table I. Therefore, we conclude that spin-1/2 resonance cannot
fit the experimental data. It is worthwhile to note that in the
constituent quark model of Refs. [24,25], spin-1/2 resonances
are also not predicted to be of significant contribution at
around Eγ = 2 GeV. Our results seem to be in line with their
prediction.

On the other hand, we find that the experimental data can
be well described with a spin-parity assignment of either
JP = 3/2− or JP = 3/2+ for the postulated resonance. In
the following, we first present our model predictions for the
differential cross sections, spin-density matrix elements, and
decay angular distributions and compare them with the data for
both the cases with 3/2− and 3/2+ resonances. We then present

TABLE I. The N∗ parameters for J P = 3/2± resonances together
with their errors obtained by HESSE method of MINUIT package.

J P = 3/2+ J P = 3/2−

MN∗ (GeV) 2.08 ± 0.04 2.08 ± 0.04

�N∗ (GeV) 0.501 ± 0.117 0.570 ± 0.159

eg
(1)
γNN∗g

(1)
φNN∗ 0.003 ± 0.009 −0.205 ± 0.083

eg
(1)
γNN∗g

(2)
φNN∗ −0.084 ± 0.057 −0.025 ± 0.017

eg
(1)
γNN∗g

(3)
φNN∗ 0.025 ± 0.076 −0.033 ± 0.017

eg
(2)
γNN∗g

(1)
φNN∗ 0.002 ± 0.006 −0.266 ± 0.127

eg
(2)
γNN∗g

(2)
φNN∗ −0.048 ± 0.047 −0.033 ± 0.032

eg
(2)
γNN∗g

(3)
φNN∗ 0.014 ± 0.040 −0.043 ± 0.032

χ 2/N 0.891 0.821
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FIG. 4. (Color online) The results obtained by employing a
J P = 3/2± resonance in our model for differential cross section
of γp → φp at forward direction as a function of the incoming
photon energy Eγ . Data are taken from Ref. [18]. The dotted
lines represent the background which includes Pomeron- and
meson-exchange contributions only. The full and dashed lines
are the total contributions including J P = 3/2− and J P = 3/2+

resonances, respectively. The dash-dotted and dash-dot-dotted lines
denote the resonant s- and u-channel contributions of J P = 3/2−

and J P = 3/2+ resonances, respectively.

an analysis on the composition of the bump structure. After
that, we proceed by predicting the effect on the ωN channel and
estimating the strangeness content of the resonance. Lastly, we
present also some predictions on the polarization observables.

A. Differential cross sections, spin-density matrix elements,
and decay angular distributions

The quality of the agreement between data and model
predictions for both spin-parity assignments, i.e., 3/2±, is
similar even though the resulting χ2 value is slightly smaller
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FIG. 6. (Color online) Spin-density matrix elements ρα
ij in

Gottfried-Jackson system as a function of t at 1.77 < Eγ < 1.97 GeV.
Notation is as in Fig. 4.

for the case JP = 3/2− as seen in Table I where the values
of the products of gγNN∗gφNN∗ are also presented. The
obtained values for the mass and width for 3/2− and 3/2+
resonances are very close, i.e., (mass, width) of (2.08, 0.570)
and (2.08, 0.501) GeV, respectively; however, the products of
the coupling constants are quite different.

The results of our best fit, as compared to the data of
Refs. [10,16], are shown in Figs. 4–8. The dotted lines
represent the contributions of the background of Pomeron plus
(π, η) exchanges and the solid and dashed curves correspond
to the full model predictions including a resonance of 3/2− and
3/2+, respectively. In Figs. 4 and 5, the forward differential
cross section as function of energy, where a bump is observed,
and the differential cross section as function of t are shown,
respectively. The contribution of the resonance alone is also
shown therein with dash-dotted and dash-dot-dotted lines cor-
responding to 3/2− and 3/2+, respectively. We see that besides
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FIG. 5. (Color online) The results obtained for differential cross section of γp → φp as a function of t + |t |min at eight different photon
energies Eγ , as given inside each plot. Data are taken from Ref. [18]. Notation is as in Fig. 4.
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FIG. 7. (Color online) Spin-density matrix elements ρα
ij in

Gottfried-Jackson system as a function of t at 1.97 < Eγ < 2.17 GeV.
Notation is as in Fig. 4.

producing a bump in the forward differential cross section, the
resonance reduces the discrepancy between predictions of the
background mechanisms and the data substantially in the t

dependence of the differential cross sections.
In Figs. 6–8, our model predictions for the SDMEs in the

three energy regions of 1.77 < Eγ < 1.97 GeV, 1.97 < Eγ <

2.17 GeV, and 2.17 < Eγ < 2.37 GeV are shown together
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FIG. 8. (Color online) Spin-density matrix elements ρα
ij in

Gottfried-Jackson system as a function of t at 2.17 < Eγ < 2.37 GeV.
Notation is as in Fig. 4.

with the data of Ref. [16]. It is seen that in some cases, e.g., ρ0
10,

ρ1
10, ρ2

10 in 1.97 < Eγ < 2.17 GeV, the nonresonant contribu-
tion alone already describes well the data and the resonance
contributions are small. However, there are several cases in
which a 3/2+ resonance is indeed quite helpful in bridging
the difference between background contribution and the data,
especially for ρ0

00 in all energy regions, though its corrections
are in the wrong direction for ρ1

1,−1 and ρ2
1,−1 in the region of

1.77 < Eγ < 1.97 GeV. The effect of a 3/2− resonance is in
general less conspicuous than that of a 3/2+ resonance.

The decay angular distributions W (cos �), W (� − �),
W (�), W (� + �), and W (�) in the Gottfried-Jackson frame
depend on six SDMEs via the following relations:

W (cos �) = 3

2

[
1

2

(
1 − ρ0

00

)
sin2 � + ρ0

00 cos2 �

]
,

W (�) = 1

2π

(
1 − 2Reρ0

1−1 cos 2�
)
,

W (�− �) = 1

2π

{
1 + 2Pγ

(
ρ1

1−1 − Imρ2
1−1

)
cos[2(�− �)]

}
,
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FIG. 9. (Color online) Decay angular distributions (a) W (cos �),
(b) W (� − �), (c) W (�), W (� + �), and W (�), at photon lab ener-
gies 1.97–2.17 GeV (upper panels) and 2.17–2.37 GeV (lower panels)
within the range of |t − tmax| � 0.2 GeV2. Notation is as in Fig. 4.
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W (�+ �) = 1

2π

{
1 + 2Pγ

(
ρ1

1−1 + Imρ2
1−1

)
cos[2(�+ �)]

}
,

W (�) = 1

2π

[
1 − Pγ

(
2ρ1

11 + ρ1
00

)
cos 2�

]
, (17)

where the angles �, �, and � are illustrated in Fig. 3. Here,
they are measured at two different energy bins 1.97 < Eγ <

2.17 GeV and 2.17 < Eγ < 2.37 GeV within the range of |t −
tmax| � 0.2 GeV2 (tmax = −|t |min) (see Fig. 9). In our work,
they are calculated at the midpoint of each energy bin Eγ by
weighing them with the differential cross section as a function
of t :

W (Eγ ,�,�,�)

=
∫ tmax

tmax−0.2 dt[dσ (Eγ , t)/dt]W (Eγ , t,�,�,�)∫ tmax

tmax−0.2 dt[dσ (Eγ , t)/dt]
. (18)

It is important to note that it is misleading to conclude that the
effect of the resonance, be it 3/2+ or 3/2−, is insignificant in
most cases. Figure 10 shows the detail of the composition of the
spin-density matrix elements as a function of t at 1.97 < Eγ <

2.17 GeV for a JP = 3/2− where the full, dotted, dashed,
and dash-dotted lines are the total, nonresonant, resonant, and
interference between nonresonant and resonant contributions,
respectively. It is obvious that the resonant contributions are
not negligible compared to the nonresonant ones. However, the
interference contributions are also roughly of the same strength
as those of the resonance, and in many cases, of the opposite
signs. This would cause the total contributions to come mainly
from the nonresonant contributions only. However, it should
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FIG. 10. (Color online) Detail of the composition of spin-density
matrix elements ρα

ij in Gottfried-Jackson system as a function of t

at 1.97 < Eγ < 2.17 GeV for a J P = 3/2− resonance. Note that we
have different notation here. The full, dotted, dashed, and dash-dotted
lines are the total, nonresonant, resonant, and interference between
nonresonant and resonant contributions, respectively.

be emphasized again that the resonant contributions are not
negligible.

Based on the similarities in their masses and spin parities,
one might wonder whether the 3/2− resonance found here
can be identified as the D13(2080) as listed by the PDG [11].
The coupling constants given Table I can be used to calculate
the ratio of the helicity amplitudes A1/2 and A3/2. However,
we cannot determine their magnitudes since we have only
the products of the coupling constants γNN∗ and φNN∗.
We obtain a value of A1/2/A3/2 = 1.05, while it is −1.18 for
D13(2080). Although their magnitudes are quite similar, they
differ by a sign and we conclude that the resonance postulated
here, if it exists, cannot be identified with D13(2080).

B. Analysis on the composition of the bump structure

Our results for the forward differential cross sections of
the JP = 3/2± in Fig. 4 indicate constructive and destructive
interferences of nonresonant and resonant amplitudes below

FIG. 11. (Color online) Decomposition of the contribution of
the interference between the resonant and nonresonant amplitudes,
2Re(TNRT ∗

R ), to the the differential cross section at forward angle as a
function of incident photon energy Eγ for a resonance with (a) J P =
3/2− and (b) J P = 3/2+. The dot-dashed and dot-dot-dashed lines
denote the interferences of the resonant amplitude with the Pomeron
and meson-exchange amplitudes, 2Re(TP T ∗

R ) and and 2Re(TMT ∗
R ),

respectively, while the dashed lines represent the sum 2Re(TNRT ∗
R ).
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FIG. 12. (Color online) Predictions of the effects of the postulated resonances to the differential cross section of ω photoproduction at CM
energies W , as given inside each plot. Data are from Ref. [27]. Notation is as in Fig. 4.

and above the peak, respectively. Since the nonresonant am-
plitude is dominated overwhelmingly by Pomeron amplitude,
which is almost completely imaginary, it seems to imply
that the sign-changing component of the resonant part must
then be also imaginary. However, it is well known that the
imaginary part of the resonant amplitude is sign definite while
the sign-changing component of a resonant amplitude is real.

In order to understand this, let us decompose the forward
differential cross section (∝|T |2) into its nonresonant, reso-
nant, and interference terms:

|T |2 = |TNR|2 + |TR|2 + 2Re(TNRT ∗
R ), (19)

in which T , TNR , and TR are the total, nonresonant, and
resonant amplitudes, respectively. We also have

TNR = TP + TM, (20)

where TP and TM are the Pomeron- and meson-exchange
amplitude, respectively. The interference term between the
resonant and nonresonant amplitude Re(TNRT ∗

R ) can be further
decomposed into a sum of interference terms between the
resonant and Pomeron amplitudes Re(TP T ∗

R ), and the resonant
and meson-exchange amplitudes Re(TMT ∗

R ), respectively. This
decomposition is shown in Fig. 11, where the dot-dashed
and dot-dot-dashed lines represent Re(TP T ∗

R ) and Re(TMT ∗
R ),

respectively, with dashed lines denoting their sum Re(TNRT ∗
R ).

It is seen that for both JP = 3/2± resonances, Re(TP T ∗
R ) is

always positive, while 2Re(TMT ∗
R ) turns negative at around

Eγ = 1.82 GeV and becomes comparable in size to Re(TP T ∗
R )

such that the sum Re(TNRT ∗
R ) eventually changes sign. We

conclude that the meson-exchange mechanisms are indeed
crucial in producing the peaking behavior observed in the
φ-photoproduction reaction.

C. Effects of the postulated resonance in the ωN channel

We further study the possible effect of this postulated
resonance in the ωN channel. The conventional “minimal”
parametrization relating φNN∗ and ωNN∗ is

gφNN∗ = −tan �θV xOZIgωNN∗ , (21)

with �θV � 3.7◦ corresponding to the deviation from the
ideal φ-ω mixing angle. Here, xOZI is called the OZI-evading
parameter and the larger value of xOZI would indicate larger
strangeness content of the resonance.

For the present purpose, we choose the ω-photoproduction
model of Ref. [26] which includes the nucleon resonances
predicted by Refs. [24,25]. In Fig. 12, one sees that the
prediction of this model for the t dependence of differential
cross section at W = 2.105 GeV, given by the dotted line,
exhibits substantial discrepancy with the most recent exper-
imental data [27] for |t | > 0.75 GeV2. With the addition of
the resonance postulated here with xOZI = 12(9) for JP =
3/2−(JP = 3/2+), we see that the differential cross section
at W = 2.105 and 2.305 GeV, as denoted by the solid black
(dashed red) line in Fig. 12, can be reproduced with roughly
the correct strength. At the other energies, the improvement
is much less noticeable because they are far from the energy
of the resonance. The large values of xOZI would imply that
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the resonances we propose here might contain a considerable
amount of strangeness contents, an issue we now turn to in the
next subsection.

D. Strangeness content of the postulated resonance

The resonance proposed here appears to have a large
OZI evasion parameter xOZI which would lead one to ask
whether this is reasonable. In this section, we will estimate
the strangeness content of the resonance. We can write, for the
wave function of the resonance [28],

|N∗〉 = x|uud〉 + zu|uuduū〉 + zd |uuddd̄〉 + zs |uudss̄〉,
(22)

where x is real but zu, zd , and zs are all complex and |x|2 +
|zu|2 + |zd |2 + |zs |2 = 1. Let us define

Zid ≡ M(N∗ → φidN )

M(N∗ → ωidN )
, (23)

where M(N∗ → VidN ) is the amplitude of the decay of N∗ to
VidN where the subscript id denotes that the vector meson V

is in its ideal state. For example, φid consists of pure ss̄ with
no uū of dd̄ mixture.

We can obtain Zid experimentally from

Zid = Zphys + tan �θV

1 − Zphys tan �θV

, (24)

where

Zphys ≡ M(N∗ → φN )

M(N∗ → ωN )
(25)

is defined for the physical particles φ and ω. Here, Zphys can be
estimated from gφNN∗/gωNN∗ = −xOZI tan �θV . Notice that
Zid = 0 when xOZI = 1 which corresponds to the case of
ordinary OZI violation arising from an ωφ mixing without
the presence of strangeness content in the resonance N∗. By
using the values of xOZI for the resonance found in this work,
the values for their Zphys can also be calculated from Eq. (21).
Therefore, employing Eq. (24) above, we can obtain the values
of Zid , which are found to be −0.68 and −0.50 for JP = 3/2−
and JP = 3/2+ resonances, respectively.

Within the constituent quark model, Zid is related to
the amplitudes M3 and M5 corresponding to the processes
depicted in Figs. 13(a) and 13(b), respectively, as follows:

M(N∗ → φidN ) = zsM5,
(26)

M(N∗ → ωidN ) = xM3 + 1√
2

(zu + zd )M5.

N* N*

(a)

pp

ω ω/φ

(b)

FIG. 13. Quark-flow diagrams of the processes that correspond
to the amplitudes (a) M3 and (b) M5.

Let us now write zq ≡ δqaq , where q = u, d, s, which sepa-
rates the phase factor δq = eiθq of phase θq and the magnitude
aq = |zq | of the amplitude. We further introduce cu ≡ au/as

and cd ≡ ad/as . After substituting, we have

Zid = zsM5

xM3 + 1√
2
(δ∗

s δucu + δ∗
s δdcd )zsM5

, (27)

which leads to the probability of the strangeness content

Ps ≡ |zs |2 = |Zid |2|F |2(
1 + c2

u + c2
d

)|Zid |2|F |2 + |N |2 , (28)

where

N ≡ 1 − 1√
2
Zid (δ∗

s δucu + δ∗
s δdcd ), (29)

F ≡ M3

M5
. (30)
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|F|

0

0.05

0.1

0.15

P
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x
OZI
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J
P
 = 3/2

+

(b)

FIG. 14. Strangeness content of the resonances Ps for xOZI = 12
and xOZI = 9 corresponding to (a) J P = 3/2− and (b) J P = 3/2+

resonances, respectively, as functions of |F |. The shaded areas show
the 95% probability range after the phases are randomly varied. The
solid lines are the median.
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FIG. 15. (Color online) Single polarization observables for γp → φp reaction: (a) polarized beam �x , (b) polarized target Ty , and (c) recoil
polarization Py′ asymmetries, taken at photon laboratory energy Eγ = 2.0 GeV. The dotted lines denote the background contribution, while
the solid black and red lines are contributions from resonances with JP = 3/2− and J P = 3/2+, respectively.

It is seen that the strangeness probability Ps depends on
M3,5 and zq’s in a complicated way. The problem here is
to make an educated estimate of it. Here, we first follow
Ref. [29] to assume that Pu,d/Ps = (ms/mu,d )2. It leads to
cu = cd = ms/mu,d where ms and mu,d will be taken as 0.5 and
0.3 GeV, respectively. To proceed, we further assume the ratio
|F | between the reaction amplitudes M3 and M5 to lie within
the range of 0.01 and 100, i.e., |M3| = (0.01 ∼ 100)|M5|,
and find the possible range of Ps . For a fixed value of |F |, we
randomly vary the phase factors δq to give Ps . The results,
within 95% probability, are given by the shaded area in
Fig. 14 while the median values are denoted by the solid
lines.

Notice that for a fixed value of |F |, the lower bound of
Ps is given by |N |max = 1 + 1√

2
|Zid |(cu + cd ), that is, when

all the phases are such that the second term in N of Eq. (29)
interferes constructively with the first. The lower bound of Ps

goes to zero like |Zid/Nmax|2|F |2 as |F | approaches zero and
approaches 1/(1 + c2

u + c2
d ) = 0.153 when |F | grows larger.

When |N |min = 0, the upper bound of Ps = 1/(1 + c2
u + c2

d ) =
0.153 is reached. Note that with the values of Zid of the
resonance given above, the condition |N |min = 0 can indeed be
met with some combinations of the phase factors δq . We point
out that Ps = 1/(1 + c2

u + c2
d ) = 0.153 would correspond to a

resonance with 100% five-quark content, namely, a pentaquark
state.

A rather broad range of Ps also reflects the situation faced in
the efforts to determine the strangeness content in the proton,
which is stable and can be more directly studied. Recent
studies give estimates ranging from 0.025%–0.058% [30] to
2.4%–2.9% [31].

E. Polarization observables

Since the fitted results with both assignments 3/2± for
the resonance are rather similar, we need to find some
observables that can help us to distinguish them. Here, we show
some predictions for the polarization observables at photon

laboratory energy Eγ = 2.0 GeV near the resonance position.
Three single polarization observables—asymmetries of the
polarized beam �x , polarized target Ty , and recoil polarization
Py ′—are given in Fig. 15 while four double polarization
observables—beam-target (BT) asymmetries CBT

yx , CBT
yz , CBT

zx ,
and CBT

zz , with the photon beam and the nucleon target
polarized—are given in Fig. 16, where the dotted, solid, and
dashed lines correspond to the contributions from background
only, and with the addition of the postulated resonance of
JP = 3/2− and JP = 3/2+, respectively. The notation of the
polarization observables follows Ref. [9].

It can be concluded from Figs. 15 and 16 that while all
the observables presented are reasonably distinct enough to
distinguish the parities of the J = 3/2 resonances, the single
polarization observable �x is actually the most distinct based
on the opposite sign of the curves produced by the two
parities.
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FIG. 16. (Color online) Double polarization observables for
γp → φp reaction: beam-target (BT) asymmetries (a) CBT

yx and CBT
zx ,

(b) CBT
yz and CBT

zz , with photon beam and nucleon target polarized,
taken at photon laboratory energy Eγ = 2.0 GeV. Notation is as in
Fig. 15.
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IV. SUMMARY AND CONCLUSIONS

In summary, we present the details and more extensive
results of the analysis of the near-threshold bump structure
in the forward differential cross section of the φ-meson
photoproduction to determine whether it is a signature of
a resonance. The analysis is carried out with an effective
Lagrangian approach which includes Pomeron and (π, η)
exchanges in the t channel and contributions from the s- and
u-channel excitation of a postulated resonance.

Besides the differential cross sections at forward angle as
function of photon energy and as function of t , the recent data
on nine spin-density matrix elements at three photon energies
reported by the LEPS Collaboration are used, instead of the
decay angular distributions of the φ meson, which depend
only on six spin-density matrix elements, as was done before
in Ref. [14], to constrain the model. Moreover, the new spin-
density matrix element data are given as a function of t , while
the previous decay angular distribution data are not. Therefore,
the new set of data are expected to give more strict constraints
on the resulting resonance parameters.

We conclude that indeed the nonmonotonic behavior, along
with the other experimental data, as reported by LEPS, can
only be explained with an assumption of the excitation of a
resonance of spin 3/2, as previously reported. However, both
parities of (±) can account for the data equally well with almost
identical mass of 2.08 ± 0.04 GeV and width of 0.501 ± 0.117
and 0.570 ± 0.159 for 3/2− and 3/2+, respectively. Spin-1/2
resonances can still explain the nonmonotonic behavior, but
would lead to large resonance contributions, which would
cause differential cross sections as functions of t , as well as
the spin-density matrix elements to disagree with experimental
data.

The helicity amplitudes of the JP = 3/2− resonance
calculated from the obtained coupling constants gives a ratio
of A1/2/A3/2 = 1.05 which differs in sign from the value
of −1.18 of D13(2080) given by the PDG. Therefore, we
conclude that the JP = 3/2− resonance cannot be identified as
D13(2080). The ratio of helicity amplitudes of the JP = 3/2+
resonance is obtained to be of A1/2/A3/2 = 0.89.

Some of the single and double polarization observables
which are sensitive to the parity of the resonance, including

beam asymmetry �x , target asymmetry Tx , recoil asymmetry
Px , and beam-target asymmetry CBT

ij , near the resonance peak
are also given. Measurement of these quantities would be most
helpful in further substantiating whether the nonmonotonic
behavior is indeed a signature of resonance as well as resolving
its parity. We find that the single polarization observable of
beam asymmetry �x provides an excellent way to resolve
the parity of the resonance since it is of opposite signs with
different parity.

We have also investigated the effects of the postulated
resonances to the differential cross section of ω photopro-
duction as a function of t within the model of Ref. [26].
We find that the proposed resonance improves the agreement
with the data, especially around the photon lab energy of 2.1
GeV, if large values of OZI-evading parameter xOZI = 12 and
xOZI = 9 for JP = 3/2− and JP = 3/2+ resonances, respec-
tively, are assumed. Here, again, both resonances are equally
capable of improving the discrepancy between the data and
the predictions of Ref. [26]. It adds support for the resonance
we postulate. We argue that the large values of OZI-evading
parameter xOZI found imply that the postulated resonance
might contain a strangeness content of Ps = 0.1% ∼ 15%.
If the postulated resonance contains a considerable amount
of strangeness, then it could couple strongly to, say, the K�

channel. The question would then arise on how the coupled-
channel effects would modify the low-energy behavior of
the nonresonant amplitude employed in this investigation.
This can be answered only with a full coupled-channel
calculation.

ACKNOWLEDGMENTS

We would like to thank Dr. W. C. Chang, Dr. A. I. Titov,
Dr. T.-S. H. Lee, and Dr. Yongseok Oh for useful discussions
and/or correspondences. This work was supported in part
by the National Science Council of the Republic of China
(Taiwan) under Grant No. NSC100-2112-M002-012. We
would also like to acknowledge help from the National Taiwan
University High-Performance Computing Center in providing
us with a fast and dependable computation environment which
is essential in carrying out this work.

[1] T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin, Rev.
Mod. Phys. 50, 261 (1978).

[2] A. Donnachie and P. V. Landshoff, Phys. Lett. B 185, 403 (1987);
Nucl. Phys. B 244, 322 (1984); 267, 690 (1986); 311, 509 (1989).

[3] R. A. Williams, Phys. Rev. C 57, 223 (1998).
[4] Y. S. Oh and H. C. Bhang, Phys. Rev. C 64, 055207 (2001).
[5] Q. Zhao, J.-P. Didelez, M. Guidal, and B. Saghai, Nucl. Phys. A

660, 323 (1999); Q. Zhao, B. Saghai, and J. S. Al-Khalili, Phys.
Lett. B 509, 231 (2001).

[6] A. I. Titov and T.-S. H. Lee, Phys. Rev. C 67, 065205 (2003).
[7] A. I. Titov, T.-S. H. Lee, H. Toki, and O. Streltsova, Phys. Rev.

C 60, 035205 (1999).
[8] A. I. Titov, Y. S. Oh, and S. N. Yang, Phys. Rev. Lett. 79, 1634

(1997); A. I. Titov, Y. Oh, S. N. Yang, and T. Morii, Nucl. Phys.
A 684, 354 (2001).

[9] A. I. Titov, Y. Oh, S. N. Yang, and T. Morii, Phys. Rev. C 58,
2429 (1998).

[10] T. Mibe et al. (LEPS Collaboration), Phys. Rev. Lett. 95, 182001
(2005), and references therein.

[11] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021
(2010).

[12] H. J. Besch et al., Nucl. Phys. B 70, 257 (1974).
[13] E. Anciant et al. (CLAS Collaboration), Phys. Rev. Lett. 85,

4682 (2000).
[14] A. Kiswandhi, J. J. Xie, and S. N. Yang, Phys. Lett. B 691, 214

(2010).
[15] S. Ozaki, A. Hosaka, H. Nagahiro, and O. Scholten, Phys. Rev.

C 80, 035201 (2009); 81, 059901(E) (2010).
[16] W. C. Chang et al. (LEPS Collaboration), Phys. Rev. C 82,

015205 (2010).

015203-11

http://dx.doi.org/10.1103/RevModPhys.50.261
http://dx.doi.org/10.1103/RevModPhys.50.261
http://dx.doi.org/10.1016/0370-2693(87)91024-0
http://dx.doi.org/10.1016/0550-3213(84)90315-8
http://dx.doi.org/10.1016/0550-3213(86)90137-9
http://dx.doi.org/10.1016/0550-3213(89)90165-X
http://dx.doi.org/10.1103/PhysRevC.57.223
http://dx.doi.org/10.1103/PhysRevC.64.055207
http://dx.doi.org/10.1016/S0375-9474(99)00398-X
http://dx.doi.org/10.1016/S0375-9474(99)00398-X
http://dx.doi.org/10.1016/S0370-2693(01)00432-4
http://dx.doi.org/10.1016/S0370-2693(01)00432-4
http://dx.doi.org/10.1103/PhysRevC.67.065205
http://dx.doi.org/10.1103/PhysRevC.60.035205
http://dx.doi.org/10.1103/PhysRevC.60.035205
http://dx.doi.org/10.1103/PhysRevLett.79.1634
http://dx.doi.org/10.1103/PhysRevLett.79.1634
http://dx.doi.org/10.1016/S0375-9474(01)00372-4
http://dx.doi.org/10.1016/S0375-9474(01)00372-4
http://dx.doi.org/10.1103/PhysRevC.58.2429
http://dx.doi.org/10.1103/PhysRevC.58.2429
http://dx.doi.org/10.1103/PhysRevLett.95.182001
http://dx.doi.org/10.1103/PhysRevLett.95.182001
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1016/0550-3213(74)90478-7
http://dx.doi.org/10.1103/PhysRevLett.85.4682
http://dx.doi.org/10.1103/PhysRevLett.85.4682
http://dx.doi.org/10.1016/j.physletb.2010.06.029
http://dx.doi.org/10.1016/j.physletb.2010.06.029
http://dx.doi.org/10.1103/PhysRevC.80.035201
http://dx.doi.org/10.1103/PhysRevC.80.035201
http://dx.doi.org/10.1103/PhysRevC.81.059901
http://dx.doi.org/10.1103/PhysRevC.82.015205
http://dx.doi.org/10.1103/PhysRevC.82.015205


ALVIN KISWANDHI AND SHIN NAN YANG PHYSICAL REVIEW C 86, 015203 (2012)
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