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2Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main, Germany

3Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
4MTA Wigner Research Centre for Physics, H-1525 Budapest, P.O.Box 49, Hungary

(Received 22 March 2012; published 27 July 2012)

We study the influence of a temperature-dependent shear viscosity over entropy density ratio η/s, different
shear relaxation times τπ , as well as different initial conditions on the transverse momentum spectra of charged
hadrons and identified particles. We investigate the azimuthal flow asymmetries as a function of both collision
energy and centrality. The elliptic flow coefficient turns out to be dominated by the hadronic viscosity at RHIC
energies. Only at higher collision energies the impact of the viscosity in the QGP phase is visible in the flow
asymmetries. Nevertheless, the shear viscosity near the QCD transition region has the largest impact on the
collective flow of the system. We also find that the centrality dependence of the elliptic flow is sensitive to the
temperature dependence of η/s.
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I. INTRODUCTION

Determining the properties of the quark-gluon plasma
(QGP) is nowadays one of the most important goals in high-
energy nuclear physics. For a system of weakly interacting
particles reliable results can be obtained from first-principle
quantum field-theoretical calculations. Unfortunately, for
strongly interacting matter these tools provide only a limited
amount of information. It is, however, possible to calculate the
thermodynamical properties of such matter numerically from
the theory of strong interactions, quantum chromodynamics
(QCD). These lattice QCD calculations show that if the
temperature is sufficiently high, the matter undergoes a
transition from a confined phase where the relevant degrees
of freedom are hadrons, to a deconfined phase where the
degrees of freedom are quarks and gluons, the so-called QCD
transition [1].

In recent years, experiments at the Relativistic Heavy-Ion
Collider (RHIC) at Brookhaven National Laboratory [2] and
the Large Hadron Collider (LHC) at CERN have provided
a wealth of data from which one could in principle obtain
information about the QGP. However, to compare these
data with lattice QCD results is not straightforward. So far,
lattice calculations have provided reliable results for static
thermodynamical properties of QCD matter, e.g., the equation
of state (EoS). The system created in heavy-ion collisions is,
however, not static but dynamical, because it expands and cools
in a very short time span of order 10−23 seconds. Obviously, in
order to be able to properly interpret the experimental results
and infer the properties of QCD matter, we also need a good
understanding of the dynamics of heavy-ion collisions.

Fluid dynamics is one of the most commonly used frame-
works to describe the space-time evolution of the created
fireball, because the complicated microscopic dynamics of the
matter is encoded in only a few macroscopic parameters like
the EoS and the transport coefficients.

Currently, fluid-dynamical models give a reasonably good
quantitative description of transverse momentum spectra of

hadrons and their centrality dependence [3–7]. So far, most
calculations assume that the shear viscosity to entropy density
ratio η/s is constant, and they show that, in order to describe
the azimuthal asymmetries of the spectra, e.g., the elliptic flow
coefficient v2, this constant must be very small, of order 0.1.
However, for real physical systems, η/s depends (at least)
on the temperature [8]. A constant value of η/s can only
be justified as an average over the space-time evolution of
the system. It is not clear how this average is related to the
temperature dependence of η/s.

In previous work [9,10], we have studied the consequences
of relaxing the assumption of a constant η/s. We found that the
relevant temperature region where the shear viscosity affects
the elliptic flow most varies with the collision energy. At
RHIC, the most relevant region is around and below the QCD
transition temperature, while for higher collision energies the
temperature region above the transition becomes more and
more important. In this work we shall extend our previous
study and provide a more detailed picture of the temperature
regions that affect elliptic flow as well as higher harmonics at
a given collision energy.

This paper is organized in the following way. In Sec. II,
we describe our fluid-dynamical framework and its numerical
implementation. In Sec. III, we specify the EoS, the transport
coefficients, and the initialization. Sections IV and V contain
a detailed compilation of our results, some of which were
already shown in Refs. [9,10]. We present the transverse
momentum spectra and the elliptic flow of hadrons at various
centralities with different parametrizations of η/s as function
of temperature. We also study the impact of different initial
conditions and of the choice of the relaxation time for the
shear-stress tensor. In Sec. VI, we investigate evolution of the
elliptic flow in more detail and, in Sec. VII, find the temperature
regions where v2 and v4 are most sensitive to the value of
η/s. Finally, we summarize our results and give some con-
clusions. We use natural units h̄ = c = k = 1 throughout the
paper.

014909-10556-2813/2012/86(1)/014909(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.86.014909
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II. FLUID DYNAMICS

A. Formalism

In order to describe the evolution of a system on length
scales much larger than a typical microscopic scale, for
instance the mean-free path, it is sufficient to characterize the
state of matter by a few macroscopic fields, namely the energy-
momentum tensor T μν and, possibly, some charge currents
N

μ
a . Fluid dynamics is equivalent to the local conservation

laws for these fields:

∂μT μν = 0, ∂μNμ
a = 0. (1)

In the absence of conserved charges and bulk viscosity, the
energy-momentum tensor T μν can be decomposed as

T μν = euμuν − P�μν + πμν, (2)

where uμ = T μνuν/e is the fluid four-velocity, e is the energy
density in the local rest frame of the fluid, i.e., in the frame
where uμ = (1, 0, 0, 0), and P is the thermodynamic pressure.
The shear-stress tensor is defined as πμν = T 〈μν〉, where
the angular brackets 〈〉 denote the symmetric and traceless
part of the tensor orthogonal to the fluid velocity. With
the (+,−,−,−) convention for the metric tensor gμν , the
projector �μν = gμν − uμuν .

If the system is sufficiently close to local thermodynamical
equilibrium, the energy-momentum conservation equations
can be closed by providing the EoS, P (T ), the equations
determining πμν , and the transport coefficients entering these
equations, e.g., the shear viscosity η(T ). The EoS P (T ) and
the shear viscosity η(T ) can in principle be computed by
integrating out the dynamics on microscopic length scales.

While the conservation laws are exact for any system,
the equations determining the shear-stress tensor require
certain approximations, so that the only variables entering
the equations of motion are those that appear in the energy-
momentum tensor, namely e, uμ, and πμν . In the so-called
relativistic Navier-Stokes approximation, the shear-stress ten-
sor is directly proportional to the gradients of the four-velocity:

πμν = 2ησμν ≡ 2η∂ 〈μuν〉. (3)

We note that in this approximation the shear-stress tensor is
not an independent dynamical variable.

Unfortunately, this approximation results in parabolic
equations of motion, and subsequently the signal speed is
not limited in this theory. In relativistic fluid dynamics this
violation of causality leads to the existence of linearly unstable
modes, which make relativistic Navier-Stokes (NS) theory
useless for practical applications [11,12].

A commonly used approach that cures these instability
and acausality problems is Israel-Stewart (IS) theory [13].
In this approach, the shear-stress tensor, the heat flow, and
the bulk viscous pressure are introduced as independent
dynamical variables and fulfill coupled, so-called relaxation-
type differential equations of motion. Assuming vanishing
heat-flow and bulk viscosity, the relaxation equation for the

shear-stress tensor can be written as [15]

τπ π̇ 〈μν〉 + πμν = 2ησμν + λ1π
μνθ + λ2σ

〈μ
απν〉α

+ λ3π
〈μ
απν〉α + λ4ω

〈μ
απν〉α, (4)

where Ȧ = uμ∂μA denotes the comoving derivative of A and
θ = ∂μuμ is the expansion scalar. The shear-relaxation time τπ

is the slowest time scale of the underlying microscopic theory
[14]. Formally, IS theory can be derived by neglecting all faster
microscopic time scales [15]. Like τπ , the coefficients λi can
in principle be calculated from the underlying microscopic
theory, i.e., in our case QCD. Unfortunately, for QCD the
transport coefficients appearing in Eq. (4) are still largely
unknown. For the sake of simplicity, in this work we use λ1 =
−4/3, obtained from the Boltzmann equation for a massless
gas [13], and λ2 = λ3 = λ4 = 0. The shear-relaxation time
and the shear viscosity are left as free parameters.

Instead of the full (3 + 1)–dimensional treatment, we
consider a simplified evolution where the expansion in the
z direction is described by boost-invariant scaling flow [16],
i.e., the longitudinal velocity is given by vz = z/t , and the
scalar densities are independent of the space-time rapidity
ηs = 1

2 log( t+z
t−z

). Here, t is the time measured in laboratory
coordinates. In this approximation, the full evolution depends
only on the coordinates (τ, x, y), where x and y are the
transverse coordinates and τ = √

t2 − z2 is the longitudinal
proper time.

B. Numerical implementation

Once the initial values of the components of the energy-
momentum tensor are specified at a given initial time τ0, the
space-time evolution of the system is obtained by solving the
conservation laws [Eq. (1)] together with the IS equations
[Eq. (4)].

The conservation laws are solved using the algorithm
developed in Refs. [17] and generalized to more than one
dimension in Ref. [18]. This method, known as SHASTA for
“sharp and smooth transport algorithm,” solves equations of
the type

∂tU + ∂i(viU ) = S(t, x), (5)

where U = U (t, x) is, for example, T 00, T 0i , . . ., vi is the ith
component of three-velocity, and S(t, x) is a source term; for
more details see Ref. [19].

We can further stabilize SHASTA by letting the antidiffu-
sion coefficient Aad, which controls the amount of numerical
diffusion to be proportional to

1

(k/e)2 + 1
, (6)

where e is the energy density in the local rest frame, and k

is some constant of order 10−5 GeV/fm3. In this way, Aad

goes smoothly to zero near the boundaries of the grid, i.e., we
increase the amount of numerical diffusion in that region. We
have checked that this neither affects the solution nor produces
more entropy inside the decoupling surface.

The relaxation Eq. (4) could also be solved using SHASTA.
However, we noticed that solving it by replacing the spatial
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gradient at grid point i on the left-hand side of Eq. (4) by a
centered second-order difference,

∂xUi = Ui+1 − Ui−1

2�x
, (7)

where U = πμν , yields a more stable algorithm. Time deriva-
tives in the source terms are simply taken as first-order
backward differences. Like in SHASTA, all spatial gradients
in the source terms are discretized according to Eq. (7).

C. Freeze-out

We assume that freeze-out, i.e., the transition from the
fluid-dynamical system to free-streaming particles happens
on a hypersurface of constant temperature. Unless otherwise
stated, we assume that the freeze-out temperature is Tdec =
100 MeV. We include all two- and three-particle decays of
hadronic resonances according to Ref. [20].

The transverse momentum distribution of hadrons is cal-
culated using the Cooper-Frye description [21]. For the final
spectra we need to know the local single-particle momentum
distribution functions of hadrons on the freeze-out surface.
Here, we employ the widely used 14-moment ansatz where
the correction to the local-equilibrium distribution f0i =
{exp[(uμp

μ

i − μi)/T ] ± 1}−1 of a hadron of species i with
four-momentum p

μ

i is given by [22]

δfi = f0i

p
μ

i pν
i πμν

T 2 (e + P )
, (8)

where πμν is the solution of Eq. (4). We note that this functional
form for δf is merely an ansatz but consistent with Eq. (4).
Other forms of δf are also possible, see, e.g., Ref. [23],
and a full treatment of the multicomponent system further
modifies δf ; see Refs. [24,25]. Furthermore, if dissipative fluid
dynamics is derived from the Boltzmann equation without
assuming the 14-moment approximation, the full expansion
of δf contains an infinite number of terms; for details see
Ref. [15]. The effect of this will be studied in a future work.

III. PARAMETERS

A. Equation of state

As EoS we use the recent s95p-PCE-v1 parametrization
of lattice QCD results [26]. In this parameterization, the
high-temperature part is matched to recent results of the
hotQCD collaboration [27,28] and smoothly connected to
the low-temperature part described as a hadron resonance
gas. All hadrons listed in Ref. [29] up to a mass of 2 GeV
are included in the hadronic part of the EoS. The system
is assumed to chemically freeze-out at Tchem = 150 MeV.
Below this temperature the EoS is constructed according to
Refs. [30–32]. This construction assumes that the evolution
below Tchem is isentropic. Strictly speaking this is not the
case in viscous hydrodynamics since dissipation causes an
increase in entropy. However, we have checked that in our
calculations the viscous entropy production from all fluid cells
with temperatures below Tchem = 150 MeV is less than 1%
of the initial entropy, whereas the entropy production during

the entire evolution ranges from 3 to 14%, depending on the
collision energy and the η/s parametrization.

B. Transport coefficients

The temperature-dependent shear viscosity is parametrized
as follows. In all cases, we take the minimum of η/s to be at
Ttr = 180 MeV. Unless otherwise stated, the value of η/s at
the minimum is assumed to equal the lower bound η/s = 0.08
conjectured in the framework of the AdS/CFT correspondence
[34].

The parametrization of the hadronic viscosity is based on
Ref. [35], where the authors consider a hadron resonance
gas with additional Hagedorn states. In practice, we use a
temperature dependence of η/s of the following functional
form [9,36]:

η

s

∣∣∣
HRG

= 0.681 − 0.0594
T

Ttr
− 0.544

(
T

Ttr

)2

. (9)

At T = 100 MeV this coincides with the η/s value given in
Ref. [35] and decreases smoothly to the minimum value η/s =
0.08 at Ttr. We note that many authors obtain considerably
larger values for the shear viscosity of hadronic matter; see,
e.g., Refs. [37]. Our motivation here is to illustrate the effects
of hadronic viscosity rather than to use a parametrization that
is as realistic as possible. We shall see that even this low
η/s leads to considerable effects for hadronic observables in
Au + Au collisions at RHIC. We further note that, since we are
considering a chemically frozen hadron resonance gas below
Tchem, while in Ref. [35] chemical equilibrium is assumed at all
temperatures, the entropy densities, and therefore the values
of η, differ between the two calculations at a given value of
T < Tchem.

The high-temperature QGP viscosity is parametrized ac-
cording to lattice QCD results [38] in such a way that it
connects to the minimum of η/s at Ttr. The functional form
used is

η

s

∣∣∣
QGP

= −0.289 + 0.288
T

Ttr
+ 0.0818

(
T

Ttr

)2

. (10)

We take the following four parametrizations of the shear
viscosity:

(1) (LH-LQ) η/s = 0.08 for all temperatures;
(2) (LH-HQ) η/s = 0.08 in the hadron gas, and above T =

180 MeV η/s increases according to Eq. (10);
(3) (HH-LQ) below T = 180 MeV, η/s is given by Eq. (9),

and above we set η/s = 0.08;
(4) (HH-HQ) we use Eqs. (9) and (10) for the hadron gas and

the QGP, respectively.

These parametrizations are shown in Fig. 1. Besides these
four cases we also study the effect of varying the value of the
minimum of η/s; see Secs. V and VII.

In order to complete the description, we also need to specify
the relaxation time. In this work we use a functional form
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FIG. 1. (Color online) Different parametrizations of η/s as a
function of temperature. The LH-LQ line is shifted downwards and
the HH-HQ line upwards for better visibility.

suggested by kinetic theory,

τπ = cτ

η

e + p
, (11)

where cτ is a constant. Causality requires that cτ � 2 [12].
Unless otherwise stated, we shall use the value cτ = 5, which
coincides with the value obtained from the Boltzmann equation
in the 14-moment approximation for a massless gas of classical
particles [39]. The relaxation times corresponding to the
parametrizations above are shown in Fig. 2. The effect of
varying the relaxation time separately from η is also studied
in Sec. V.

C. Initial state

We still need to specify the initial state at some proper time
τ0. For a boost-invariant system it is sufficient to provide the
components of the energy-momentum tensor in the transverse
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FIG. 2. (Color online) Relaxation times corresponding to the
different parametrizations of η/s, for cτ = 5. The (LH-LQ) line is
shifted downward and the (HH-HQ) line is shifted upward for better
visibility.

plane at z = 0, i.e., ηs = 0. Within our approximations these
are the local energy density, the initial transverse velocity, and
the three independent components of the shear-stress tensor.
Here, we will assume that the initial transverse velocity is zero
and, unless otherwise stated, the initial shear-stress tensor is
also assumed to be zero.

For the initial time we choose τ0 = 1 fm. The energy density
e(τ0, x, y) is based on the optical Glauber model by assuming
that the energy density is a function of the density of binary
nucleon-nucleon collisions nBC, or the density of wounded
nucleons nWN, or both,

e(τ0, x, y) = Cef (nBC, nWN). (12)

The overall normalization, Ce, is fixed in order to reproduce the
observed multiplicities in the most central

√
sNN = 200 GeV

Au + Au collisions at RHIC, and in
√

sNN = 2.76 GeV
Pb + Pb collisions at LHC.

The centrality dependence of the multiplicity is reproduced
in this work in two different ways:

(1) BCfit: choosing f to be a polynomial in nBC,

f (nBC) = nBC + c1n
2
BC + c2n

3
BC. (13)

(2) GLmix: using a superposition of nBC and nWN,

f (nBC, nWN) = d1nBC + (1 − d1)nWN. (14)

Here, the coefficient c2 is introduced in order to guarantee
that the parameterizations are monotonically increasing with
increasing binary-collision or wounded-nucleon density. This
ensures that the highest energy density is in the center of the
system, i.e., at x = y = 0.

For a given impact parameter, the optical Glauber model
yields a different number of participants and different central-
ity classes than the Monte Carlo Glauber models commonly
used by the experimental collaborations. Using the optical
Glauber model, we can either choose to reproduce the
multiplicity as a function of the number of participants or as a
function of centrality classes. In general, this leads to different
coefficients ci and d1. Here, we choose to determine the initial
conditions by requiring that the centrality dependence of the
charged particle multiplicity as a function of the number of
participants [40,41] is reproduced. We have checked that,
if we determine the centrality dependence by matching to
the centrality classes given by the optical Glauber model,
the elliptic flow is more suppressed in central and enhanced
in peripheral collisions at RHIC energies, while at LHC
energies it remains practically unchanged. In order to be
fully consistent with the experimental determination of the
centrality classes, one would need to generate fluctuating
initial conditions via a Monte Carlo Glauber model; see, e.g.,
Refs. [42–44].

For
√

sNN = 5.5 TeV Pb + Pb collisions we use the
multiplicity in the most central collisions as predicted by the
EKRT model [45]. In this case the centrality dependence is
assumed to follow binary scaling, i.e., c1 = c2 = 0 in Eq. (13).
All initialization parameters are shown in Table I.

Different parametrizations of η/s lead to different entropy
production and therefore different final multiplicity, even if
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TABLE I. Initialization parameters for different collision en-
ergies. The maximum temperature Tmax is given for the BCfit
initialization with the (LH-LQ) parameterization of η/s. For the other
initializations Tmax differs less than 5%.

√
sNN [GeV] c1 [fm−2] c2 [fm−4] d1 Tmax [MeV]

200 − 0.032 0.00035 0.1 313
2760 − 0.01 0.0001 0.7 430
5500 0 0 1.0 504

the initial state is kept the same. This is especially true
for different parametrizations of the high-temperature shear
viscosity, since most of the entropy is produced during the
early stages of the collision [46]. We compensate this using
different overall normalizations, e.g., between the (HH-LQ)
and (HH-HQ) parametrizations. Entropy production during
the hadronic evolution is small and not compensated. The
centrality dependence of the entropy production is also
different for different η/s parametrizations. Since it leads to at
most a 5% difference in the final multiplicities and is hardly
visible in the results, it is not corrected here.

IV. RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

In this section we use the initializations and parametriza-
tions of η/s given above and compare the results with
experimental data from RHIC and LHC.

A. Transverse momentum spectra and elliptic flow at RHIC

In Fig. 3 we show the pT -spectra of pions for different
centrality classes for RHIC

√
sNN = 200 GeV Au + Au

collisions and compare them with PHENIX data [40]. We only
show results using the BCfit initialization; those for the GLmix
initialization are very similar. The freeze-out temperature is
chosen as Tdec = 100 MeV. This choice reproduces the slopes
of the pT -spectra quite well.

Once we correct the normalization of the initial energy
density profile for different entropy production (see discussion
at the end of Sec. III C), the slopes of the pT spectra are
practically unaffected by the η/s parametrizations. We note
that in our earlier work [9] this correction was not made, and
the different η/s parametrizations lead not only to different
multiplicities but also to different slopes for the pT spectra.
This effect was even more pronounced at LHC than at RHIC,
due to an increase in entropy production caused by larger
gradients appearing with an earlier initialization time τ0 =
0.6 fm.

The kaon spectra are shown in Fig. 4 and the proton spectra
in Fig. 5 with the BCfit initialization. Both are compared with
PHENIX data [40]. Because we do not consider net-baryon
number in our calculations, the proton and antiproton spectra
are identical. For this reason we show both the proton and the
antiproton data in Fig. 5.

For both kaons and protons, the calculated spectra are
slightly more curved than the data and they also lie above the
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FIG. 3. (Color online) Pion spectra at RHIC, with BCfit initial-
ization.

data. As for the pions, the slopes of the spectra are practically
independent of the η/s parametrization.

Figure 6 shows the pT -differential elliptic flow v2(pT ) of
charged hadrons for different centrality classes using the BCfit
initialization. Similarly, Fig. 7 shows the elliptic flow for the
GLmix initialization. The calculations are compared with the
four-particle cumulant data from the STAR collaboration [47].
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FIG. 4. (Color online) Kaon spectra at RHIC, with BCfit initial-
ization.
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FIG. 5. (Color online) Proton spectra at RHIC, with BCfit
initialization.

As was observed in Ref. [9], the differential elliptic flow is
largely independent of the high-temperature η/s parameteri-
zation, but highly sensitive on the hadronic η/s at RHIC. This
holds for all centrality classes. The suppression of the elliptic
flow due to the hadronic viscosity is even more enhanced
in more peripheral collisions. Note that with the BCfit
initialization, the elliptic flow in the most central collision class
is reproduced by the parametrizations with a large hadronic
viscosity, while with the GLmix initialization the elliptic flow
in the same centrality class is better described by taking
a constant η/s = 0.08. However, with the latter choice the
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FIG. 6. (Color online) Charged hadron v2(pT ) at RHIC, with
BCfit initialization.
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FIG. 7. (Color online) Charged hadron v2(pT ) at RHIC, with
GLmix initialization.

elliptic flow tends to be overestimated in more peripheral
collisions. On the other hand, the temperature-dependent
hadronic η/s gives the centrality dependence correctly down to
the 30–40% centrality class. In even more peripheral collisions
a large hadronic viscosity tends to suppress the elliptic flow
too much.

Figure 8 shows v2(pT ) for protons with the BCfit initial-
ization compared to the two-particle cumulant data from the
STAR collaboration [48]. The protons show qualitatively the
same response to the different η/s parametrizations as all
charged hadrons, i.e., v2(pT ) depends strongly on the hadronic
viscosity, but is almost independent of the high-temperature
η/s. Since we use a smooth initialization, with no initial-state
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FIG. 8. (Color online) Proton v2(pT ) at RHIC, with BCfit
initialization.

014909-6



INFLUENCE OF A TEMPERATURE-DEPENDENT SHEAR . . . PHYSICAL REVIEW C 86, 014909 (2012)

10-1

100

101

102

103

0.5 1 1.5 2 2.5 3 3.5 4

dN
/d

ηd
p T2  [1

/G
eV

2 ]

pT [GeV]

charged hadrons

LHC 2760 AGeV

0-5 %

LH-LQ
LH-HQ
HH-LQ
HH-HQ
ALICE

FIG. 9. (Color online) Charged hadron spectra at LHC, with BCfit
initialization.

fluctuations included, quantitative comparisons with two- or
four-particle cumulant data are not straightforward.

B. Transverse momentum spectra and elliptic flow at LHC

Transverse momentum spectra of charged hadrons in most
central Pb + Pb collisions with

√
sNN = 2.76 TeV at LHC

are shown in Fig. 9. At LHC, both initializations BCfit and
GLmix give very similar results for both elliptic flow and
the spectra, because the contribution from binary collisions is
large, of order ∼70%; see Table I. Therefore, we show only
results with the BCfit initialization; these are compared to data
from the ALICE collaboration [49]. The calculated spectra are
somewhat flatter than the data. Here, we have used the same
decoupling temperature as at RHIC, i.e., Tdec = 100 MeV. We
could improve the agreement with the data by decoupling
at even lower temperature than at RHIC. Another way to
improve the agreement is choosing a larger chemical freeze-out
temperature. This would give steeper spectra, but the proton
multiplicity at RHIC would then be overestimated. However,
we have tested that the dependence of the spectra and the
elliptic flow on η/s is unchanged by these details.

As was the case at RHIC, at LHC the slopes of the spectra
are practically independent of the η/s parametrization. We
note that here we have used the initialization time τ0 = 1.0 fm,
i.e., the same as at RHIC. In Ref. [9] we observed a quite visible
correlation between the shear viscosity and the spectral slopes.
Here, the later initialization time and the fact that we now
compensate for the entropy production between different η/s

parametrizations almost completely removes this correlation.
However, the earlier the evolution starts, the more the viscosity
will affect the slopes.

The pT -differential elliptic flow for all charged hadrons
is shown in Fig. 10 and for protons in Fig. 11. The charged
hadron elliptic flow is compared with ALICE four-particle
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FIG. 10. (Color online) Charged hadron v2(pT ) at LHC, with
BCfit initialization.

cumulant data [50]. We can see that in the 10–20% centrality
class, changing the hadronic η/s or changing the high-
temperature η/s has quite a similar impact on the elliptic
flow; e.g., the difference between the LH-LQ and LH-HQ and
between the LH-LQ and HH-LQ curves is nearly the same.
However, the more peripheral the collision is, the more the
viscous suppression is dominated by the hadronic η/s. This is
confirmed by comparing the grouping of the flow curves in the
40–50% centrality class at LHC with that at RHIC; cf. Figs. 6
and 10. As was the case in Au + Au collisions at RHIC, also
here the grouping of the curves for the protons is similar to
that of all charged hadrons; cf. Fig. 11.

Note that, within our set-up, the best agreement with the
ALICE data is obtained with the HH-HQ parametrization,
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FIG. 11. (Color online) Proton v2(pT ) at LHC, with BCfit
initialization.
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FIG. 12. (Color online) Charged hadron v2(pT ) at LHC 5.5 A
TeV, with BC initialization.

i.e., with a temperature-dependent η/s in both hadronic and
high-temperature phases. However, in the low-pT region our
calculations systematically underestimate the elliptic flow
in all centrality classes. As was the case with the pT

spectrum, decoupling at a lower temperature and choosing
a higher chemical freeze-out temperature would improve the
agreement, without changing the grouping of the elliptic flow
curves with the η/s parametrizations.

In Fig. 12 we show the pT -differential elliptic flow for√
sNN = 5.5 TeV Pb + Pb collisions. In this case the viscous

suppression of v2(pT ) is dominated by the high-temperature
η/s in central collisions, while peripheral collisions resemble
more the lower-energy central collisions at LHC; i.e., both
hadronic and high-temperature viscosity contribute similarly
to the suppression. Furthermore, the higher the pT , the more
the hadronic viscosity contributes to the suppression. This
happens mainly because δf increases with both viscosity and
pT .

V. EFFECTS OF SHEAR INITIALIZATION, MINIMUM OF
η/s AND RELAXATION TIME

One of the main results of Ref. [9] is that, at RHIC, the
high-temperature shear viscosity has very little effect on the
elliptic flow. In this section we elaborate more on this analysis
and explicitly show that this statement holds for an out-of-
equilibrium initialization of the shear-stress tensor as well. We
also study the effect of varying the relaxation time.

Figure 13 shows the elliptic flow of charged hadrons
in the 20–30% centrality class at RHIC. Instead of setting
πμν to zero initially, here the so-called Navier-Stokes (NS)
initialization where the initial values of the shear-stress tensor
are given by the first-order, asymptotic solution of IS theory,
Eq. (3). For all η/s parametrizations, the NS initialization
increases the entropy production (up to 30%), especially for
the parametrizations with a large high-temperature viscosity.
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STAR v2{4}

FIG. 13. (Color online) Charged hadron v2(pT ) at RHIC, with
BCfit and NS initialization.

This is corrected by adjusting the initial energy density to
produce approximately the same final multiplicity. Although
for the parametrizations with a large hadronic η/s the different
shear initializations give slightly different v2(pT ) curves, the
grouping of these curves remains intact. We emphasize that
the NS initialization gives very different initial conditions
for each viscosity parametrization. If we use the same
nonzero initial shear stress, e.g., πμν = const. × σμν , for each
parametrization, the resulting v2(pT ) curves in each group in
Fig. 13 would be even closer to each other.

The NS initialization with a constant η/s = 0.08 has a
relatively short relaxation time; see Fig. 2. Hence, for τπ � τ0

the NS initialization is not a completely unrealistic assumption
for the initial values of πμν . However, for larger values of η/s

the relaxation times are considerably larger, τπ � τ0, and there
is no reason to assume that the asymptotic solution could have
been reached already at very early times.

So far we have changed the shear-viscosity parametrization
by keeping the minimum fixed. In Fig. 14 we show the
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FIG. 14. (Color online) Parameterizations of η/s as a function of
temperature. The (HH-HQ) line is the same as in Fig. 1.
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FIG. 15. (Color online) Charged hadron v2(pT ) at RHIC, with
BCfit initialization and for different minima of η/s and relaxation
times.

original HH-HQ parameterization and one where η/s around
the minimum is twice as large. Figure 15 shows three v2(pT )
curves for Au + Au collisions at RHIC: one with the original
HH-HQ parametrization, one with the larger minimum value
of η/s, and the last one with the same large minimum value of
η/s, but with a larger relaxation time; i.e., the constant in the
relaxation time Eq. (11) is cτ = 10 instead of cτ = 5. We note
that even a relatively small change in the η/s parameterization
near the minimum produces quite a visible change in v2(pT ).
At RHIC, this change can be almost completely compensated
by adjusting the relaxation time. This shows that in small,
rapidly expanding systems like the one formed in heavy-ion
collisions, transient effects have considerable influence on the
evolution. In other words, the relaxation time cannot be merely
considered as a way to regularize the unstable Navier-Stokes
theory: it has real physical effects that cannot be completely
distinguished from the effects of η/s. In

√
sNN = 2.76 TeV

Pb + Pb collisions at LHC, the effect of changing the minimum
or the relaxation time is practically the same.

VI. TIME EVOLUTION OF THE ELLIPTIC FLOW

One way to probe the effects of shear viscosity on the
elliptic flow is to calculate the time evolution of the latter.
Typically this is done by calculating the so-called momentum-
space anisotropy from the energy-momentum tensor,

εp = 〈T xx − T yy〉
〈T xx + T yy〉 , (15)

where the 〈· · ·〉 denotes the average over the transverse plane.
The problem is, however, that one cannot make a direct
connection of εp to the actual value of v2 obtained from the
decoupling procedure. Also, this way of studying the time
evolution does not take into account that, at fixed time, part
of the matter is already decoupled; i.e., the average over
the transverse plane includes also matter that is outside the
decoupling surface.
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FIG. 16. (Color online) Constant-temperature hypersurfaces
at decoupling (Tdec = 100 MeV), chemical freeze-out (Tchem =
150 MeV), and at the minimum of η/s (Ttr = 180 MeV) at different
collision energies. Also, examples of surfaces that are used in the
calculation of the time evolution of v2 are shown (dotted lines).

To overcome these two shortcomings of εp, we instead
calculate the v2 of pions from a constant-time hypersurface that
is connected smoothly to a constant-temperature hypersurface
at the edge of the fireball; see Fig. 16 for examples of
such hypersurfaces. Although the pions do not exist as real
particles before hadronization, the advantage is that the final
v2 we obtain matches the one of thermal pions from the full
decoupling calculation.
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FIG. 17. (Color online) Time evolution of v2 at different collision
energies.

Figure 17 shows the time evolution of v2 in Au + Au
collisions at RHIC, in

√
sNN = 2.76 TeV Pb + Pb collisions at

LHC, and in
√

sNN = 5.5 TeV Pb + Pb collisions at LHC. In
all cases, the evolution is calculated in the 20–30% centrality
class. These results confirm our earlier conjecture: at RHIC, the
different η/s parametrizations create very little difference in
the elliptic flow in the early stages of the collision, while at later
stages the suppression due to the hadronic viscosity takes over
and groups the v2 curves according to the hadronic viscosity. At
the intermediate LHC energy the impact of the QGP viscosity
is larger, and the final v2 still has a memory of this difference.
The hadronic viscosity has a similar impact on v2 as the QGP

0.0

0.1

0.2

0.3

0.10 0.20 0.30

η/
s

T [GeV]

x
Ti = 170 MeV

η/s = 0.08
η/s + mod.

FIG. 18. (Color online) Shear viscosity with a modified temper-
ature dependence.

viscosity. At the highest LHC energy the hadronic suppression
is small and the effect of the QGP viscosity clearly dominates
the grouping of the v2 curves. Interestingly, both LHC
evolutions show an increase of v2 around τ = 10 fm/c. This
is when the system is going through the chemical decoupling
stage. In the chemically frozen system, v2 tends to increase
more rapidly than in chemical equilibrium [32,33]. At RHIC,
the chemical decoupling happens earlier, and also the hadronic
suppression is stronger, and the increase in v2 is washed out.

VII. PROBING THE EFFECTS OF A
TEMPERATURE-DEPENDENT η/s ON THE vn’s

In this section, we try to probe the effects of a temperature-
dependent η/s on the azimuthal asymmetries in a more detailed
way. To this end, we introduce a modified η/s. Our baseline
is a constant η/s|c = 0.08 that we then modify near some
temperature Ti according to

η

s
(T ) = η

s

∣∣∣
c

{
1 + 2

[
exp

( |T − Ti | − δT

�

)
+ 1

]−1
}

, (16)

where the parameters are taken to be δT = 10 MeV and � =
1.5 MeV. One example of this η/s parametrization is shown in
Fig. 18. We note that, although we use smooth initial conditions
from the optical Glauber model, we still get nonzero vn for all
even n. Although these are much smaller than the ones obtained
with the fluctuations included, we can still probe the effects
of viscosity on these coefficients. In general, one expects that
the viscosity affects higher harmonics more than the elliptic
flow [43,51]. By changing the temperature Ti and comparing
the simulations with a constant η/s we can find the temperature
regions where v2 or v4 are most sensitive to changes of η/s at
different collision energies.

Figure 19 shows the results for v2 and v4 in the 20–
30% centrality class for RHIC and for both LHC energies
considered earlier. We plot the relative difference δvn/vn,
where δvn = vn[η/s(T )] − vn(η/s|c). Each point in the figure
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FIG. 19. (Color online) Effects of modified η/s on v2 and v4.

corresponds to a different calculation, with a different value
of Ti in Eq. (16). Similarly, Fig. 20 shows the same result but
without the δf contribution to the freeze-out.

The viscosity can affect vn in two ways: by changing
the space-time evolution of the integrated quantities like the
energy density or by changing the local particle-distribution
function at freeze-out. With our small baseline viscosity, the
effect on the local distribution function is quickly washed out
during the evolution below the temperature Ti . Therefore, in
these simulations, in most of the temperature points, the change
in η/s affects vn through the space-time evolution, except at
the lowest-temperature point Ti = 110 MeV, where the peak
in η/s is close to the freeze-out temperature Tdec = 100 MeV.
If we exclude the lowest temperature point in v4 at RHIC, we
can read off from the figures that the temperature region where
viscosity affects both v2 and v4 most is around the transition
region T ∼ 150 . . . 200 MeV. For v2 this temperature region
shifts slightly toward higher temperatures with increasing col-
lision energy, while for v4 the temperature where the effect is
maximal is practically unchanged. Other than this, the overall
behavior of v2 and v4 is quite similar. At high temperatures,
the effect of η/s increases with increasing collision energy,
while at low temperatures the viscous suppression decreases
with increasing collision energy, which is most notable for
the Ti = 110 MeV point where the viscosity effects on the
freeze-out distribution are strongest.

For v2 we observed earlier that the suppression due to the
hadronic viscosity practically vanishes at the highest-energy
LHC collisions. This is again confirmed in Fig. 19. This is,
however, not true for higher harmonics. For v4 there is still
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FIG. 20. (Color online) Same as Fig. 19 but without the δf

contribution.

a significant contribution from hadronic viscosity at the full
LHC energy. In this sense, higher harmonics do not give direct
access to the high-temperature viscosity but can rather help
in constraining the hadronic dynamics and viscosity as well
as the correct form of δf . This is also important since the
hadronic evolution always tends to shadow the effects of the
properties of the high-temperature matter.

VIII. CONCLUSIONS

We have studied the effects of a temperature-dependent η/s

on the azimuthal asymmetries of hadron transverse momentum
spectra. We found earlier [9] that the viscous suppression
of the elliptic flow is dominated by the hadronic viscosity
in

√
sNN = 200 GeV Au + Au collisions at RHIC, while in

Pb + Pb collisions at the full LHC energy
√

sNN = 5.5 TeV
the suppression is mostly due to the high-temperature shear
viscosity. In this work we have supplemented these earlier
studies with more details.

First, we found that the suppression of the elliptic flow
due to the shear viscosity becomes more important in more
peripheral collisions. At least in our set-up, for RHIC energies a
temperature-dependent shear viscosity improves the centrality
dependence of the elliptic flow compared to the data, similarly
to what was found in the hybrid approach of Ref. [5]. With
a constant η/s = 0.08 and with the GLmix initialization,
the measured v2(pT ) is reproduced in the most central
collisions, but the calculations give a too large elliptic flow for
peripheral collisions. However, with the BCfit initialization
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the elliptic flow in the most central collisions is reproduced
with a temperature-dependent viscosity and also the centrality
dependence is reproduced down to the 30–40% centrality class.
Similarly, in Pb + Pb collisions at LHC both a temperature-
dependent hadronic η/s as well as an increasing η/s in the
high-temperature phase help in reproducing the centrality
dependence. Although there are lots of uncertainties associated
with the decoupling and the initial state, at RHIC the centrality
dependence of v2(pT ) may give access to the temperature
dependence of η/s in hadronic matter.

Furthermore, we have studied the effects of a temperature-
dependent η/s in a more detailed way. We found that for a
given collision energy both v2 and v4 are most sensitive to
the shear viscosity near the transition temperature, i.e., T ∼
150–200 MeV. For v2, this region moves slightly to higher
temperature and widens with increasing collision energy, while
for v4 it remains practically unchanged. Other than that, the
dependence of v2 and v4 on η/s is similar with increasing
collision energy: the effect of the hadronic viscosity decreases
and the effect of the high-temperature viscosity increases.

For v2 the effect of δf almost vanishes at the highest
collision energies, but for v4 it always remains significant.

At RHIC the δf corrections clearly dominate v4, and even
at the highest collision energies this effect is comparable to
the effects due to the modified space-time evolution. In this
sense, higher harmonics give access to the δf corrections
and the hadronic viscosity rather than the high-temperature
viscosity.
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