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Dissipative hydrodynamic effects on baryon stopping

Akihiko Monnai*

Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
and Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198, Japan

(Received 22 April 2012; published 26 July 2012)

The quark-gluon plasma is considered to behave as a relativistic viscous fluid in high-energy heavy-ion
collisions. In this study, I develop and estimate a second-order dissipative hydrodynamic model at finite baryon
density with effects of baryon dissipation together with those of shear and bulk viscosities. It is found that the
hydrodynamic evolution effectively reduces baryon stopping, suggesting that the collisions are less transparent
at the initial stage. Also the net baryon distribution is found to be sensitive to baryon dissipation as well as to
viscosities. The results indicate that dissipative hydrodynamic modeling would be important for understanding
the unique properties of a hot medium even in high-energy collisions.
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I. INTRODUCTION

The determination of the properties of QCD matter over
wider temperature and chemical potential regions has been
one of the most important goals in hadron physics. Quark
matter at high temperature with low baryon chemical potential
is experimentally accessible through high-energy heavy-ion
collisions, which contributes significantly to exploration of
the QCD phase diagram. Early experiments date back to the
Alternating Gradient Synchrotron (AGS) at the Brookhaven
National Laboratory (BNL) and the Super Proton Synchrotron
(SPS) at the European Organization for Nuclear Research
(CERN). A sufficiently large amount of energy for the
production of the quark-gluon plasma (QGP) [1], a deconfined
state of quarks and gluons, is considered to be available in√

sNN = 200 GeV Au-Au collisions at the Relativistic Heavy
Ion Collider (RHIC) at BNL [2], which is one of the biggest
achievements in hadron physics. With the beginning of the
highly anticipated

√
sNN = 2.76 TeV Pb-Pb collisions at the

Large Hadron Collider (LHC) at CERN, heavy-ion programs
continue to explore the high-energy frontiers of QCD matter.

At the mid-high-energy collisions in the AGS, the SPS, and
the early RHIC, baryon stopping has been used to quantify
nuclear transparency in the collisions and the kinetic energy
loss for production of a hot medium. It is found that the
average rapidity losses [3,4] at the RHIC are apparently less
than expected from a simple linear scaling from the AGS
[5] and the SPS [6] above around

√
sNN = 62.4 GeV [7,8],

which suggests that the collisions would become increasingly
transparent with increasing collision energy. The net baryon
distribution itself would be an important observable in the
higher energy collisions at the late RHIC and the LHC as
shown in a number of theoretical analyses [9–19], even though
the net baryon is often treated as irrelevant and neglected
because it becomes small near mid-rapidity as the collision
energy increases. It is worth mentioning that the net baryon
number in the initial colliding nuclei is conserved throughout
the time evolution and does not vanish from the system even
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at the highest energies. The net baryon distribution might
also carry valuable information on the valence quarks in the
colliding nuclei and on the formation of the QGP itself in the
early thermalization stage, which is not yet well understood.

It has been quantitatively shown in RHIC [20] and LHC
[21] experiments that a relativistic hydrodynamic analysis
is a powerful method to describe the dynamical behavior
of the hot medium when its temperature is around and
above the crossover temperature [22–24]. The typical time
scale for the hydrodynamic applicability is τ ∼ 1–10 fm/c.
Recent progress in hydrodynamic studies [25–27] incorporates
nonequilibrium effects of shear and/or bulk viscosity into the
calculations to quantitatively understand the properties of the
QGP to explain the particle spectra, azimuthal anisotropy,
multiplicity, and rapidity distribution. On the other hand, finite
density effects are neglected in most modern hydrodynamic
calculations with viscosity although they could be important
in the context of precision physics. One of the great ad-
vantages of relativistic hydrodynamics is that it can handle
finite chemical potentials with ease even in off-equilibrium
systems. Comparison of experimental data to hydrodynamical
calculations of the net baryon distribution would, therefore,
provide one with valuable insights for understanding the early
dynamics as well as for determining the equation of state
and the transport coefficients, such as the baryon diffusion
coefficient, at nonvanishing baryon density. The development
of a consistent dissipative hydrodynamic model at finite
density would also help the efforts to explore the QCD phase
diagram in the search for the critical point.

In this paper, I would like to estimate the effects of
collective flow on the net baryon distribution and the average
rapidity loss for the late RHIC and the LHC including
the interplay of shear viscosity, bulk viscosity, and baryon
dissipation. A relativistic dissipative hydrodynamic model for
the longitudinal expansion of the quark matter is developed
from a generalized version of the second-order theory [28].
Here viscous hydrodynamics refers to hydrodynamics with
shear and bulk viscosities, which are the tensor and the scalar
off-equilibrium processes, and dissipative hydrodynamics
refers to the one with charge dissipations, the vector processes,
in addition to the viscosities [29]. The initial energy and the
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initial net baryon distributions are employed from the color
glass theory [30–32], and the equation of state at finite baryon
density is constructed from lattice QCD results.

The paper is organized as follows: Section II is devoted to
the formulation of relativistic dissipative hydrodynamics with
finite net baryon density. In Sec. III, the models for the equation
of state and the transport coefficients for hydrodynamic
calculations are introduced, along with initial conditions and
freeze-out. In Sec. IV, I calculate rapidity distributions of
the net baryon number to discuss the hydrodynamic effects
with baryon dissipation as well as shear and bulk viscosities
on the baryon stopping. Finally in Sec. V, a discussion and
conclusions are presented. The natural units c = h̄ = kB = 1
and the Minkowski metric gμν = diag(+,−,−,−) are used
throughout this paper.

II. RELATIVISTIC DISSIPATIVE HYDRODYNAMICS

I develop a finite-density relativistic hydrodynamic model
with off-equilibrium processes to describe the dynamical
evolution of the quark-gluon plasma in high-energy heavy-
ion collisions. Baryon dissipation is taken into account for
evolving flow, together with shear viscosity and bulk viscosity.
A generalized version [29] of second-order dissipative hydro-
dynamics [28] is introduced for the equations of motion for the
dissipative currents to preserve causality and stability. Cross
terms among different thermodynamic forces are present in the
formalism. I focus on the longitudinal evolution of the target
systems and integrate out the transverse dynamics [33,34] in
the study because the net baryon distribution is expected to
depend mainly on rapidity as it is carried by the remnant of the
valence quarks in the colliding nuclei at forward rapidity. It is
also experimentally supported that the net baryon distributions
do not depend on the transverse geometry [35]. It should be
emphasized that the longitudinal boost invariance [36] is not
assumed.

The energy-momentum tensor T μν and the net baryon
current N

μ

B are introduced as the conserved quantities in the
system. In principle one can introduce other conserved currents
such as the net strangeness current N

μ
s , but those currents are

expected to be much smaller than N
μ

B for standard nucleus-
nucleus collisions and are not considered here. The conserved
quantities are related to the thermodynamic quantities through
tensor decomposition as

T μν = (e0 + δe)uμuν − (P0 + �)�μν

+ 2W (μuν) + πμν, (1)

N
μ

B = (nB0 + δnB)uμ + V μ, (2)

where uμ is the flow and �μν = gμν − uμuν is the projection
operator perpendicular to the flow, i.e., �μνu

μ = 0. In the
local rest frame, e0, P0, and nB0 are interpreted as energy
density, hydrostatic pressure, and baryon number density,
respectively. � is the bulk pressure, Wμ is the energy
dissipation current, πμν is the shear stress tensor, and V μ is
the baryon dissipation current. The distortions of energy and
baryon number densities, δe and δnB0, equal zero because of
the requirement of thermodynamic stability [37].

The dissipative corrections in linear response theory can be
interpreted rather intuitively. The bulk pressure is a dynamical
correction to the hydrostatic pressure which arises when the
system is expanded or compressed without deformation, or
when the temperature T or the chemical potential μB decreases
or increases. It is note-worthy that cancellation among the
linear terms could be the reason for the general smallness
of the bulk pressure since the phenomena do not occur
independently in hydrodynamic systems. See the Appendix
for details. The shear stress tensor corresponds to the response
to the deformation without volume change. The energy and
baryon dissipation currents are the local fluxes of energy
and baryon densities which dissipate away from the flow,
respectively. They are induced by the spatial gradients in the
temperature and the chemical potential. If one chooses a frame
in the direction of the overall local energy flux, then Wμ = 0
is concluded without loss of generality. This frame is called
the energy frame or Landau frame. From now on I consider
this energy frame for the formulation of the hydrodynamic
scheme.

In (1 + 1)-dimensional dissipative hydrodynamics, the
flow is expressed with the flow rapidity Yf as uμ =
(cosh Yf , 0, 0, sinh Yf ), where the z axis is the direction of the
expansion. It follows from the orthogonality relation πμνuμ =
0 and the traceless condition πμ

μ = 0 that the shear stress
tensor can be expressed with a single independent variable
π = π00 − π33, which can be called the shear pressure, as

πμν =

⎛
⎜⎜⎝

− sinh2 Yf 0 0 − cosh Yf sinh Yf

0 1
2 0 0

0 0 1
2 0

− cosh Yf sinh Yf 0 0 − cosh2 Yf

⎞
⎟⎟⎠ π.

(3)

Likewise, because of the orthogonality relation V μuμ = 0, the
baryon dissipation current V μ can be expressed as

V μ = (− sinh Yf , 0, 0,− cosh Yf )V, (4)

where V can be called baryon dissipation.
The equations for energy momentum and net baryon

number conservation then read

De0 = −(e0 + P0 + � − π )∇Yf , (5)

(e0 + P0 + � − π )DYf = −∇(P0 + � − π ), (6)

and

DnB0 = −nB0∇Yf + ∇V + V DYf , (7)

where the time- and the spacelike derivatives in this geometry
are

D = cosh(Yf − ηs)∂τ + 1

τ
sinh(Yf − ηs)∂ηs

, (8)

∇ = sinh(Yf − ηs)∂τ + 1

τ
cosh(Yf − ηs)∂ηs

. (9)

Here (τ, ηs) is the relativistic coordinate defined as t =
τ cosh ηs and z = τ sinh ηs . τ is the proper time and ηs is
the space-time rapidity.

Besides the equation of state P0 = P0(e0, nB0), one further
needs three constitutive equations to determine the space-time
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evolution of the systems. Here I introduce the full second-order
dissipative hydrodynamic equations from Ref. [29] which
extend the Israel-Stewart theory [28] for systems with particle-
number-changing processes. The constitutive equations for
the bulk pressure �, the baryon dissipation V , and the
shear pressure π in the (1 + 1)-dimensional geometry can be
expressed as

D� = 1

τ�

(
− � − ζ��

1

T
∇Yf − ζ�δeD

1

T
+ ζ�δnB

D
μB

T

+χ���∇Yf − χA
�V V ∇ μB

T
− χB

�V V ∇ 1

T

+χC
�V V DYf − χD

�V ∇V + χ�ππ∇Yf

)
, (10)

DV = 1

τV

[
− V + κVB

∇ μB

T
− κVJ W

(
∇ 1

T
− 1

T
DYf

)

+χV V V ∇Yf + χA
V ππ∇ μB

T
+ χB

V ππ∇ 1

T

−χC
VJ ππDYf + χD

V π∇π + χA
V ��∇ μB

T

+χB
V ��∇ 1

T
− χC

V ��DYf + χD
V �∇�

]
, (11)

Dπ = 1

τπ

(
− π + 4

3
η∇Yf

+χπππ∇Yf + χπ��∇Yf − χA
πV V ∇ μB

T

−χB
πV V ∇ 1

T
+ χC

πV V DYf − χD
πV ∇V

)
, (12)

where η is the shear viscosity, ζ��, ζ�δe, and ζ�δnB
are the

bulk viscosities, κV is the baryon charge conductivity, and
κV W is the baryon-heat cross conductivity. It should be noted
that the linear cross terms, which implicitly satisfy Onsager
reciprocal relations [38], are explicitly present in the equations.
The diagonal baryon charge conductivity is related to the
baryon diffusion coefficient as DB = (∂μB/∂nB0)|T κV /T .
The cross conductivity causes the Soret effect, which is the
chemical diffusion induced by the thermal gradient and flow
acceleration. It is related to the thermo-diffusion coefficient
as DT = (∂μB/∂T )P0κV /nB0 + (κV W − μBκV )/T . The ratio
kT = DT /DB is called the Soret coefficient. The cross coeffi-
cient can either be positive or negative while the semipositive
definite condition of the transport coefficient matrix κ2

V W �
κV κW is satisfied. Here κW is the thermal conductivity but
does not explicitly appear in the formalism because of the
frame choice. τ�, τπ , and τV are the relaxation times, χ��,
χππ , and χV V are the second-order self-coupling coefficients,
and χ�π , χπV , and χV � are the second-order cross coefficients.
The terms are combined using the conservation laws and the
Gibbs-Duhem relation with truncation to second order. The
couplings between different dissipative quantities at second
order can in principle have nontrivial effects when there are
quantitative hierarchies among the dissipative quantities.

The equations involve many timelike derivatives, poten-
tially increasing the numerical difficulties. Here they are solved
with an advanced version of the multiple iteration algorithm
I have developed for Ref. [34] coupled with the piecewise
parabolic method [39].

III. THE MODEL

The relativistic hydrodynamic model describes the macro-
scopic motion of a fluid with conservation laws and the
constitutive equations. This means that the QCD equation of
state and the QCD transport coefficients must be given as
input parameters to perform hydrodynamic calculations for the
quark matter. Also the hydrodynamic description works at the
intermediate stage of the collisions around τ ∼ 1–10 fm/c.
Thus one further needs to introduce initial conditions and
freeze-out to link hydrodynamic analyses with experimental
observables. Here the color glass theory is employed to
estimate the initial conditions for the energy density and the net
baryon density profiles. The hydrodynamic flow is converted
to particle spectra via freeze-out.

A. Equation of state and transport coefficients

The equation of state (EoS) and the transport coefficients
are the static and the dynamical responses of a thermodynamic
system. They depend on the microscopic properties of the
medium and are necessary input for hydrodynamic models.
Obtaining these quantities from first-principles calculations is,
however, generally a very nontrivial issue, especially for finite
baryon chemical potential systems due to the fermion-sign
problem of lattice QCD calculations. Here the finite-density
EoS is constructed with the Taylor expansion method up to
second order,

P (T ,μB )

T 4
= P (T )

T 4
+ χ

(2)
B (T )

2

(
μB

T

)2

+ O

(
μB

T

)4

, (13)

where χ
(2)
B is the quadratic fluctuation of the baryon number.

The latest (2 + 1)-flavor lattice QCD results of the continuum
extrapolations for the EoS at vanishing chemical potentials
[40] and for the quadratic baryon fluctuation [41] are em-
ployed. It should be noted that the fugacity exponent μB/T

has to be small for the expansion to be formally valid. This is
well motivated for high-energy heavy-ion collisions where the
net baryon density is relatively small.

The transport coefficients of hot matter are more difficult to
obtain from first-principles calculations. To the best knowledge
of the author, no conclusive results for these coefficients are
available so far. This makes constraining the coefficients from
experimental data in a dissipative hydrodynamic modeling
one of the goals of heavy-ion physics. Here I choose model
coefficients for demonstrative purposes. The shear viscous
coefficient is introduced from the conjectured minimum
boundary η/s = 1/4π [42] from Anti–de Sitter/conformal
field theory (AdS/CFT) correspondences, where s denotes the
entropy density. The three bulk viscous coefficients ζ��, ζ�δe,
and ζ�δnB

are naturally expected in the linear response theory.
ζ�� is the diagonal component in the transport coefficient
matrix and the others are off-diagonal, or cross, components.
The ratios ζ/η are obtained from the nonequilibrium statistical
operator method with a φ4-theory estimation [43]. Following
the discussion in the Appendix, I combine them into an
effective bulk viscous coefficient ζ = 5( 1

3 − c2
s )η at first order.
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The coefficient phenomenologically exhibits a peak structure
around the crossover temperature Tc.

The baryon charge conductivity and the baryon-heat cross
coefficient characterize the finite-density nonequilibrium pro-
cesses. By using the charge diffusion coefficient DB = 1/2πT

in an AdS/CFT framework [44], the former is estimated as

κV = cV

2π

(
∂μB

∂nB

)−1

T

= cV

χ
(2)
B T 2

2π
, (14)

where the Taylor expansion of the EoS (13) is utilized. cV is
a dimensionless constant introduced for the parametrization.
Here cV = 1 is considered unless specified otherwise. The
cross coefficient is parametrized from the dimensional analy-
ses, the matter-antimatter symmetry, V μ(μB) = −V μ(−μB),
and the implication from the semipositive definiteness as
κV W = cV W [nB0T/(e0 + P0)]

√
κV κW . The semipositive def-

inite condition of the transport coefficient matrix in this case is
explicitly expressed as c2

V W [nB0T/(e0 + P0)]2 � 1. Here the
thermal conductivity is chosen as κW = 5ηT [43]. Note that the
charge conductivity in this model remains finite in the limit of
vanishing chemical potential, but it does not induce the charge
dissipation current out of global chemical equilibrium because
the cross coefficients vanish in the limit and it forms an isolated
partial matrix in the full transport coefficient matrix. The lack
of cross coefficients at the vanishing limit of the corresponding
chemical potentials is important because it ensures that hidden
conserving quantities—strangeness or yet unknown charge—
do not affect the physics. The dimensionless ratios of the linear
transport coefficients η/s, ζ/s, κV T /s, and κV W/s with cV = 1
and cWV = 5 for a constant chemical potential μB = 0.05 GeV
are plotted in Fig. 1. One can see that the baryon-related
transport coefficients are smaller than the others in the current
parameter settings.

The relaxation times are also estimated from the string
theoretical framework as τπ = (2 − ln 2)/2πT , τ� = 18 −
(9 ln 3 − √

3π )/24πT , and τV = ln 2/2πT [44]. The other
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FIG. 1. (Color online) The dimensionless ratios of the shear
viscosity (solid line), the effective bulk viscosity (dotted line), the
baryon charge conductivity multiplied by temperature (dashed line),
and the baryon-heat cross conductivity (dash-dotted line) to the
entropy density at μB = 0.05 GeV. The temperature region relevant
to the numerical simulation, 0.1 � T � 0.5 GeV, is shown.

second-order transport coefficients are parametrized as χAB =
c̃AB[nB0T/(e0 + P0)]nT mτA, where A and B denote the types
of dissipative currents and c̃AB is a dimensionless constant.
n = 1 is employed for the baryon-nonbaryon cross coefficients
and n = 0 for the others, following the matter-antimatter
symmetry arguments mentioned earlier. m is the dimension
parameter chosen so that the dimensions of the terms in
each constitutive equation are matched. For the most part
in this study, however, c̃AB = 0 is employed to observe the
qualitative nature of the dissipative processes. Note that, in the
present analyses, the focus is on the net baryon density and
the interplay of different dissipative currents, and it is beyond
the scope of the paper to precisely obtain the transport
coefficients.

B. Initial conditions

The initial condition for the energy density is constructed
in the color glass theory. The theory describes two colliding
nuclei as saturated gluons called a color glass condensate
(CGC). Since the gluons are dominant against the valence
quarks, the initial energy density of the hot matter is estimated
from the gluon distribution by assuming the profile of the
energy distribution is not significantly modified during the
early thermalization stage. The Nara Monte Carlo adaptation
[45–48] of the Kharzeev-Levin-Nardi model (MC-KLN) [49]
is employed for the estimation. The rapidity distribution of
the transverse gluon energy density can be expressed in kT

factorization as

dET

d2rT dy
= 4πNcαs

N2
c − 1

∫
d2pT

pT

∫
d2kT ϕ1

(
x1, k

2
T

)

×ϕ2(x2, (pT − kT )2), (15)

where Nc = 3 is the number of colors, αS is the QCD
coupling, x1,2 = pT exp(±y)/

√
s, and ϕ1,2 is the unintegrated

gluon distributions. The lower index T denotes the trans-
verse component of a given position or momentum. The
gluon distribution are saturated at the scale Q2

s,A(x, r⊥) =
Q2

s,0[TA(r⊥)/TA,0](x0/x)λ, where λ = 0.28 is experimentally
motivated. TA is the thickness function to account for the
nucleus geometry. Here the parameters are chosen as x0 =
0.01, TA,0 = 1.53 fm−2, and Q2

s,0 = 2 GeV [46]. Since the
hydrodynamic medium is expected to be constituted by low-pT

partons, the pT window 0.1–3.0 GeV is set. The space-time
rapidity ηs is matched with the momentum rapidity y to obtain
the initial condition in configuration space.

The initial condition for the net baryon density is also
constructed from the color glass picture by assuming it is
proportional to the valence quark parton distribution function
[18]. The net baryon distribution for a nucleus reads

dNB−B̄

dy
= C

(2π )2

∫
d2pT

p2
T

x1qv(x1)ϕ(x2, pT ), (16)

where qv is the valence quark distribution. Here the normaliza-
tion C is determined so that the integrated NB−B̄ matches the
number of participants. The distributions are determined with
the same settings as the no-fragmentation case in Ref. [18] but
with λ = 0.28 and the next-to-next-to-leading order fit results
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of the valence quark distribution [50]. Note that the net baryon
distribution is sensitive to the parameters, and here they are
chosen to yield a much steeper distribution at the initial stage so
that the distribution after the hydrodynamic evolution roughly
reproduces experimental data. The tail contribution beyond the
beam rapidity is exponentially cut off since a hydrodynamic
description does not apply to the region beyond freeze-out
and a Taylor-expansion-based EoS is not expected to work for
dense and cold matter. This leads to the reduction of the total
baryon number of participant nucleons by 8.7% at the RHIC
and 0.1% at the LHC for the most central 0%–5% events.

The initial conditions for the dissipative currents are not
well known and this is also a quite interesting issue by itself.
Here they are chosen as nonexistent at the initial time, i.e.,
�(τ0, ηs) = V (τ0, ηs) = π (τ0, ηs) = 0, for a clear view of the
nonequilibrium effects on the fluids and also for avoiding
possible overestimation of the viscous and dissipative effects
from ambiguity. Here τ0 is the initial time set to τ0 = 1 fm/c.

C. Freeze-out

As the system cools down with time and becomes dilute
enough, the hydrodynamic simulation has to be stopped and
the flow field needs to be converted into particles. One
conventionally employs the Cooper-Frye formula [51] at a
freeze-out hypersurface �. The formula reads

d2Ni

d2pT dy
= gi

(2π )3

∫
�

p
μ

i dσμfi, (17)

for the particle species i, where gi is the degeneracy, dσμ is
the freeze-out hypersurface element, and fi is the phase-space
distribution. � is taken as an isothermal surface because the
chemical potential dependence of the boundary is sufficiently
small for high-energy collisions. This gives rise to the concept
of the freeze-out temperature Tf . fi can be separated into
an equilibrium distribution f 0

i and the distortion of the
distribution, δfi , where

f 0
i =

[
exp

(
pi

μuμ − biμB

T

)
− εi

]−1

. (18)

Here bi is the baryon number; i.e., bi = +1 for baryons, −1
for antibaryons, and 0 for mesons. εi denotes the quantum
statistics: εi = +1 for fermions and −1 for bosons. The
effects of the off-equilibrium distribution δfi is not treated
here because its correction on the pT -integrated net baryon
rapidity distribution would be small while the off-equilibrium
expansion is applicable, since the stability condition for the net
baryon density requires δnB = 0 and |δNμ

B |/|Nμ

B0| = V/nB0

would be generally very small.
It should be emphasized here that the focus of this paper

is to estimate the finite-density hydrodynamic effects with
nonequilibrium processes on a hot medium because it would
have the dominant effects on the net baryon distribution. The
hadronic cascade at the later stage is not considered because the
modification on the net baryon distribution during the hadronic
stage would be small as the baryon number does not change in
the hadronic decay and diffusion in a hadronic gas is expected
to be slow [12,52].

Information on the chemical freeze-out is implicitly con-
tained in the lattice QCD EoS in the hadronic phase since the
hydrodynamic flow does not specify its contents. If the EoS for
each hadronic component were known, one could in principle
incorporate the chemical freeze-out explicitly by introducing
conservation laws for the hadrons instead of the one for the
baryon charge [53].

IV. RESULTS

The most central 0%–5% events are considered for the
initial conditions. The mean numbers of participants are 357
for the RHIC and 385 for the LHC. The initial temperatures
and the chemical potentials at mid-rapidity are T = 419 MeV
and μB = 20.6 MeV for the RHIC and T = 490 MeV and
μB = 6.5 MeV for the LHC. I employ two freeze-out temper-
atures, Tf = 0.16 GeV and Tf = 0.14 GeV. The former early
freeze-out scenario is motivated by the possible breakdown of
hydrodynamic applicability due to bulk viscous effects [54].
The net baryon distributions are constructed by taking into
account the contributions of the hadron resonance [55] up to
2.5 GeV at freeze-out.

A. Net baryon distributions at the RHIC

The net baryon distributions of Au-Au collisions at√
sNN = 200 GeV with and without nonequilibrium correc-

tions are shown in Fig. 2 for the freeze-out temperatures
Tf = 0.16 GeV and Tf = 0.14 GeV. The off-equilibrium
parameters are set as cV = 1, cV W = 0, and c̃AB = 0 for the
moment. One can see that the hydrodynamic flow tends to
carry the net baryon density to forward rapidity, broadening
the flat region with relatively small baryon density around
mid-rapidity. The viscous hydrodynamic results are less
flattened because the shear and bulk viscosities prevent the
expansion by effectively reducing the longitudinal pressure.
The dissipative hydrodynamic results, which include the
baryon dissipation in addition to the viscosities, differ from the
viscous hydrodynamic results. The gradient in the chemical
potential induces the baryon dissipation current into the
mid-rapidity region, further steepening the mid-rapidity valley.
The data points are scaled from the net proton distribution of
the BRAHMS experiments [7], which show relatively good
agreement with the hydrodynamic results. It should be noted
that quasiquantitative discussion is allowed here because the
initial distribution is sensitive to the parameters in the color
glass theory and also the transverse dynamics is integrated out.

The magnitude of collisional transparency is quantified by
the baryon stopping. The rapidity loss is defined as 〈δy〉 =
yp − 〈y〉, where yp is the rapidity of the incoming projectile
and

〈y〉 =
∫ yp

0
y

dNB−B̄ (y)

dy
dy

/ ∫ yp

0

dNB−B̄ (y)

dy
dy. (19)

The ideal, the viscous, and the dissipative hydrodynamic
evolutions lead to reductions in the average rapidity loss to
〈δy〉 = 2.09, 2.16, and 2.26 for Tf = 0.16 GeV and 〈δy〉 =
1.99, 2.06, and 2.19 for Tf = 0.14 GeV, respectively, when
that of the initial net baryon distribution is 〈δy〉 = 2.67. The
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FIG. 2. (Color online) The initial net baryon distributions based
on the color glass theory (solid curve) and ones with ideal (dotted
curve), viscous (dash-dotted curve), and dissipative (dashed curve)
hydrodynamic effects at (a) Tf = 0.16 GeV and (b) Tf = 0.14 GeV
for Au-Au collisions at

√
sNN = 200 GeV. The experimental data

points are the scaled results of the net proton distribution from the
BRAHMS Collaboration [7].

fact that hydrodynamic evolutions visibly reduce the rapidity
loss suggests that the baryon stopping in the RHIC would
deviate less significantly from the linear extrapolation of the
AGS and the SPS results at the formation of a hot medium,
but the net baryon is carried to the forward rapidity by the
hydrodynamic medium interaction, effectively enhancing the
observed transparency. It also indicates that the kinetic energy
loss for QGP production is larger, and part of the energy
is transferred back to the net baryon component from the
produced medium afterward.

The fact that the effects of the baryon dissipation current
could be visible on the net baryon distribution is of impor-
tance because it suggests that one would have to take the
diffusion process into account to quantitatively understand
the experimental data. It would also play an important role
in constraining the yet unknown initial condition of the net
baryon distribution. The actual effect of the baryon diffusion
could be larger because the current baryon charge conductivity
is moderate, as shown in Fig. 1. It is noteworthy that though
the shear and bulk viscosity and the baryon dissipation seem

to have similar effects on the net baryon distribution, the
former enhances the baryon and the antibaryon distributions
individually while the latter only increases their difference,
suggesting that its contribution to the averaged distributions is
small.

Comparing the two freeze-out temperatures, one sees that
the broadening effect is larger for the late freeze-out case
because of the longer hydrodynamic evolution. This indicates
that the late freeze-out tends to allow larger dissipative and
viscous coefficients. It should be noted that the total baryon
number is slightly smaller than the number of participant
nucleons at Tf = 0.14 TeV because of the Cooper-Frye
formulation of the freeze-out. The equation of state and
the baryon fluctuation of the kinetic theory and those of the
lattice QCD have to be identical at freeze-out to perfectly
conserve the energy and the net baryon because they are to
be reproduced in relativistic kinetic theory from the flow, the
temperature, and the chemical potential. This would make it
slightly more difficult to distinguish the freeze-out temperature
dependence from the slopes of the net baryon distribution, but
of course it leaves the freeze-out temperature dependence of
the average rapidity losses unaffected.

B. Effects of cross terms

I next explore the effects of the cross terms in the equations
of motion for the dissipative currents (10)–(12). Figure 3 shows
the Soret effect in the QGP medium, which is induced by the
linear thermo-diffusion term in the baryon dissipation, at the
RHIC for Tf = 0.16 GeV. cV W = 5, 0, and −5 are employed
for the cross coefficient. The semipositive definite condition
is checked to be satisfied throughout the time evolution. One
can see that the positive and the negative cross coefficients
qualitatively lead to reduction and enhancement of the baryon
diffusion effect, respectively. The results are consistent with
the linear order analyses in Eq. (A4) that the positive
thermo-diffusion coefficient effectively reduces the charge
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FIG. 3. (Color online) The net baryon distribution at the initial
stage based on the color glass theory (solid curve) and ones after
dissipative hydrodynamic evolutions with the cross coefficients
cV W = 5 (dotted curve), cV W = 0 (dashed curve), and cV W = −5
(dash-dotted curve) at Tf = 0.16 GeV for Au-Au collisions at√

sNN = 200 GeV.
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conductivity. The magnitude of the thermo-diffusion effect, on
the other hand, is relatively small in the present calculations
because the cross coefficient becomes nonvanishing only in the
baryon-rich region at forward rapidity in high-energy heavy-
ion collisions. This suggests that the Soret effect might change
the temperature and the chemical potential dependencies of the
transport properties, but it would be effective only at forward
rapidity.

The second-order cross terms could also affect the results
because of the hierarchy in the magnitude of dissipative
currents mentioned in Sec. II. Numerical estimations with
finite c̃AB indicate that the bulk-shear cross term in the bulk
pressure and the baryon-shear and the baryon-bulk terms in
the baryon dissipation can be relevant, if one assumes that
the magnitude of the transport coefficients is roughly of the
same order. Note that in general there is much ambiguity in
the magnitude of the second-order transport coefficients. The
result is consistent with the fact that the shear pressure is larger
than the bulk pressure, which in turn is larger than the baryon
dissipation in relativistic heavy-ion collisions.

C. Net baryon distributions at the LHC

The prospects for Pb-Pb collisions at
√

sNN = 2.76 TeV
in the LHC experiment are shown in Fig. 4. The net baryon
distributions are still visibly modified by the hydrodynamic
flow, effectively increasing the nuclear transparency in the
collision. On the other hand, the effects of viscosities and
dissipation are much smaller. The finial average rapidity losses
after the ideal, the viscous, and the dissipative hydrodynamic
evolution are 〈δy〉 = 3.48, 3.52, and 3.55 for Tf = 0.16 GeV
and 〈δy〉 = 3.44, 3.48, and 3.51 for Tf = 0.14 GeV, respec-
tively. The initial rapidity loss in the current parameter settings
is 〈δy〉 = 3.88. Comparing the early and the late freeze-out
cases, one sees that the latter tends to leave more room for
viscosities and dissipation as is found in the RHIC settings.

The smaller dissipative effect could be understood as a
result of the smaller spatial gradients in the fugacity exponent
μB/T , the thermodynamic force to the baryon dissipation, at
the LHC. The shear and the bulk viscous effects are reduced for
a different reason, because they do not directly respond to the
difference in the fugacity exponent. The hydrostatic pressure
P0 increases with the collision energy more than the shear and
the bulk pressures do, and the effects of viscous corrections are
decreased in the effective pressure P = P0 + � − π , reducing
the difference between the ideal and the viscous hydrodynamic
results. It should be noted that the effect of baryon dissipation
could be larger since the charge conductivity employed in
the estimations is very moderate, as mentioned earlier. Also
the off-equilibrium corrections on the net baryon distribution
might be underestimated due to the lack of explicit chemical
potential dependence of the transport coefficients, including
the shear and bulk viscosities in the current modeling.

Comparing the results with the ones at the RHIC, one can
also find that the overall hydrodynamic effect is smaller at
the LHC. One of the reasons would be the fact that the mean
rapidity loss in the initial net baryon distribution for the current
parameter settings is large; i.e., the peak of the distribution is
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FIG. 4. (Color online) The initial net baryon distributions based
on the color glass theory (solid curve) and ones with ideal (dotted
curve), viscous (dash-dotted curve), and dissipative (dashed curve)
hydrodynamic effects at (a) Tf = 0.16 GeV and (b) Tf = 0.14 GeV
for Pb-Pb collisions at

√
sNN = 2.76 GeV.

around y ∼ 4–5 while the beam rapidity is y ∼ 8. The pressure
is larger at the LHC, but the pressure gradient, which drives
the net baryon current, is relatively small in this rapidity
region. Thus the actual hydrodynamic effect could be large
enough to be measured in the LHC experiments for the initial
distributions with smaller mean rapidity loss or larger pressure
gradient.

V. DISCUSSION AND CONCLUSIONS

A relativistic dissipative hydrodynamic model of high-
energy heavy-ion collisions at finite density which takes
account of shear viscosity, bulk viscosity, and baryon dis-
sipation with evolving flow is developed. The hydrodynamic
framework is employed from second-order theory extended for
systems with particle-number-changing processes. The initial
conditions for the energy and the net baryon distributions
are constructed from the color glass theory, and the EoS is
employed from the Taylor expansion approach of finite-density
lattice QCD to improve quantitative accuracy. I find that the
average rapidity loss for baryon stopping is reduced during the
hydrodynamic evolution, which would mean that the observed
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transparency of the collision at the RHIC is effectively
enhanced in the medium interaction. This suggests that more
energy is available for the production of a hot medium at the
initial stage than was implied from the experimental data, and
the strongly coupled medium redistributes part of the energy
back to the net baryon components.

The net baryon distribution could also be sensitive to baryon
dissipation as much as to viscosities. It should be noted
that the current dissipative coefficients are rather moderate,
as shown in Fig. 1, and the actual diffusion effects can be
larger. The effect of baryon dissipation could be important
for explaining the experimental data and constraining the
initial conditions, which are not well known. One would
need to introduce other observables such as the transverse
momentum spectra of the net baryon to constrain the transport
coefficients of hot QCD matter at finite baryon density from
the collider experiments because of the ambiguities in the
choice of initial conditions. The effects of cross coefficients
are also numerically investigated, and it is found that the
thermo-diffusion effect, or the Soret effect, might modify the
magnitude of the baryon diffusion, but the effect is limited
to the forward rapidity region because the baryon-heat cross
conductivity vanishes for a baryon-free medium due to matter-
antimatter symmetry. The second-order cross terms between
the dissipative currents of different magnitudes would also be
important for a quantitative analyses. The late freeze-out is
found to allow larger viscosities and baryon dissipation since
the longer hydrodynamic evolution widens the mid-rapidity
valley.

A possible source of overestimation for the hydrodynamic
effects would be the lack of transverse expansion. The
temperature and the chemical potential tend to be larger for
the longitudinal geometry because the energy and the net
baryon densities cannot spread into the transverse directions.
It should be noted that while the transverse dependence of
the net baryon distributions is experimentally implied to be
small [35], the accelerated cooling would lead to a reduction
in the effect of hydrodynamic evolution. This is partially
taken into account by employing the early freeze-out scenario.
The off-equilibrium corrections with transverse expansion
would be more nontrivial and worth investigating. Also the
parametrization of the transport coefficients for finite-density
systems, especially the conductivities κV and κV W , needs to be
improved through theoretical and experimental developments
for a more quantitative discussion.
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APPENDIX: TRANSPORT COEFFICIENTS
AT LINEAR ORDER

The determination of the transport coefficients for a given
system has been one of the long-standing issues even at linear

order. The bulk pressure at first order is expressed as

� = −ζ��

1

T
∇μuμ − ζ�δe

D
1

T
+ ζ�δnB

D
μB

T

= −
[
ζ��

T
+ ζ�δe

T

(
∂P0

∂e0

)
nB0

+ ζ�δnB

T

(
∂P0

∂nB0

)
e0

]

×∇μuμ + O(δ2) ≡ −ζ∇μuμ + O(δ2). (A1)

A naive φ4-theory analysis [43] yields ζ�δe = −3ζ�� along
with ζ��/T = 5η/3. If the system is free of conserved charge
currents, energy-momentum conservation and the Gibbs-
Duhem relation yield

ζ = 5

(
1

3
− c2

s

)
η, (A2)

which satisfies the conjectured lower boundary ζ � 2( 1
3 −

c2
s )η in theN = 2∗ gauge theory [56]. Since the squared sound

velocity is around 1/3 except for the crossover regions, the
cancellation of the linear terms leads to small bulk viscosity.
This implies that the existence of the Onsager cross term is a
reason for the general smallness of the bulk viscous coefficient
in hydrodynamic systems. In other words, the diagonal bulk
viscosity ζ�� prevents the expansion of a system but the energy
cross coefficient ζ�δe encourages the expansion in the effort of
decreasing the temperature, leading to the overall cancellation
of the effects.

When the system has finite chemical potential, the expres-
sion is subject to a nontrivial contribution from the density
cross coefficient. For a special case where ζ�δnB

= [nB0/(e0 +
P0)] × ζ�δe, however, the expression is dramatically simplified
and one again obtains Eq. (A2), because the sound velocity is
expressed as

c2
s =

(
∂P0

∂e0

)
s/nB0

=
(

∂P0

∂e0

)
nB0

+ nB0

e0 + P0

(
∂P0

∂nB0

)
e0

.

(A3)

The sign of ζ�δnB
flips for antimatter systems, correctly

capturing the fact that the overall bulk viscosity ζ is symmetric
under charge conjugation. I employ this form of bulk viscous
coefficient since the main focus is on the net baryon density
and its dissipation.

The baryon dissipation current can be expressed in a similar
fashion using the conservation laws and the thermodynamic
relation as

V μ = κV ∇μ μB

T
− κV W

(
∇μ 1

T
+ 1

T
Duμ

)

=
(

κV − nB0

e0 + P0
κV W

)
∇μ μB

T
+ O(δ2)

≡ κ∇μ μB

T
+ O(δ2), (A4)

where κ is the effective baryon charge conductivity. An
extreme case is κV = [nB0/(e0 + P0)] × κV W , where the cur-
rent vanishes altogether at this order because of the Soret
effect. It should be noted that the vector cross terms arising
from multiple conserved currents cannot be integrated in this
method. In the paper, the two coefficients are treated separately
to better illustrate the role of each linear term.
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