
PHYSICAL REVIEW C 86, 014905 (2012)

Exclusive coherent production of heavy vector mesons in nucleus-nucleus collisions at energies
available at the CERN Large Hadron Collider
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Heavy nuclei at collider energies are a source of high-energy Weizsäcker-Williams photons. This photon
flux may be utilized to study high-energy photon-nucleus interactions. Here we concentrate on the coherent
diffractive production of heavy vector mesons on nuclear targets and show how it probes the unintegrated glue
of the nucleus in the saturation domain. We present predictions for rapidity distributions of exclusive coherent
J/� and ϒ mesons which can be measured by the ALICE experiment at the Large Hadron Collider.
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I. INTRODUCTION

The exclusive photo- and electroproduction of vector
mesons at high energies has recently been thoroughly studied
at the electron-proton collider HERA (for a review, see
Ref. [1]). In a Regge picture, this process is driven by a
t-channel Pomeron exchange. The HERA data, which range
from low to high photon virtuality as well as from light to
heavy vector mesons, have given an intriguing insight into
the Pomeron physics from soft to hard processes. Overall
a consistent phenomenology emerges, in which the QCD-
Pomeron exchange is modeled by the gluon-ladder exchange
and quantified by the unintegrated gluon distribution of the
target proton or the color-dipole–proton cross section.

In recent years, the very-small-x behavior of the gluon
structure function has been of great interest in the context of
unitarity effects and the saturation phenomena [2].

The multiple scattering and absorption effects associated
with the gluon saturation physics are naturally enhanced on
a large nuclear target. From this point of view the coherent
diffractive production of vector mesons on heavy nuclei is very
interesting. Clearly, the best option to study the small-x nuclear
glue would be a dedicated electron-ion collider [3], where
for example one could measure nuclear structure functions
at perturbatively large Q2. Lacking such a facility, there
appears to be no easy experimental access to the nuclear gluon
distribution.

Here, the exclusive photoproduction of heavy vector
mesons J/� and ϒ opens up a new possibility to experi-
mentally study the small-x nuclear glue. It is the large mass of
the heavy quark which provides the hard scale and assures that
we may use perturbation theory even in the photoproduction
limit.

Presently, nucleus-nucleus collisions at
√

sNN = 2.76 TeV
studied at the Large Hadron Collider (LHC) offer an access
to high-energy photonuclear reactions [4]. Here, one of the
nuclei will serve as a source of Weizsäcker-Williams photons,
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while the other one plays the role of a target. Coherent
diffractive processes of interest in this work leave the target
intact and deflected only by a very small angle. Diffractive
photoproduction of light vector mesons on nuclei is an
old subject [5], and with some success can be addressed
using vector-meson dominance and, within a limited range
of energies, a hadronic Glauber coupled-channel type of
model. When a hard scale is present—such as a large photon
virtuality, or a large quark mass—it proves more efficient to
use perturbative QCD degrees of freedom. In particular the
color-dipole formulation to which we will now turn allows
one to account for nuclear effects in a rather straightforward
manner.

II. AMPLITUDE AND CROSS SECTION FOR
γ A → V A REACTION

A. Vector-meson production in the color-dipole picture

It is useful to start from the color-dipole formulation [6] of
vector-meson photoproduction (see Fig. 1). This formulation is
essentially equivalent to the k⊥-factorization approach which
we previously used for the free-proton target [7], and to which
we turn later in this work. The multiple scattering corrections
relevant for nuclear targets are, however, more easily derived
in impact parameter space.

The forward amplitude for vector-meson photoproduction
on the nuclear target at center-of mass energy W (x =
m2

V /W 2), takes the form

A(γA → V A; W )

= i 〈V |σA(x, r)|γ 〉 = 2 i

∫
d2b 〈V |�A(x, b, r)|γ 〉

= 2 i

∫
d2b

∫ 1

0
dz

∫
d2r ψ∗

V (z, r)ψγ (z, r) �A(x, b, r) .

(1)

Here ψV (z, r), ψγ (x, r) are the light-cone wave functions
of the vector meson and the photon, respectively. For simplicity
we suppress the summation over (anti-)quark helicities. The
explicit forms of the wave function are not important for the
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FIG. 1. (Color online) Sample diagram for the γA → V A

amplitude. At x ∼ xA the relevant degree of freedom is the QQ̄

dipole. All multi-Pomeron exchange diagrams are summed up by the
Glauber-Gribov multiple scattering theory for color dipoles.

argument in this section, we will later give all explicit formulas
in momentum space.

The amplitude can be easily generalized to finite transverse
momentum transfer �:

A(γA → V A; W,�)

= 2i

∫
d2b exp[−ib�] 〈V |�A(x, b, r)|γ 〉 . (2)

The differential cross section is then given by (t = −�2):

dσ (γA → V A; W )

dt
= dσ (γA → V A; W )

d�2

= 1

16π
|A(γA → V A; W,�)|2 .

(3)

Following Ref. [8], at small x (x � xA = 0.1A−1/3), the
multiple scatterings of the color dipole can be summed up by
a Glauber series for color dipoles. The color-dipole–nucleus
amplitude in impact parameter space for x ∼ xA can then be
given in terms of the color-dipole–proton cross section:

�A(xA, b, r) = 1 − exp

(
− 1

2
σ (xA, r)TA(b)

)
. (4)

In practice that means xA ∼ 0.01. For smaller x one must take
into account higher, qq̄g-Fock states as we discuss below.

In order to quantify the size of nuclear (multiple scattering)
effects, one often compares to the impulse approximation.
The latter works well if multiple scatterings are weak, i.e.,
if the nuclear opacity σ (xA, r)TA(b)/2 is small. In impulse
approximation we assume that only one of the nucleons
in the nucleus participates in the interaction, and all oth-
ers are spectators. Expanding the Glauber exponential to
the first order we obtain (hereafter IA stands for impulse
approximation)

AIA(γA → V A; W,�)

= i 〈V |σ (x, r)|γ 〉
∫

d2b exp[−ib�]TA(b) . (5)

The total cross section in the impulse approximation would
then be

σtot;IA(γA→V A; W )

= 4π
dσ (γp → Vp)

dt

∣∣∣∣
t=0

∫
d2b T 2

A(b) . (6)

Let us introduce the ratio of the full nuclear cross section to
the impulse approximation result:

Rcoh(W ) = σtot(γA → V A; W )

σtot,IA(γA → V A; W )
. (7)

Then we can also express the total photoproduction cross
section on the nucleus as

σtot(γA → V A; W )

= Rcoh(W ) 4π
dσ (γp → Vp)

dt

∣∣∣∣
t=0

∫
d2b T 2

A(b) . (8)

Here

dσ (γp → Vp)

dt

∣∣∣∣
t=0

≈ BV σtot(γp → Vp) , (9)

where BV is the diffraction slope, can be taken from experi-
mental data [9–11].

The integral over the nuclear optical density squared
behaves parametrically as (see, e.g., Ref. [12]):∫

d2b T 2
A(b) = CA

3A2

4πR2
ch

, (10)

where Rch is the nuclear charge radius, and CA is a number
of order unity which depends on the shape of TA(b). In the
numerical calculations, we use a realistic nuclear density, as
parametrized in Ref. [13].

B. Momentum space formulation of vector-meson
production on nuclei

We can bring the photoproduction amplitude for the nuclear
target into the similar k⊥-factorization form as the result
for the free proton. The only difference is that now the
unintegrated gluon distribution of the proton will be replaced
by the appropriately defined unintegrated glue of the nucleus,
explicitly constructed in the treatment of the diffractive πA →
qq̄A process in Ref. [12].

Recall now that, for the free-nucleon target, dipole cross
section and unintegrated gluon distribution are related by [14]

σ (x, r) = σ0

∫
d2κ[1 − eiκ r ] αSf (x, κ) , (11)

where we pulled out σ0 = σ0(x), so that f is normalized to
unity:

f (x, κ) = 1

σ0

4π

Nc

1

κ4

∂GN (x, κ2)

∂ ln(κ2)
,

(12)

σ0(x) =
∫

d2κ
4π

Nc

1

κ4

∂GN (x, κ2)

∂ ln(κ2)
.

We can analogously introduce the impact-parameter dependent
unintegrated gluon distribution of the nucleus φ(b, x, κ)
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through the relation

�A(x, b, r) =
∫

d2κ
[
1 − eiκ r]φ(b, x, κ) . (13)

In terms of the nuclear glue GA, the function φ(b, x, κ) fulfills

φ(b, x, κ) = 2παS(κ)

Nc

1

κ4

∂GA(b, x, κ2)

∂ ln κ2d2b
. (14)

In the forward scattering limit, i.e., for � = 0, the photopro-
duction amplitude given in Ref. [1] can be brought in the form
(see Ref. [7])


m T (W,�2 = 0)

= W 2 cv

√
4παem

4π2
2
∫ 1

0

dz

z(1 − z)

∫ ∞

0
π dk2ψV (z, k2)

×
∫ ∞

0

π dκ2

κ4
αS(q2)FA(x, κ2)

× (A0(z, k2) W0(k2, κ2) + A1(z, k2) W1(k2, κ2)) , (15)

where

A0(z, k2) = m2
Q + k2mQ

M + 2mQ

, (16)

A1(z, k2) =
[
z2 + (1−z)2 − (2z−1)2 mQ

M + 2mQ

]
k2

k2 + m2
Q

,

(17)

W0(k2, κ2) = 1

k2 + m2
Q

− 1√(
k2 − m2

Q − κ2
)2 + 4m2

Qk2
,

(18)

W1(k2, κ2)

= 1 − k2 + m2
Q

2k2

⎛
⎝1 + k2 − m2

Q − κ2√(
k2 − m2

Q − κ2
)2 + 4m2

Qk2

⎞
⎠ .

(19)

Here mQ is the heavy-quark mass, and

M2 = k2 + m2
Q

z(1 − z)
(20)

is the invariant mass squared of the QQ̄ system in the
final state. The strong coupling enters at the hard scale
q2 = max(κ2, k2 + m2

Q). The light-cone wave function ψV of
the vector meson is parametrized exactly as in Refs. [1,7], and
the Gaussian form, which proved to lead to good agreement
with experiment, is adopted.

All nuclear effects are accounted for by the substitution

αS

κ4
FA(x, κ2) =

∫
d2b

αS

κ4

∂GA(b, x, κ2)

∂ ln κ2d2b

= Nc

2π

∫
d2b φ(b, x, κ) . (21)

In this way we introduce also the impact-parameter dependent
amplitude by the relation


m T (γA → V A) =
∫

d2b 
mT (γA → V A; b) . (22)

Its normalization is such that

dσ (γA → V A; W )

d2b
= 1

4

∣∣∣∣
mT (γA → V A; b)

W 2

∣∣∣∣
2

. (23)

C. The nuclear unintegrated glue in the Glauber regime

Here we briefly recapitulate how to calculate the nuclear
unintegrated gluon distribution from the proton unintegrated
glue.

The starting point is the definition of the nuclear uninte-
grated glue (13). We are interested in the regime of x ∼ xA,
where the Glauber representation of the color-dipole scattering
amplitude �(x, b, r) is valid:

�(xA, b, r) = 1 − exp[− 1
2σ (xA, r)TA(b)] . (24)

Introducing the shorthand notation

ν(b) = 1
2 αS σ0(xA) TA(b), (25)

and the the multiple convolutions

f (j )(x, κ)

=
∫

d2κ1 · · · d2κj δ
(2)

(
κ−

∑
i

κ i

)
f (x, κ1) · · · f (x, κj ) ,

f (0)(κ) ≡ δ(2)(κ) , (26)

we obtain the expansion of the Glauber exponential

exp

[
−1

2
σ (xA, r)TA(b)

]

=
∑
k�0

∫
d2κ exp[iκ r] wk(b) f (k)(xA, κ) (27)

with the Poisson weights

wk(b) = exp[−ν(b)]
νk(b)

k!
. (28)

This gives us the expression of the nuclear unintegrated gluon
distribution as an expansion over multiple convolutions of the
free-nucleon glue:

φ(b, x, κ) =
∑
j�1

wj (b) f (j )(x, κ) . (29)

here, the j th term of the expansion is the contribution of the
interaction of j nucleons with the color dipole. Here f (j )(x, κ)
is the collective unintegrated glue of j nucleons, and the weight
factor wj gives us the probability the j nucleons overlapping
at impact parameter b take part in the interaction.

It is important to realize that the nuclear unintegrated
glue includes the multiple scattering corrections; it is not
simply a two-gluon exchange in the crossed channel, as
in the free-nucleon glue. To some degree however, these
multiple gluon exchanges behave like a two-gluon exchange:
the diffractive amplitude has the same form as the two-gluon
exchange amplitude on the free-nucleon target.

014905-3
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FIG. 2. (Color online) A sample diagram which contains the
multiple scattering of a QQ̄g-Fock state. This is the first step in
the nonlinear evolution of the nuclear unintegrated glue.

D. Small-x evolution: contribution of the Q Q̄ g-Fock state

If we increase the γA center-of-mass energy successively
higher and higher QQ̄g,QQ̄gg, . . . , Fock-states become
important (see Fig. 2). On the free-nucleon target, the effect of
higher Fock-states, which contain gluons strongly ordered in
rapidity, can be resummed, and leads to the small-x evolution
of the then x-dependent dipole cross section [14]. The multiple
scatterings of the QQ̄g–Fock state off a heavy nucleus are
given by the first iteration of the nonlinear Balitsky-Kovchegov
[15] evolution equation

∂φ(b, x, κ)

∂ ln(1/x)
= KBFKL ⊗ φ(b, x, κ) + Q[φ](b, x, κ) .

The nuclear glue, which includes rescattering corrections of
QQ̄ as well as QQ̄g Fock states is then given by

φ(b, x, κ) = φ(b, xA, κ) + ln

(
xA

x

)
∂φ(b, x, κ)

∂ ln(1/x)

∣∣∣∣
x=xA

.

(30)

In a similar manner, to obtain the ratio Rcoh of eq. (7), the
impulse approximation amplitude is calculated from

φIA(b, xA, κ) = TA(b)
4παS

Nc

1

κ4

∂GN (xA, κ2)

∂ ln(κ2)
, (31)

subject to a similar iteration (30) as the full glue, but with
the nonlinear piece omitted. For the explicit momentum-space
form of the infrared-regularized BK-equation, see Ref. [16]. A
similar strategy of including the QQ̄ and QQ̄g-Fock states has
been followed for the nuclear structure function and inclusive
coherent diffraction in Ref. [17]. There a good agreement
with available data on nuclear shadowing has been obtained.
In the numerical calculations, we use an unintegrated gluon
distribution of the proton that has been obtained from an
analysis of HERA structure function data in Ref. [18].

Let us briefly discuss how our approach differs from others
available in the literature. The first estimates of Klein and Nys-
trand [19] are based on extracting an effective J/�-nucleon
cross section from photoproduction data using vector-meson

dominance ideas. They then go on to use this cross section to
evaluate the classical survival probability of mesons passing
through a slab of nuclear matter. Goncalves and Machado [20]
adopt the color-dipole approach and give a proper quantum
mechanical treatment of the multiple scattering effects. Their
approach differs from ours in that they absorb all saturation
effects into the dipole-nucleon cross section which is then
eikonalized. This is strictly speaking inconsistent with the
nonlinear evolution of the dipole-nucleus cross section, and
neglects the fact that multiple scatterings off different nucleons
are enhanced by the nuclear size. Of course it may well be
viable phenomenologically in a limited range of energies.
Finally, Rebyakova et al. [21] use a relation of the diffractive
amplitude to the integrated gluon distribution of the target,
which holds, with some reservations, for heavy quarks. Such
an approximation can be obtained from the k⊥-factorization
formalism used in this work to the leading logarithm in the hard
scale (see Ref. [1] and references therein). There appears to
be a hidden assumption that all saturation effects are summed
up in a boundary condition of the integrated, collinear, nuclear
glue.

III. RESULTS AND CONCLUSIONS

A. Photoproduction on nuclei: γ A → V A

In Fig. 3 we show the ratio Rcoh(W ) for the lead nucleus
(208Pb) for J/� (red line) and ϒ (blue line) meson production.
The deviation of Rcoh from unity is a measure of the strength
of nuclear rescattering and absorption effects. We see that the
nuclear effects are stronger for the J/� than for the ϒ meson.
This is indeed to be expected, as we can most easily see in
the dipole picture: the photoproduction amplitude probes the

FIG. 3. (Color online) Ratio of the nuclear coherent cross section
for J/� and ϒ production to the impulse approximation cross
section.
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FIG. 4. (Color online) Impact parameter distributions for J/� and ϒ mesons for the 208Pb target.

dipole cross section at the scanning radius rS ∝ 1/mQ [6], and
the smaller dipoles relevant for ϒ production will experience
smaller rescattering effects.

In Fig. 4 we present the impact parameter distribution
of vector-meson photoproduction. We show results for J/�

and ϒ mesons, for two different energies (W = 200 and
2760 GeV) and lead nuclei.

B. Ultraperipheral nucleus-nucleus collisions: AA → AAV

In the AA → AAV processes the heavy nuclei play two
different roles. One of the nuclei is a target and the next
is a source of high-energy Weizäcker-Wiliams photons. In
Fig. 5 we show Feynman diagrams for the relevant production
mechanism: the Born diagram in the left panel and a diagram
including the absorptive correction in the right panel. It
should be noted that one should also add the amplitude
in which the photon is emitted from the lower line. The
interference of the photon emission from the upper or lower
lines in fact causes a peculiar azimuthal correlation between
the outgoing nuclei [22]. After integration over azimuthal
angles, and at the Born level, the interference drops out and
we can add the squares of both amplitudes. If absorptive

corrections are included, a small interference contribution
remains even after azimuthal averaging [22]. Below we will
neglect the interference effect and evaluate the nucleus-level
cross section from the absorption corrected equivalent photon
approximation:

σ (A1A2 → A1A2V ; s)

=
∫

dω
dN eff

A1
(ω)

dω
σ (γA2 → V A2; 2ω

√
s) + (1 ↔ 2) .

(32)

To obtain the effective photon flux dN eff , one starts from the
electric field strength associated with the moving nucleus (see,
for example, Ref. [4] for a review and references):

E(ω, b) = Z
√

4παem

∫
d2q

(2π )2
exp[−ibq]

× qFem(q2 + ω2/γ 2)

q2 + ω2/γ 2
. (33)

Here Fem(Q2) is the charge form factor of the nucleus, ω is the
photon energy, γ the relativistic Lorentz boost of the beam, and
b is the impact parameter. Having the electric field strength

SAA

A

A

A

A

V

γ

SAA

A

A

A

A

V

γ

Sel

FIG. 5. (Color online) Mechanism of exclusive vector-meson production in AA collisions. Left panel: Born diagram; right panel: the elastic
rescattering in the initial state accounts for the unitarity effect of inelastic channels.
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FIG. 6. (Color online) Total cross section for Pb Pb → Pb J/�

Pb and Pb Pb → Pb ϒ Pb as a function of nucleon-nucleon energy.

as a function of photon energy and impact parameter we can
calculate the photon flux corresponding to the Born diagram
in the left panel of Fig. 5:

dN(ω, b) = dω

ω

d2b
π

|E(ω, b)|2 . (34)

FIG. 7. (Color online) Rapidity distribution of J/� for symmet-
ric collisions of lead nuclei for WNN = 200 GeV (upper) and WNN =
2760 GeV (lower). Individual contributions are shown separately.

FIG. 8. (Color online) Rapidity distribution of ϒ for symmetric
collisions of lead nuclei for WNN = 200 GeV (upper) and WNN =
2760 GeV (lower). Individual contributions are shown separately.

Finally, the effective photon flux with absorptive corrections
included is

dN eff(ω) =
∫

d2b S2
el(b)dN(ω, b).

The absorptive correction S2
el(b) is shown schematically by

the extra oval in the right panel of Fig. 5. These absorptive
correction can be calculated by applying the following simple
formula (see, e.g., Ref. [23]):

S2
el(b) = exp[−σNNTA1A2 (b)] ∼ θ (|b| − (R1 + R2)) , (35)

where R1 and R2 are the radii of the colliding nuclei.
We remove those configurations in the impact parameter
space, when the nuclei overlap, which at high energy means
automatically their breakup. Therefore absorptive corrections
have a meaning of the gap survival probability. In Fig. 6 we
present the total cross section for J/� and ϒ production in
nucleus-nucleus collisions as a function of energy for the 208Pb
target. The cross section for J/� production increases by
two orders of magnitude when going from Relativistic Heavy
Ion Collider (RHIC) to LHC energy. For the ϒ meson the
corresponding increase of the cross section is substantially
bigger. In Figs. 7 and 8 we show the differential cross section
in rapidity for the exclusive coherent production of J/� and ϒ

mesons, in lead-lead collisions. The shape of the distributions
strongly depends on the collision energy. The distributions
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in rapidity for AA collision are much narrower than similar
distributions in proton-proton collisions [7,22]. This has its
origin in the large nuclear size: the charge form factor F (q2)
of the nucleus is much sharper compared to the proton’s Dirac
form factor F1(q2). The spectrum of Weizsäcker-Williams
photons in a proton is considerably harder than in the nucleus;
see, e.g., Ref. [4].

In summary, we presented predictions for the exclusive
coherent diffractive production of J/� and ϒ mesons in
collisions of heavy nuclei at LHC energies. Our framework
takes into account not only the Glauber-type rescattering of
color dipoles in the nuclear matter, but also the gluon-fusion

and shadowing corrections associated with the rescattering of
the QQ̄g-Fock state. The predicted rapidity distributions of
mesons may be tested by the ALICE experiment at LHC.
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