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Model for bremsstrahlung emission accompanying interactions between protons and nuclei
from low energies up to intermediate energies: Role of magnetic emission
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A model of the bremsstrahlung emission which accompanies proton decay and collisions of protons off nuclei
in the low- to intermediate-energy region has been developed. This model includes spin formalism, a potential
approach for describing the interaction between protons and nuclei, and an emission that includes a component
of the magnetic emission (defined on the basis of the Pauli equation). For the problem of bremsstrahlung during
proton decay the role of magnetic emission is studied by using such a model. For the 146Tm nucleus the following
has been studied: (1) How much does the magnetic emission change the full bremsstrahlung spectrum? (2) At
which angle is the magnetic emission the most intensive relative to the electric emission? (3) Is there some spatial
region where the magnetic emission increases strongly relative to the electric emission? (4) How intensive is the
magnetic emission in the tunneling region? (5) Which is the maximal probability? Which value does it equal to
at the zero-energy limit of the emitted photons? It is demonstrated that the model is able to describe well enough
experimental data of bremsstrahlung emission which accompanies collisions of protons off 9C, 64Cu, and 107Ag
nuclei at an incident energy of Tlab = 72 MeV (at a photon energy up to 60 MeV) and off 9Be, 12C, and 208Pb
nuclei at an incident energy of Tlab = 140 MeV (at a photon energy up to 120 MeV).
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I. INTRODUCTION

According to the theory of collisions of protons off nuclei,
interactions between two nucleons play an important role,
which becomes dominant at increasing energy. In such a way,
the interaction between two nucleons (i.e., nucleon-nucleon
or two-nucleon interaction) is put into the basis of relativistic
collision models, with further application of the formalism of
Feynman diagrams. However, consideration of the nucleus as
the medium allows one to include the spatial distribution of
all nucleons in the model. This enables on to take into account
the nonlocality of quantum mechanics, one of its fundamental
aspects. By comparing these two different considerations, a
question arises as to which is more fundamental: the interaction
between different pointlike nucleons of the studied nuclear
system or the quantum effects of nonlocality.

How important is the nonlocal effect in the study of many-
nucleon interactions? How small are they? The results of [1]
provide some answers to this question: it was shown that a full
quantum consideration of the boundary and initial conditions
in the problem of proton decay has an essential influence on
the calculated half-life (for example, half-lives calculated in
[2–10] can be changed by up to a factor of 200 after taking such
conditions into account, while the assumed error is only a few
percent in the models). This estimation indicates that nonlocal
effects are not so small and their inclusion into calculations is
sometimes able to essentially change results.

Another aspect is collective motion. Models with nucleon-
nucleon interactions should be the most accurate, if the
collective effects caused by interactions between nucleons of
the complete nuclear system were very small. However, we
know that this is not so at low energies. One can assume that
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many-nucleon interactions disappear at increasing energy of
the interacting nucleons. Analysis of bremsstrahlung emission,
which accompanies collisions of protons off nuclei, indicates
that two-nucleon interactions give the largest intensity of
emission. But, we find that many-nucleon effects should
arise at increasing energy of the emitted photons.1 We find
confirmation about the essential influence of many-nucleon
interactions on the process of emission and the importance of
its study in the literature (for example, see [12]; in particular,
two-nucleon approaches do not give a adequate explanation of
the nature of hard photons).

Properties of bremsstrahlung accompanying the scattering
of protons off nuclei have been studied well enough (for
example, see the review in [13] and also [14] for emission
in collisions between heavy ions). As a rule, as the emitter of
photons in nuclear systems, both the nucleus as a medium
and different nucleons in it were considered. The process
of emission is studied as a result of deacceleration of the
motion of nucleons in the averaged field of the nucleus
or as a consequence of nucleon-nucleon collisions. At the
same time, it was pointed out (for example, see [12]) that
properties of nuclear bremsstrahlung emission accompanying
nucleon-nucleus and nucleus-nucleus collisions (especially, in
the region of intermediate energies up to 150 MeV/nucleon)
have not been studied thoroughly. This leads to our interest in
the use of optical model potentials [15] and folding potentials
[16] for investigations of bremsstrahlung emission, which
accompanies interactions of protons with nuclei. It would be

1For example, in the problem of α decay at increasing energy of the
emitted photon, to obtain a stable value for the emission probability
requires one to continuously increase the external boundary of spatial
region of integration. For fission this problem is essentially more
difficult (see [11]).

014618-10556-2813/2012/86(1)/014618(21) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.86.014618


SERGEI P. MAYDANYUK PHYSICAL REVIEW C 86, 014618 (2012)

interesting to obtain a model that allows us to describe the
spectra in the minimum- to intermediate-energy region. The
possibility of taking quantum nonlocal properties into account
in our description of such interactions reinforces our interest
in such a potential approach.

However, in investigations of bremsstrahlung emission,
which accompanies α decay of nuclei [17–42], spontaneous
fission of nuclei [11,43–52], ternary fission of nuclei [53],
and also collisions of nucleons off nuclei [12,54–56], and
ions and nuclei off nuclei at nonrelativistic energies [14], the
emission caused by the magnetic moment of the fragment
moving relatively to the nucleus has not been taken into
account. This omission is valid if at such energies of the
emitted photons the magnetic emission is enough small so
it can be neglected in calculations (for example, see [12]).
Microscopic models, in which wave functions were obtained
from single-configuration resonanting group calculations, can
provide a powerful formalism for the study of many-nucleon
interactions. However, in particular, we see that magnetic
emission was not included in such models, which were applied
to the description of bremsstrahlung emission during scattering
of protons off α particles [57] and α particles off α particles
and light nuclei [58,59].

The magnetic emission is connected with the magnetic mo-
mentum and spin of the fragment interacting with the nucleus.
Attempts to take such aspects into account lead to a matrix
forms of equations of interactions (where the two-component
Pauli equation is the simplest) and many-component wave
functions of the nuclear system (for example, see [60],
pp. 32–35 and 48–60). However, the magnetic component
of emission and spin formalism are included in relativistic
models of collisions of nucleons between themselves and
with nuclei at intermediate energies (based on the Dirac
equation). Here, there have been two directions of intensive
investigations: Refs. [61,62] and [63–74]. However, the main
emphasis in these papers was on construction of a correct
relativistic description of the interaction between two nucleons
in this task, where formalism was developed in momentum
representation mainly. So, it would be interesting to obtain a
model combining the spin formalism of interacting fragments
of the nuclear system (including the magnetic momentum) and
the potential approach for the description of the interaction
between fragments.

The problem of bremsstrahlung during collisions of protons
off nuclei and proton decay can be convenient in this
investigation. In [75] the problem of bremsstrahlung during
proton decay was studied (see also [76]). However, there
the magnetic emission caused by the magnetic moment of
the proton was not taken into account (but the spin-orbital
component of the potential was included and its influence on
the spectrum was estimated). In order to clarify its role, a
model this aspect is needed. The main aim of this paper is
construction of such a model.

What interesting and new aspects can this model reveal?
How much does the magnetic emission change the full
bremsstrahlung spectrum? At which angle is the magnetic
emission the most intensive relative to the electric one? Is there
some spatial region where the magnetic emission increases
strongly relative to the electric one? How intensive is the mag-

netic emission in the tunneling region? Which is the maximal
probability? Which value does it equal to at the zero-energy
limit of the emitted photons? We answer such questions in this
paper.

II. MODEL

A. Emission operator for the bremsstrahlung photon

Let us consider a generalization of the Pauli equation for
A + 1 nucleons of the proton-nucleus system in the laboratory
frame (obtained by starting from Eq. (1.3.6) in [60], p. 33):

ih̄
∂�

∂t
= Ĥ�,

Ĥ =
A+1∑
i=1

{
1

2mi

(
pi − zie

c
Ai

)2

+ zie Ai,0

− zieh̄

2mic
σ · rot Ai

}
+ V (r1 . . . rA+1), (1)

where we use for any nucleon with number i (as in Eq. (1.3.4)
in [60] for the one-particle problem)

χ = 1

2mic
σ

(
pi − zie

c
Ai

)
ψ. (2)

Here, � = (χ,ψ) is the bispinor wave function of the proton-
nucleus system, mi and zi are the mass and charge of nucleon i,
Ai is a component of the potential of the electromagnetic field
formed by this nucleon (describing possible bremsstrahlung
emission of the photon caused by this nucleon), σ are Pauli ma-
trices, A is the mass number of the nucleus, and V (r1 . . . rA+1)
is the potential of (nuclear and Coulomb) interactions between
all nucleons.2 We transfer to the center-of-mass frame, where
we have distance r between the center of mass of the proton
and the nucleus (for example, see Appendix A in Ref. [53]
and also [12]). Then, one can represent this Hamiltonian as
Ĥ = Ĥ0 + Ŵ , where Ŵ combines all items of the electro-
magnetic field, which we define as an emission operator of the
bremsstrahlung photon, and Ĥ0 is the rest of the Hamiltonian
without the emission of photons. Neglecting the relative
motion of nucleons in the nucleus in our calculation of Ŵ , we
find

Ŵ = Ŵel + Ŵmag,

Ŵel = −Zeff
e

2mc
(p̂A + Ap̂) + eA0 + Z2

eff
e2

2mc2
A2, (3)

Ŵmag = −Zeff
eh̄

2mc
σ · rot A,

2According to [60] (see p. 32), Eq. (1) is valid if the energy εi of
any nucleon i is close to its mass mi , i.e., |εi − mi | � mi (c = 1).
From here one can obtain the high-energy limit for proton incident
energy εp � 2mp � 1. 86 GeV. In other words, inside the energy
region up to εp Eq. (1) includes all relativistic properties for us in the
Dirac equation [with application of Eq. (2)]. In particular, this limit
is essentially valid for the higher intermediate energies for proton-
nucleus collisions studied in this paper.
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where Zeff and m are the effective charge and reduced mass
of the proton-nucleus system, respectively, and p̂ is the
momentum operator corresponding to r. By neglecting terms
at order e2A2/c2 and A0, the emission operator in the Coulomb
gauge can be rewritten as

Ŵ = −Zeff
e

mc
Ap̂ − Zeff

eh̄

2mc
σ · rot A

= −Zeff
e

mc

(
Ap̂ + h̄

2
σ · rot A

)
. (4)

Substituting the following form of the potential of electromag-
netic field:

A =
∑

α=1,2

√
2πh̄c2

wph
e(α), ∗e−i kphr, (5)

we obtain

Ŵ = Zeff
e

mc

√
2πh̄c2

wph

∑
α=1,2

e−i kphr

×
(

i e(α) ∇ − 1

2
σ · [∇ × e(α)] + i

1

2
σ · [kph × e(α)]

)
.

(6)

Here, e(α) are unit vectors of polarization of the photon
emitted (e(α),∗ = e(α)), kph is the wave vector of the photon,
and wph = kphc = ∣∣kph

∣∣c. Vectors e(α) are perpendicular to
kph in the Coulomb calibration. We have two independent
polarizations e(1) and e(2) for a photon with impulse kph

(α = 1, 2). One can develop a simpler formalism in a system
of units where h̄ = 1 and c = 1, but we shall write constants
h̄ and c explicitly. Also we have properties

[kph × e(1)] = kph e(2), [kph × e(2)] = − kph e(1),

[kph × e(3)] = 0,∑
α=1,2,3

[kph × e(α)] = kph (e(2) − e(1)). (7)

B. Matrix element of emission

Let us consider the matrix element in the form

Ff i ≡ 〈kf | Ŵ | ki〉 =
∫

ψ∗
f (r) Ŵ ψi(r) dr, (8)

where ψi(r) = |ki〉 and ψf (r) = |kf 〉 are stationary wave
functions of the proton-nucleus system in the initial i state (i.e.,
the state before emission of the photon) and final f state (i.e.,
the state after emission of the photon) which do not contain the
number of photons emitted. Substituting the emission operator
in form (6) into Eq. (8), we obtain

Ff i = 〈kf | Ŵ | ki〉

= Zeff
e

mc

√
2πh̄c2

wph
{pel + pmag,1 + pmag,2}, (9)

where

pel = i
∑

α=1,2

e(α) 〈kf | e−i kphr ∇ | ki〉,

pmag,1 = 1

2

∑
α=1,2

〈kf | e−i kphr σ · [e(α) × ∇] | ki〉, (10)

pmag,2 = −i
1

2

∑
α=1,2

[kph × e(α)] 〈kf | e−i kphr σ | ki〉.

This definition for Ff i is in compliance with our previous
formalism in [11,32,33,38–42,53,75]. In particular, for the
square of the matrix element of emission we have (see Eqs. (1)
and (2) in [75])

|af i |2 = 2π T |Ff i |2δ(wf − wi + wph). (11)

C. Wave function of the nuclear system and summation
over spinor states

We shall define the wave function of the proton in the
field of the nucleus. We shall construct it in the form of a
bilinear combination of eigenfunctions of orbital and spinor
subsystems (as Eq. (1.4.2) in [60], p. 42). However, we shall
assume that it is not possible to fix experimentally states for
selected M (the eigenvalue of the momentum operator Ĵz). So,
we shall be interested in a superposition over all states with
different M and define the wave function as

ψjl(r, s) = R (r)
l∑

m=−l

∑
μ=±1/2

C
j,M=m+μ

lm1/2μ Ylm(nr) vμ(s), (12)

where R (r) is the radial scalar function (not dependent on m at
the same l), nr = r/r is a unit vector directed along r, Ylm(nr)
are spherical functions (where we use definitions (28,7) and
(28,8) in [77]), CjM

lm1/2μ are Clebsh-Gordon coefficients, s is the
spin variable, M = m + μ, and l = j ± 1/2. For convenience
of calculations we shall use the spacial wave function

ϕlm(r) = Rl (r) Ylm(nr). (13)

The spinor function vμ(s) has two components, vμ1 (s) and
vμ2 (s), which are eigenfunctions of the spin operator ŝz having
eigenvalues σ1 and σ2 (see [77], p. 247). So, we have

vμ1 (s) = δμ1s , vμ2 (s) = δμ2s . (14)

The action of the spin operator on the wave function is given
by (see Eq. (55,4) in [77])

(ŝ vμ) (σ ) =
∑
σ ′

sσσ ′ vμ (σ ′) (15)

and we have nonzero matrix elements

(sx)σ,σ−1 = (sx)σ−1,σ = 1

2

√
(s + σ ) (s − σ + 1),

(sy)σ,σ−1 = − (sy)σ−1,σ = − i

2

√
(s + σ ) (s − σ + 1),

(sz)σσ = σ. (16)
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From Eqs. (16) (at s = 1/2, σ = ±1/2) we calculate

v∗
μf

(sf ) σ̂ x vμi
(si) = δμf ,sf

{δsi ,−1/2 δμi,+1/2 + δsi ,+1/2 δμi,−1/2},
v∗

μf
(sf ) σ̂ y vμi

(si) = i δμf ,sf
{δsi ,−1/2 δμi,+1/2 − δsi ,+1/2 δμi,−1/2}, (17)

v∗
μf

(sf ) σ̂ z vμi
(si) = δμf ,sf

{δsi ,−1/2 δμi,−1/2 + δsi ,+1/2 δμi,+1/2}
and find summations ∑

si ,sf =±1/2

v∗
μf

(sf ) σ̂ x vμi
(si) = 1,

∑
si ,sf =±1/2

v∗
μf

(sf ) σ̂ y vμi
(si) = i {δμi,+1/2 − δμi,−1/2},

∑
si ,sf =±1/2

v∗
μf

(sf ) σ̂ z vμi
(si) = 1. (18)

By considering the vectorial form of the spin operator, these formulas can be rewritten as∑
si ,sf =±1/2

v∗
μf

(sf ) σ̂ vμi
(si) = ex

∑
si ,sf =±1/2

v∗
μf

(sf ) σ̂ x vμi
(si) + ey

∑
si ,sf =±1/2

v∗
μf

(sf ) σ̂ y vμi
(si) + ez

∑
si ,sf =±1/2

v∗
μf

(sf ) σ̂ z vμi
(si)

= ex + ey i {δμi,+1/2 − δμi,−1/2} + ez, (19)

where orthogonal unit vectors ex , ey , and ez are used.
So, using the found Eqs. (18) and (19), we perform the summations in Eqs. (10) over all spinor states:

〈kf | e−i kphr ∇ | ki〉 =
∑

mf ,mi

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi
〈kf | e−i kphr ∇ | ki〉r,

〈kf | e−i kphr σ | ki〉 =
∑

mf ,mi

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi
[ex + ey i {δμi,+1/2 − δμi,−1/2} + ez] 〈kf | e−i kphr | ki〉r,

〈kf | e−i kphr σ · [e(α) × ∇]| ki〉 =
∑

mf ,mi

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi
[ex + ey i {δμi,+1/2 − δμi,−1/2} + ez]

· [e(α) × 〈kf | e−i kphr ∇| ki〉r], (20)

where 〈kf | . . . | ki〉r is the one-component matrix element

〈kf | f̂ | ki〉r ≡
∫

R∗
f (r) Ylf mf

(nr)
∗ f̂ Ri (r) Ylimi

(nr) dr, (21)

where integration should be performed over spatial coordinates only.
We orient the frame vectors ex , ey , and ez so that ez is directed along kph. Then, vectors ex and ey can be directed along e(1)

and e(2), correspondingly. In the Coulomb gauge we obtain

ex = e(1), ey = e(2), |ex | = |ey | = |ez| = 1, |e(3)| = 0. (22)

Now we perform the summations in Eqs. (10) over the polarization vectors and obtain

pel = i
∑

mf ,mi

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi
(e(1) + e(2)) 〈kf | e−i kphr ∇ | ki〉r,

pmag, 1 = 1

2

∑
mf ,mi

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi
[ex + ey i {δμi,+1/2 − δμi,−1/2} + ez]

[ ∑
α=1,2

e(α) × 〈kf | e−i kphr ∇| ki〉r

]
,

pmag, 2 = −i kph

2

∑
mf ,mi

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi
[−1 + i {δμi,+1/2 − δμi,−1/2}] 〈kf | e−i kphr | ki〉r. (23)

D. Matric elements integrated over spatial coordinates

We shall calculate the following matrix elements:

〈kf | e−ikphr | ki〉r =
∫

ϕ∗
f (r) e−ikphr ϕi(r) dr, 〈kf |

(24)

e−ikphr ∂

∂r
| ki〉r =

∫
ϕ∗

f (r) e−ikphr ∂

∂r
ϕi(r) dr.

1. Expansion of the vector potential A by multipoles

Let us expand the vectorial potential A of the electromag-
netic field by multipoles. According to [78] [see (2.106)], in
the spherical symmetric approximation we have

ξμ eikphr = μ
√

2π
∑
lph=1

(2lph + 1)1/2 ilph

[Alphμ(r,M) + iμ Alphμ(r, E)], (25)
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where [see [78], (2.73) and (2.80)]

Alphμ(r,M) = jlph (kphr) Tlphlph,μ(nr),

Alphμ(r, E) =
√

lph + 1

2lph + 1
jlph−1(kphr) Tlphlph−1,μ(nr)

−
√

lph

2lph + 1
jlph+1(kphr) Tlphlph+1,μ(nr). (26)

Here, Alphμ(r,M) and Alphμ(r, E) are magnetic and electric
multipoles, jlph (kphr) is the spherical Bessel function of order
lph, and Tlphl

′
ph,μ

(nr) are vector spherical harmonics. Equation
(25) is the solution of the wave equation for an electromagnetic
field in the form of a plane wave, which is presented as
a summation of the electric and magnetic multipoles (for
example, see pp. 83–92 in [60]). Therefore, the separate
multipolar terms in Eq. (25) are solutions of this wave equation
for chosen numbers jph and lph (where jph is the quantum
number characterizing the eigenvalue of the full momentum
operator, while lph = jph − 1, jph, jph + 1 is connected with
the orbital momentum operator, but it defines eigenvalues of
photon parity and, so, it is a quantum number also).

We orient the frame so that the axis z is directed along the
vector kph [see [78], (2.105)]. According to [78] (see p. 45),
the functions Tlphl

′
ph,μ

(nr) have the following form (ξ0 = 0):

Tjphlph,m(nr) =
∑

μ=±1

(lph, 1, jph

∣∣m − μ,μ,m) Ylph,m−μ(nr) ξμ,

(27)

where (l, 1, j
∣∣m − μ,μ,m) are Clebsh-Gordon coefficients

and Ylm(θ, ϕ) are spherical functions defined according to [77]
[see (28,7) and (28,8)]. From Eq. (25) one can obtain the

formula (at e(3) = 0)

e−ikphr = 1

2

∑
μ=±1

ξμ μ
√

2π
∑
lph=1

(2lph + 1)1/2 (−i)lph

· [A∗
lphμ

(r,M) − iμ A∗
lphμ

(r, E)
]
. (28)

2. Spherically symmetric decay

Using (28), for (24) we find

〈kf | e−ikphr | ki〉r =
√

π

2

∑
lph=1

(−i)lph
√

2lph + 1

×
∑

μ=±1

[
μ p̃M

lphμ
− i p̃E

lphμ

]
,

〈kf | e−ikphr ∂

∂r
| ki〉r =

√
π

2

∑
lph=1

(−i)lph
√

2lph + 1
∑

μ=±1

ξμ μ

× [
pM

lphμ
− iμ pE

lphμ

]
, (29)

where

pM
lphμ

=
∫

ϕ∗
f (r)

(
∂

∂r
ϕi(r)

)
A∗

lphμ
(r,M) dr,

(30)

pE
lphμ

=
∫

ϕ∗
f (r)

(
∂

∂r
ϕi(r)

)
A∗

lphμ
(r, E) dr,

and

p̃M
lphμ

= ξμ

∫
ϕ∗

f (r) ϕi(r) A∗
lphμ

(r,M) dr,
(31)

p̃E
lphμ

= ξμ

∫
ϕ∗

f (r) ϕi(r) A∗
lphμ

(r, E) dr.

Now we calculate the components in Eqs. (23). For the first
and third items we obtain

pel = i

√
π

2

∑
mi,mf

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi

∑
lph=1

(−i)lph
√

2lph + 1
[
pM

lph
− i pE

lph

]
,

(32)

pmag, 2 = −i kph

2

√
π

2

∑
mi,mf

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi
[−1 + i {δμi,+1/2 − δμi,−1/2}]

∑
lph=1

(−i)lph
√

2lph + 1
[
p̃M

lph
− i p̃E

lph

]
,

where

pM
lph

=
∑

μ=±1

hμ μpM
lphμ

, pE
lph

=
∑

μ=±1

hμ pE
lphμ

, p̃M
lph

=
∑

μ=±1

μ p̃M
lphμ

, p̃E
lph

=
∑

μ=±1

p̃E
lphμ

. (33)

Now we analyze the second item in Eqs. (23) and find

pmag, 1 = 1

2

∑
mi,mf

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi

[
1√
2

(ξ−1 − ξ+1) + i√
2

(ξ−1 + ξ+1) i {δμi,+1/2 − δμi,−1/2} + ez

]

×
⎡
⎣ ∑

μ=±1

hμξ ∗
μ ×

√
π

2

∑
lph=1

(−i)lph
√

2lph + 1
∑

μ′=±1

ξμ′ μ
′ × [

pM
lphμ′ − iμ′ pE

lphμ′
] ⎤
⎦ . (34)

Taking properties (A7) into account, we calculate Eq. (34) further and obtain

pmag, 1 = −1

2

√
π

2

∑
mi,mf

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi

∑
lph=1

(−i)lph
√

2lph + 1
∑

μ=±1

i hμ μ[μpM
lphμ

− i pE
lphμ

]. (35)
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So, we have found all components in (10):

pel =
√

π

2

∑
lph=1

(−i)lph
√

2lph + 1
∑

μ=±1

hμ

∑
mi,mf

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi

[
i μp

Mmimf

lphμ
+ p

Emimf

lphμ

]
,

pmag,1 = 1

2

√
π

2

∑
lph=1

(−i)lph
√

2lph + 1
∑

μ=±1

hμ μ
∑

mi,mf

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi

[
i μp

Mmimf

lphμ
+ p

Emimf

lphμ

]
, (36)

pmag,2 =
√

π

8
kph

∑
lph=1

(−i)lph
√

2lph + 1
∑

μ=±1

∑
mi,mf

∑
μi, μf =±1/2

C
jf Mf , ∗
lf mf 1/2μf

C
jiMi

limi1/2μi
[−1 + i {δμi,+1/2 − δμi,−1/2}]

[
i μ p̃M

lph
+ p̃E

lph

]
.

3. Calculations of the components pM
lphμ, pE

lphμ and p̃M
lphμ, p̃E

lphμ

For calculation of these components we shall use the gradient formula [see [78], (2.56)]

∂

∂r
ϕi(r) = ∂

∂r
{Ri(r) Ylimi

(nr)} =
√

li

2li + 1

(
dRi(r)

dr
+ li + 1

r
Ri(r)

)
Tli li−1,mi

(nr)

−
√

li + 1

2li + 1

(
dRi(r)

dr
− li

r
Ri(r)

)
Tli li+1,mi

(nr) (37)

and obtain

pM
lph,μ

=
√

li

2li + 1
IM (li , lf , lph, li − 1, μ){J1(li , lf , lph) + (li + 1)J2(li , lf , lph)}

−
√

li + 1

2li + 1
IM (li , lf , lph, li + 1, μ){J1(li , lf , lph) − liJ2(li , lf , lph)},

pE
lph,μ

=
√

li (lph + 1)

(2li + 1)(2lph + 1)
IE(li , lf , lph, li − 1, lph − 1, μ){J1(li , lf , lph − 1) + (li + 1)J2(li , lf , lph − 1)}

−
√

li lph

(2li + 1)(2lph + 1)
IE(li , lf , lph, li − 1, lph + 1, μ){J1(li , lf , lph + 1) + (li + 1)J2(li , lf , lph + 1)}

+
√

(li + 1)(lph + 1)

(2li + 1)(2lph + 1)
IE(li , lf , lph, li + 1, lph − 1, μ){J1(li , lf , lph − 1) − liJ2(li , lf , lph − 1)}

−
√

(li + 1) lph

(2li + 1)(2lph + 1)
IE(li , lf , lph, li + 1, lph + 1, μ){J1(li , lf , lph + 1) − liJ2(li , lf , lph + 1)}, (38)

where

J1(li , lf , n) =
∫ +∞

0

dRi(r, li)

dr
R∗

f (lf , r) jn(kphr) r2dr, J2(li , lf , n) =
∫ +∞

0
Ri(r, li) R∗

f (lf , r) jn(kphr) r dr,

IM (li , lf , lph, l1, μ) =
∫

Y ∗
lf mf

(nr) Tli l1, mi
(nr) T∗

lph lph, μ
(nr) d�, (39)

IE (li , lf , lph, l1, l2, μ) =
∫

Y ∗
lf mf

(nr) Tli l1,mi
(nr) T∗

lphl2, μ
(nr) d�.

In the same way, for p̃M
lphμ

è p̃E
lphμ

we find

p̃M
lphμ

= Ĩ (li , lf , lph, lph, μ)J̃ (li , lf , lph),

p̃E
lphμ

=
√

lph + 1

2lph + 1
Ĩ (li , lf , lph, lph − 1, μ)J̃ (li , lf , lph − 1) −

√
lph

2lph + 1
Ĩ (li , lf , lph, lph + 1, μ)J̃ (li , lf , lph + 1), (40)
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where

J̃ (li , lf , n) =
∫ +∞

0
Ri(r) R∗

f (l, r) jn(kphr) r2dr,

(41)
Ĩ (li , lf , lph, n, μ) = ξμ

∫
Ylimi

(nr) Y ∗
lf mf

(nr) T∗
lphn,μ(nr) d�.

4. Differential (angular) matrix elements of emission

We are interested in the angular emission of the bremsstrahlung photons. Let us introduce the following differential matrix
elements, dpM

l and dpE
l , dependent on the angle θ :

d pM
lphμ

sin θ dθ
=

√
li

2li + 1

d IM (li , lf , lph, li − 1, μ)

sin θ dθ
{J1(li , lf , lph) + (li + 1)J2(li , lf , lph)}

−
√

li + 1

2li + 1

d IM (li , lf , lph, li + 1, μ)

sin θ dθ
{J1(li , lf , lph) − liJ2(li , lf , lph)}, (42)

d pE
lphμ

sin θ dθ
=

√
li (lph + 1)

(2li + 1)(2lph + 1)

d IE (li , lf , lph, li − 1, lph − 1, μ)

sin θ dθ
{J1(li , lf , lph − 1) + (li + 1)J2(li , lf , lph − 1)}

−
√

li lph

(2li + 1)(2lph + 1)

d IE (li , lf , lph, li − 1, lph + 1, μ)

sin θ dθ
{J1(li , lf , lph + 1) + (li + 1)J2(li , lf , lph + 1)}

+
√

(li + 1)(lph + 1)

(2li + 1)(2lph + 1)

d IE (li , lf , lph, li + 1, lph − 1, μ)

sin θ dθ
{J1(li , lf , lph − 1) − liJ2(li , lf , lph − 1)}

−
√

(li + 1) lph

(2li + 1)(2lph + 1)

d IE (li , lf , lph, li + 1, lph + 1, μ)

sin θ dθ
{J1(li , lf , lph + 1) − liJ2(li , lf , lph + 1)}, (43)

and

d p̃M
lphμ

sin θ dθ
= d Ĩ (li , lf , lph, lph, μ)

sin θ dθ
J̃ (li , lf , lph),

(44)
d p̃E

lphμ

sin θ dθ
=

√
lph + 1

2lph + 1

d Ĩ (li , lf , lph, lph − 1, μ)

sin θ dθ
J̃ (li , lf , lph −1) −

√
lph

2lph + 1

d Ĩ (li , lf , lph, lph + 1, μ)

sin θ dθ
J̃ (li , lf , lph + 1).

One can see that integration of these defined functions over
the angle θ inside the region from 0 to π gives the full
matrix elements pM

lphμ
and pE

lphμ
defined by Eq. (38) and matrix

elements p̃M
lphμ

and p̃E
lphμ

defined by Eq. (40).

E. Angular probability of photon emission with impulse
kph and polarization e(α)

Defining the probability of transition of the system from
the initial i state into the final f state, in the given interval
dνf , with the emission of a photon with possible impulses
inside the given interval dνph, we have (see Ref. [77], (42,5)
and Ref. [79], Sec. 44, p. 191)

dW = |af i |2
T

dν = 2π |Ff i |2 δ(wf − wi + wph)dν,

dν = dνf dνph, dνph = d3kph

(2π )3
= w2

ph dwph d�ph

(2πc)3
,

wi − wf = Ei − Ef

h̄
= wf i, (45)

where dνph and dνf are intervals defined for the photon
and the particle in the final f state, d�ph = d cos θph =
sin θph dθph dϕph, and kph = wph/c. However, we have to take
into account that in the multipolar expansion (25) for the
vectorial potential of the electromagnetic field we oriented
the frame so that the z axis is directed along the vector
kph. So, we cannot use d�ph in Eq. (45). Ff i is integral
over space through summation by quantum numbers of the
system in the final f state. Such a procedure averages these
characteristics and so Ff i is independent of them. Interval d νf

has the only new characteristics and quantum numbers for
which integration and summation in Ff i were not performed.
Integrating Eq. (45) over dwf i and substituting Eq. (9), we
find the relative probability

dW = Z2
eff e2

m2

h̄ wph

2π c3
|p(ki, kf )|2 dwph. (46)

This is the probability of photon emission with impulse kph

(averaged over polarization e(α)) where the integration over
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angles of the particle motion after the photon emission has
already been fulfilled.

Let us define the following probability of emission of a
photon with momentum kph when after such an emission the
particle moves (or tunnels) along direction nf

r : The differential
probability for angle θ is a function such that its definite
integral over the angle θ with limits from 0 to π equals the
total probability of photon emission (46). Let us consider the
function

d2W (θf )

dwph d cos θf

= Z2
eff h̄ e2

2π c3

wph

m2

×
{
p (ki, kf )

d p∗(ki, kf , θf )

d cos θf

+ c.c.

}
.

(47)

c.c. is complex conjugation. This probability is inversely
proportional to the normalized volume V . With the goal of
having the probability independent of V , we divide Eq. (47)
by the flux j of outgoing α particles, which is inversely
proportional to this volume V also. Using a quantum field
theory approach (where v(p) = |p|/p0 at c = 1; see [80],
Sec. 21.4, p. 174),

j = ni v(pi), vi = |vi | = c2 |pi |
Ei

= h̄ c2 ki

Ei

, (48)

where ni is the average number of particles before photon
emission (where we have ni = 1 for the normalized wave

function in the initial i state) and v(pi) is the module of the
velocity of the outgoing particle in the reference frame where
the colliding center is not moved, we obtain the differential
absolute probability

d P (ϕf , θf )

dwph
= d2 W (ϕf , θf )

dwph d cos θf

Ei

h̄ c2 ki

= Z2
eff e2

2π c5

wph Ei

m2 ki

×
{
p (ki, kf )

d p∗(ki, kf ,�f )

d cos θf

+ c.c.

}
. (49)

Note that an alternative theoretical method for calculating the
angular bremsstrahlung probabilities in α decay was developed
in [37] based on a different definition of the angular probability,
a different connection of the matrix element with the angle
θ between the fragment and the photon emitted, and the
application of some approximations.

Using formula (10), we rewrite Eq. (49) as

d P (ϕf , θf )

dwph
= d Pel(ϕf , θf )

dwph
+ d Pmag,1(ϕf , θf )

dwph

+ d Pmag,2(ϕf , θf )

dwph
+ d Pinterference(ϕf , θf )

dwph
,

(50)

where

d Pel(ϕf , θf )

dwph
= Z2

eff e2

2π c5

wph Ei

m2 ki

{
pel (ki, kf )

d p∗
el(ki, kf ,�f )

d cos θf

+ c.c.

}
,

d Pmag,1(ϕf , θf )

dwph
= Z2

eff e2

2π c5

wph Ei

m2 ki

{
pmag,1 (ki, kf )

d p∗
mag,1(ki, kf ,�f )

d cos θf

+ c.c.

}
,

(51)
d Pmag,2(ϕf , θf )

dwph
= Z2

eff e2

2π c5

wph Ei

m2 ki

{
pmag,2 (ki, kf )

d p∗
mag,2(ki, kf ,�f )

d cos θf

+ c.c.

}
,

d Pinterference(ϕf , θf )

dwph
= Z2

eff e2

2π c5

wph Ei

m2 ki

{
pel (ki, kf )

d (p∗
mag,1(ki, kf ,�f ) + p∗

mag,2(ki, kf ,�f ))

d cos θf

+pmag,1 (ki, kf )
d (p∗

el(ki, kf ,�f ) + p∗
mag,2(ki, kf ,�f ))

d cos θf

+pmag,2 (ki, kf )
d (p∗

el(ki, kf ,�f ) + p∗
mag,1(ki, kf ,�f ))

d cos θf

+ c.c.

}
.

For clarity of further analysis, we call d Pel the electric
component of emission (or electric emission), d Pmag,1 the
magnetic component of emission (or magnetic emission),
d Pmag,2 the correction of the magnetic component of emis-
sion (or correction of magnetic emission), and d Pinterference

the interference component of emission. Sometimes, we
shall omit variables ϕf and θf in the brackets of these
functions.

For a description of the bremsstrahlung which accompanies
collisions of protons off nuclei, we shall consider in this paper

only the normalized cross section

d2 σ

dwph d cos θf

= N0 wph

{
p (ki, kf )

d p∗(ki, kf ,�f )

d cos θf

+ c.c.

}
, (52)

where N0 is a normalization factor (determined by normaliza-
tion of the calculated curve of the full bremsstrahlung spectrum
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on one point of experimental data), and in calculations
of matrix elements we use of elastic scattering boundary
conditions for the wave function of the proton-nucleus system
in the state before emission of the photon.

III. RESULTS

Let us estimate the bremsstrahlung probability accompany-
ing proton decay. We calculate the bremsstrahlung probability
by using Eq. (49). The potential of interaction between the
proton and the daughter nucleus is defined in Eqs. (26) and (27)
with parameters calculated from Eqs. (28) and (29) in [75].
The wave functions of the decaying system in the states
before and after the photon emission are calculated for such
a potential in the spherically symmetric approximation. The
boundary conditions and normalization are used in the form
of (B.1)–(B.9) in [75]. To choose convenient proton emitters
for calculations and analysis, one can use the systematics
presented in Ref. [4] (see Table II in the cited paper). In
particular, in [75] the 157Ta, 161Re, 167Ir, and 185Bi nuclei
decaying from the 2s1/2 state (at li = 0), the 109

53I56 and 112
55Cs57

nuclei decaying from the 1d5/2 state, and the 146
69Tm77 and

151
71Lu80 nuclei decaying from the 0h11/2 state (at li �= 0)

were selected. In this paper we shall analyze only one
nucleus, 146

69Tm77, at li �= 0 (as calculations for this nucleus are
essentially more difficult than for nuclei at li = 0), with a main
emphasis on studying new physical effects in the framework of
the proposed model (assuming that such studied effects should
be similar for other nuclei). For the 146

69Tm77 nucleus we have
li = 5, lf = 4, and Q = 1.140 MeV [75].

A. Electric and magnetic emissions and angular distributions

First, let us clarify how much the magnetic emission is
visible on the background of the full bremsstrahlung spectrum
(to understand whether there is a reason to study it, at all).
The result of calculations of the bremsstrahlung probabilities
during proton decay of 146Tm [at the chosen angle θ = 90◦

between the directions of the proton motion (with its possible
tunneling) and the photon emission] are presented in Fig. 1.
The electric and magnetic components are included also on
these figures. One can see that the magnetic emission is smaller
than the electric one. But it gives a contribution of about 28% to
the full spectrum [see Fig. 1(b)]; i.e., it is not small enough to
be neglected and it should be taken into account in further
calculations of the bremsstrahlung spectra during nuclear
decays with emission of charged fragments with nonzero
spin. However, the magnetic component suppresses the full
emission probability: according to Fig. 1(b) (see the blue solid
line), inclusion of the magnetic component into calculations
is determined by Pel/Pfull � 1.14, which is larger than unity.
This effect of suppressing the total emission can be explained
by the presence of not-small destructive interference between
the electric and magnetic components inside the entire studied
energy region. According to Fig. 1(b), ratios of the electric and
magnetic components to the full spectrum do not change as a
function of the energy of the emitted photon. As we find, the
correction of the magnetic component dPmag,2 is smaller than
the electric and magnetic components by a factor of 106 (so
we shall neglect such a contribution in further analysis).

Now we shall analyze how the magnetic emission varies
with the θ angle between the outgoing proton and the emitted
photon. In particular, let us find whether there are some
values of θ where the magnetic emission increases strongly
relative to the electric one. In Fig. 2 the angular distributions
of the electric and magnetic emissions during the proton
decay of 146Tm are shown. One can see that the electric
and magnetic components increase proportionally (similarly)
with increasing angle θ . From Table I it follows that there is
no any angular value where the magnetic emission increases
essentially relative to the electric one.

B. Electric and magnetic emission dependence on distance
between the proton and the daughter nucleus

Usually, authors of papers on bremsstrahlung calculate the
spectra on the basis of integration over all spatial coordinates.

FIG. 1. (Color online) The full bremsstrahlung spectrum and electric and magnetic components of emission defined by Eq. (51) (at θ = 90◦):
(a) the full spectrum (full blue line), electric component dPel (red dashed line), and magnetic component dPmag,1 (green dash-dotted line); (b)
the ratio of the components to the full spectrum (with the full blue line for dPel/dPfull and the red dashed line for dPmag,1/dPfull). One can see
that the magnetic emission gives about a 28% contribution inside the energy region of 50–300 keV.
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FIG. 2. (Color online) The angular distributions of the bremsstrahlung emission during proton decay of the 146Tm nucleus: (a) the electric
component of emission, dPel, calculated at different energies of the emitted photons; (b) the electric component dPel (full blue line) and
magnetic component dPmag,1 (red dashed line) for the chosen photon energy of 200 keV. One can see that both spectra increase proportionally
(similarly) with increasing angle.

In relativistic models of collisions of nucleons off nucleons and
nuclei (at intermediate energies) calculations are preformed
in impulse representation mainly. Such approaches miss
information on how intensive emission depends on the distance
between centers of mass of the two studied objects. However,
it is natural to think that the intensity of emitted photons
depends on such a distance. One can suppose that electric
and magnetic photons are emitted in different ways. We put
pose the following questions:

(i) Can the magnetic emission be stronger than the electric
one in some spatial region?

(ii) How do the electric and magnetic emissions depend on
distance between the proton and the nucleus?

(iii) How strong are the electric and magnetic emissions
from the tunneling region? Is there a principal dif-
ference between these types of emission from the
tunneling region in comparison with the external
emission?

TABLE I. The dependence of the electric and magnetic com-
ponents of emission on the θ angle between directions of outgoing
proton and emitted photon at a photon energy of 200 keV. One can see
that ratio of magnetic to electric emission is practically unchanged
throughout the entire angular region.

Emission probability

Angle Electric Magnetic dPmag,1/dPel

θ component dPel component dPmag,1

10◦ 1.704 × 10−14 4.198 × 10−15 0.24630
20◦ 2.580 × 10−13 6.357 × 10−14 0.24636
30◦ 1.192 × 10−12 2.940 × 10−13 0.24647
40◦ 3.329 × 10−12 8.212 × 10−13 0.24665
50◦ 6.952 × 10−12 1.716 × 10−12 0.24692
60◦ 1.188 × 10−11 2.939 × 10−12 0.24730
70◦ 1.727 × 10−11 4.281 × 10−12 0.24779
80◦ 2.158 × 10−11 5.361 × 10−12 0.24841
90◦ 2.319 × 10−11 5.779 × 10−12 0.24916

In order to perform such an investigation, we shall define
the probability of emission of bremsstrahlung photons from
the selected spatial region. In the presented formalism the
emission dependence on the distance is determined by the
radial integrals J1(li , lf , n), J2(li , lf , n), and J3(li , lf , n) in
Eqs. (39) and (41), where integration is performed over the
full spatial region. So, to obtain emission from an arbitrary
selected interval r ∈ [r1, r2], we shall consider the following
integral:

Jm(li , lf , n; r1, r2) =
∫ r2

r1

fm(r) dr, (53)

where m = 1, 2, 3 and fm(r) is the integrant function of
the corresponding radial integral Jm(li , lf , n), defined in
Eq. (39) or (41). In particular, Jm(li , lf , n; r1, r2) transforms to
Jm(li , lf , n) at r1 → 0 and r2 → +∞. Now, for the emission
from a small enough interval �r near the studied distance r

we obtain

Jm(li , lf , n; r, r + �r) =
∫ r+�r

r

fm(r ′) dr ′. (54)

From here we define the amplitude of emission as a function
of the distance r on the basis of such a radial function:

Jm(li , lf , n; r) = lim
�r→0

Jm(li , lf , n; r, r + �r)

�r

= lim
�r→0

1

�r

∫ r+�r

r

fm(r ′) dr ′

= lim
�r→0

1

�r
fm(r)

∫ r+�r

r

dr ′

= fm(r) lim
�r→0

1

�r
�r = fm(r). (55)

After this, the matrix elements and emission probability
including the dependence on the distance r can be defined as
before, where we shall use Jm(li , lf , n; r) instead of the radial
integrals Jm(li , lf , n). For denoting the new characteristics
with dependence on the distance r we shall include the variable
r inside brackets.
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FIG. 3. (Color online) The magnetic component dPmag,1(r) and the electric component dPel(r) vs distance r between centers of mass of the
proton and daughter nucleus at an emitted photon energy of 200 keV (at θ = 90◦): (a) The magnetic component dPmag,1(r) (red dashed line) and
the electric component dPel(r) (full blue line) inside the spatial region up to 250 fm. One can see that both functions oscillate similarly in the
external region outside the barrier, while they are essentially smaller inside the tunneling region. (b) The magnetic component dPmag,1(r) (red
dashed line) and the electric component dPel(r) (full blue line) inside the tunneling region (up to 80 fm). One can see that both functions have
monotonic behavior (with possiblly one well, and without any oscillation) in this region. After crossing from the barrier region into the external
one the first oscillation becomes more sharply peaked (demonstrating the more intensive emission from the external region in comparison to
the tunneling region). One can see also that after crossing from the barrier region into the internal region (near 12 fm) both functions strongly
decrease (with oscillations), pointing to the much smaller bremsstrahlung emission from the spatial region of the nucleus. (c) The ratio of the
magnetic component to the electric one, dPmag,1(r)/dPel(r) (full green line). One can see that this characteristic does not change throughout
the entire studied region and is the same in the tunneling and external regions.

The magnetic component dPmag,1(r) on the background
of the electric one dPel(r) as a function of the distance r is
shown in Fig. 3. One can see that the behaviors of the two
functions are similar: they oscillate in the external region
(having maxima and minima at similar spatial locations),
while they have monotonic shapes with one possible well
in the tunneling region. In general, the magnetic emission
suppresses the full emission inside the whole spatial region.
The emission from the internal region up to the barrier is the
smallest, and that from the external region is the strongest.
The behavior of the correction of the magnetic component
dPmag,2(r) on the background of the electric one dPel(r)
as a function of distance r is shown in Fig. 4. In general,
this function is essentially smaller. In the tunneling region
it increases monotonically, in contrast to the electric and
magnetic components [see Fig. 4(c)]. This causes a sharp

peak of the function dPmag,2(r)/dPel(r) close to the external
boundary of the barrier (external turning point) shown in
Fig. 4(b). This peak could be of interest for further research, as
it corresponds to the external spatial boundary of the barrier.
But, unfortunately, this peak is extremely small (in comparison
with the full spectrum) for any reasonable searches of its
experimental measurements.

C. Spectra of the emitted soft photons

From the point of view of theory, it can be interesting to
know what happens to the bremsstrahlung spectrum at the
zero-energy limit of the emitted photons. In particular, let us
analyze whether this spectrum increases infinitely or tends to
a definite finite value and what the limit is in that case.

FIG. 4. (Color online) Correction of the magnetic component of emission, dPmag,2(r) vs distance r between centers of mass of the outgoing
proton and the daughter nucleus at an emitted photon energy of 200 keV (at θ = 90◦): (a) The correction of the magnetic component
dPmag,2(r) × 106 (red dashed line) and the electric component dPel(r) (full blue line) in the region up to 250 fm. One can see that in the
external region outside the barrier both functions oscillate similarly, while in the tunneling region (up to 80 fm) they are essentially smaller. (b)
The ratio of the correction of the magnetic component to the electric one, dPmag,2(r)/dPel(r). One can see that there is a sharp peak close to
80 fm (which corresponds to the external turning point). (c) The correction of the magnetic component dPmag,2(r) × 105 (red dashed line) and
the electric component dPel(r) (full blue line) in the tunneling region. One can see that in this region these two functions exhibit principally
different behavior. By this difference one can explain the presence of the peak in the previous figure (b).
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FIG. 5. (Color online) The bremsstrahlung spectra for near-zero energy of the emitted photons (up to 2.5 keV): (a) full spectrum (full blue
line), electric component dPel (red dashed line), and magnetic component dPmag,1 (green dash-dotted line) at θ = 90◦; (b) full spectrum vs
the angle θ (full blue line for θ = 90◦, orange dash-dotted line for θ = 75◦, red dashed line for θ = 60◦, green short dotted line for θ = 45◦,
reddish brown short dash-dotted line for θ = 30◦, and violent short dashed line for θ = 15◦).

For low photon energies (i.e., for soft photons) two
prevailing approaches are known: the first approach began
with the early work [81] of Low and it is based on application
of the soft-photon theorem to all nuclear bremsstrahlung
processes; the second one is based on application of the
approximation of Feshbach and Yennie [82], which is more
effective near resonances (see [13] for an analysis). However,
as was noted in [13] (see p. 376), there is another way to
develop bremsstrahlung theory, i.e., a potential one, to which
our model can be referred. According to QED, the divergence
in the calculation of the matrix element appears at the limit
of a photon energy of zero (the so-called infrared catastrophe;
see pp. 258–273 in [60], pp. 194–200 in [83], and pp. 194,
225, and 231 in [80]). However, we obtain the convergent
integrals and the finite probability of bremsstrahlung emission
in our approach. In particular, let us consider the first integral

in Eqs. (39) for n = 0 at the limit wph → 0:

lim
wph→0

J1(li , lf , n = 0)

= lim
wph→0

∫ R0=1/kph

0

dRi(r, li)

dr
R∗

f (lf , r) j0(kphr) r2dr

+ lim
wph→0

∫ +∞

R0=1/kph

dRi(r, li)

dr
R∗

f (lf , r) j0(kphr) r2dr.

(56)

At wph → 0 we have j0(kphr) = sin(kphr)/(kphr) → 1 (kph =
wph/c). So, one can see that the first item converges (according
to the chosen boundary conditions, χf (r) = 0 at r = 0, where
Rf (r) = χf (r)/r [75]). The second item does not include
small photon energies (kph > 1/R0) and, therefore, it is a
standard integral in our calculations of the spectra of not-soft

FIG. 6. (Color online) The proton nucleus bremsstrahlung probability rates in the laboratory system at an incident energy of Tlab = 140
MeV (in our calculations with a photon emission angle of θ = 90◦): (a) Comparison for p + 9Be between the calculations by our model (where
the blue solid line is for the full spectrum, the green dash-dotted line is for the electric contribution, and the red dashed line is for the magnetic
contribution), calculations from Nakayama and Bertsch [84] (reddish brown short-dashed line), calculations from Nakayama [61] (blue dash
double-dotted line), and experimental data of Edington and Rose [85] (circular points). (b, c) Comparison for p + 12C and p + 208Pb between
the calculations by our model (where the blue solid line is for the full spectrum, the green dash-dotted line is for the electric contribution, and
the red dashed line is for the magnetic contribution), calculations by Remington et al. [86] (where the reddish brown dash double-dotted line is
for calculations by master equation using the semiclassical bremsstrahlung cross sections, the orange short dotted line is for semiclassical cross
sections multiplied by 2 for meson exchange, and the blue short dashed line is for quantum bremsstrahlung cross sections), and experimental
data of Edington and Rose [85] (circular points).
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FIG. 7. (Color online) The proton nucleus bremsstrahlung probability rate in the laboratory system at an incident energy of Tlab = 72 MeV
and a photon emission angle of θ = 90◦: Comparison for p + 12C (a), p + 64Cu (b), and p + 107Ag (c) between the full cross section calculated
by Eq. (52) (reddish brown dash double-dotted line), the corrected cross section obtained by Eq. (52) with division by kf (blue solid line), and
experimental data from Kwato et al. [87] (circular points). We add the electric component (green dash-dotted line) and magnetic component
(red dashed line) to all figures.

photons; i.e., it converges also. The same result can be obtained
at arbitrarily chosen n and for J2(li , lf , n), J̃ (li , lf , n). On
such a basis, according to Eqs. (36), (38), and (40), all
matrix elements pel, pmag,1, and pmag,2 (and the angular matrix
elements) converge at arbitrary values of quantum numbers li ,
lf . According to Eq. (49), we obtain

lim
wph→0

d P (ϕf , θf )

dwph

= lim
wph→0

Z2
eff e2

2π c5

wph Ei

m2 ki

×
{
p (ki, kf )

d p∗(ki, kf ,�f )

d cos θf

+ c.c.

}
= 0. (57)

Our calculations at emitted photon energies up to 2.5 keV are
shown in Fig. 5. One can see that with decreasing photon
energy the bremsstrahlung probability increases slowly up
to a finite maximum, and then it decreases monotonically.
According to our estimations, the probability has a finite
maximum at an emitted photon energy smaller than 1.5 keV.
So, there is no infrared catastrophe in our approach.3

D. Spectra in collisions of protons off nuclei
at intermediate energies

In finishing, the applicability of the proposed model
and calculations for describing experimental bremsstrahlung
spectra during collisions of protons off nuclei at intermediate
proton incident energies will be demonstrated. The normalized
cross sections are calculated using Eq. (52), by using the same
form of the proton-nucleus potential and parameters (defined
as for the problem of proton decay studied above).4

3It is interesting to note that such a proposed definition of probabil-
ity, Eq. (49), allows us to describe well enough experimental data for
bremsstrahlung emission during α decay without any normalization
of the calculated spectra to the experiment (see Fig. 1 in [41]).

4A key problem in obtaining reliable bremsstrahlung spectra is the
difficulty in achieving stability in calculations of the matrix elements.

In Fig. 6(a) one can see that our approach can describe
experimental data for p + 9Be well enough in the energy
region from 20 to 120 MeV in comparison with results obtained
by Nakayama and Bertsch in [84] and calculations performed
by Nakayama in [61]. In Fig. 6(b) we compare our calculations
for p + 12C with experimental data [85] and results obtained
by Remington, Blann, and Bertsch [86]. Such a comparison
shows that in the energy region of emitted photons up to
90 MeV our full spectrum (see the solid blue line) is close
enough to the experimental data and calculations obtained
using the master equation and a semiclassical bremsstrahlung
formula (see the reddish brown dash double-dotted line), the
semiclassical cross sections being multiplied by a factor of 2
for meson exchange (see the orange short dotted line) in [86].
But for hard photons with energy from 90 to 120 MeV we
achieve better agreement with experimental data than the
results of [86]. Comparison of our results with quantum
calculations performed in [86] (see the blue short dashed
line in that figure) indicates the absolute applicability (and
availability) of the quantum approach for describing the
high-energy emitted photons in collisions of protons off nuclei.
At the same time, such an approach allows us to more deeply
study quantum properties (such as nonlocality, for example)
of the considered colliding process. In Fig. 6(c) a similar
comparison is performed for p + 208Pb. On all figures we add
our calculations for the magnetic and electric bremsstrahlung
emission.

In Fig. 7 we present our calculations of the bremsstrahlung
cross sections for collisions p + 9C, p + 64Cu, and p + 107Ag
in comparison with experimental data [87] at an incident
proton energy of Tlab = 72 MeV. Here, we show the full

Also this is likely the main reason why the main idea of the proposed
potential approach was not developed essentially for calculations of
bremsstrahlung spectra at intermediate energies. In order to achieve
stability, the approach presented in the Appendix in [11] is applied
inside the radial region from Ras to Rmax. For simplicity of analysis, the
same values for these two parameters are used: Ras = 0. 9 × (RR +
7aR), Rmax is chosen so that the second digit of the probability is not
changed after Rmax variations, RR and aR are potential parameters
defined in Eqs. (29) of [75].
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FIG. 8. (Color online) Experimental data of Kwato et al. [87] for p + 12C, p + 64Cu, and p + 107Ag at Tlab = 72 MeV. (a) One can see that
data for 64Cu are located lower than the data for 12C and 107Ag. At the same time, the data for 64Cu are decreased more slowly with increasing
photon energy than the data for 12C and 107Ag. (b) The comparison between experimental data reinforced by calculations of the full cross
sections (blue solid lines in Fig. 7; θ = 90◦): inclusion of the calculated curves, describing the general tendency of the spectra, only reinforces
the difference in behavior between experimental data, indicated in (a).

spectrum calculated using Eq. (52) and the corrected spectrum
obtained using Eq. (52) with division by kf (according to
formula (13) of the cross section defined in [12]). Comparison
with quantum calculations performed by Kopitin et al. [12]
(see Fig. 1 in the cited paper) shows more stable calculations
in our approach. In addition, this verifies the validity of the
assumption made in [12] that the quantum approach (with
a nuclear component of the potential included) is absolutely
able to describe well experimental bremsstrahlung data during
proton-nucleus collisions.

Comparing results of calculations obtained for p + 12C,
p + 64Cu, and p + 107Ag at an incident energy of Tlab =
72 MeV, one finds poorer agreement between theory and
experiment for the 64Cu nucleus. This situation looks strange,
as all measurements were made by the same group of
experimentalists (and it is difficult to expect that the cross
section for the 64Cu nucleus is the experimental error). For
evidence, let us consider all these experimental data in one
figure (see Fig. 8). One can see that data for 64Cu are located
lower than the data for 12C and 107Ag. At the same time, the
data for 64Cu decrease more slowly with increasing photon
energy than do the data for 12C and 107Ag. In particular, one
can expect that further continuation of all these data for higher
photon energies have to lead to their intersection at one point
(or these are evident deviations from the monotonic decreasing
trends of the spectra), which has never been observed before.

Such a picture disagrees with the early observed general
tendency of bremsstrahlung spectra in nuclear processes. This
logics explains why the spectrum decreases more strongly
(with increasing photon energies), if this spectrum is lower.
Such a tendency is based on the correspondence between the
shape of the barrier with the tunneling length of the emitted
fragment: the energy of the proton is lower, the length of
tunneling is larger, and the total emission of photons is less
intensive (because it is less intensive for photons emitted from
the tunneling region than from above-barrier regions). We
demonstrated this tendency for the example of two spectra
for α decay of 214Po and 226Ra nuclei (see Fig. 3 and the
explanations in [39]).

However, if this difference between experimental data is
supported by future measurements, then such a result would be
very interesting. This will be a direct indication of the influence
on the spectra of some other hidden characteristics of the
proton-nucleus system, which are not included in the current
calculations. This will indicate the presence of new aspects in
the bremsstrahlung spectra. One can assume that the structure
of the proton-nucleus system, dynamics of its nucleons, and
other early unstudied properties can be important in such new
developments.5

E. Role of the multipolar components in the angular analysis

The first calculations of multipolar components of
bremsstrahlung emission of higher order in nuclear decays
were obtained by Tkalya in [27,28]. By studying emission
of bremsstrahlung photons during α decay of 226Ra, 210Po,

and 214Po nuclei, he showed that the multipolar term E2 is
essentially smaller in comparison with E1 (see Fig. 1 in [28]),
with the ratio between contributions P E1/P E2 being about
50–1000 for photon energies up to 900 keV). There are also
estimations obtained by Kurgalin, Chuvilsky, and Churakova
for the multipolar term E2 of the emitted photons in α decay
of 210Po [88]: according to their calculations, contribution
of the E2 multipole is smaller than that of E1 by a factor
of 50–500 for photon energies up to 800 keV. We studied
this question also and found the multipolar terms E2 and
M2 to be very small. The authors of [37] investigated the
dipole and quadrupole contributions in a semiclassical way
to the bremsstrahlung probability in α decay and studied the

5For example, in the problem of bremsstrahlung emission accompa-
nying ternary fission of 252Cf (where this nucleus is separated into an
α particle and two heavy fragments) we have shown that the dynamics
of relative motion of all participated fragments and the geometry of
nuclear separation have a strong influence on the bremsstrahlung
spectrum [53].
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interference between such contributions.6 There appears to
be no information about other attempts to estimate the E2
multipolar term and the multipoles of higher order, which
could be obtained up to now. For such reasons, calculations of
the bremsstrahlung spectra in the multipolar approach usually
are performed on the basis of the first multipolar term, which
gives the prevailing contribution to the full spectrum (and

6The expansion in [37] and the multipolar expansion in the given
paper have a different basis and sense. In [37] dipole and quadrupole
contributions are defined as the first term (at lf = 1) and the second
term (at lf = 2) of the expansion of the wave function ϕf (r) of
the α-nucleus system in the state after emission of a photon (see
Eqs. (B1)–(B4) in [37]) as a representation of the effective charge
for a two-charge nuclear system (see Eqs. (A1)–(A4) in [37]). The
multipolar approach in this paper is based on the standard multipolar
expansion of the wave function of the photon (28).

usually a minimum of four to five first digits of the calculated
probability are stable in our approach).

Also it is more difficult to obtain reliable estimations of
the multipolar terms of higher order because of essentially the
slower convergence of their calculations. This is a real practical
difficulty (which can alienate many researchers from trying
to obtain the multipolar terms of higher order). Indications
of the difficulty of such problems and perspectives of their
solution can be found in papers of authors who calculated the
bremsstrahlung spectra in different nuclear tasks with realistic
potentials (for example, see [12–14]).

In order to understand more clearly, how the angular
bremsstrahlung probability depends on quantum numbers li ,
lf , and lph (which defines the multipolar term), we rewrite the
formulas separating components which describe this angular
dependence. This information is completely included in the
differential matrix elements:

d pM
lphμ

sin θ dθ
= δμ,mi−mf

P
|mf |
lf

∑
μ′=±1

{
δli �=0 c

μ′
1 P

|mi−μ′|
li−1 − c

μ′
2 P

|mi−μ′|
li+1

}
P

|μ−μ′|
lph

,

(58)
d pE

lphμ

sin θ dθ
= δμ,mi−mf

P
|mf |
lf

∑
μ′=±1

{[
δli �=0 c

μ′
3 P

|mi−μ′|
li−1 + c

μ′
5 P

|mi−μ′|
li+1

]
P

|μ−μ′|
lph−1 − [

δli �=0 c
μ′
4 P

|mi−μ′|
li−1 + c

μ′
6 P

|mi−μ′|
li+1

]
P

|μ−μ′|
lph+1

}
,

d p̃M
lphμ

sin θ dθ
= δmi,mf

c7P
|mi |
li

P
|mf |
lf

P 0
lph

,
d p̃E

lphμ

sin θ dθ
= δmi,mf

P
|mi |
li

P
|mi |
lf

{
c8 P 0

lph−1 − c9 P 0
lph+1

}
, (59)

where

c
μ′
1 =

√
li

2li + 1
C

mimf μ′

li lf lphli−1,lph
[J1(li , lf , lph) + (li + 1)J2(li , lf , lph)],

c
μ′
2 =

√
li + 1

2li + 1
C

mimf μ′

li lf lphli+1,lph
[J1(li , lf , lph) − liJ2(li , lf , lph)], (60)

c
μ′
3 =

√
li (lph + 1)

(2li + 1)(2lph + 1)
C

mimf μ′

li lf lphli−1,lph−1[J1(li , lf , lph − 1) + (li + 1)J2(li , lf , lph − 1)],

c
μ′
4 =

√
li lph

(2li + 1)(2lph + 1)
C

mimf μ′

li lf lphli−1,lph+1[J1(li , lf , lph + 1) + (li + 1)J2(li , lf , lph + 1)],

(61)

c
μ′
5 =

√
(li + 1)(lph + 1)

(2li + 1)(2lph + 1)
C

mimf μ′

li lf lphli+1,lph−1[J1(li , lf , lph − 1) − liJ2(li , lf , lph − 1)],

c
μ′
6 =

√
(li + 1) lph

(2li + 1)(2lph + 1)
C

mimf μ′

li lf lphli+1,lph+1[J1(li , lf , lph + 1) − liJ2(li , lf , lph + 1)],

c7 = C
miμ

li lf lphlph
J̃ (li , lf , lph),

c8 =
√

lph + 1

2lph + 1
C

miμ

li lf lph,lph−1J̃ (li , lf , lph − 1), (62)

c9 =
√

lph

2lph + 1
C

miμ

li lf lph,lph+1J̃ (li , lf , lph + 1).
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FIG. 9. (Color online) Contributions of the electric component dPel of the bremsstrahlung emission for proton decay of the 146Tm nucleus
for the first three multipoles (lph = 1, 2, 3). (a) The spectra at θ = 90◦: one can see that the first contribution at lph = 1 (blue solid line) is
essentially larger in comparison with contributions at lph = 2 (green dashed line) and lph = 3 (red dash-dotted line); i.e., the first multipolar
contribution dominates inside the whole energy region of the emitted photons. (b) The multipolar contribution at lph = 2 vs the angle θ : one
additional extremum can appear in each curve inside the angular region from 0◦ to 90◦, but it is practically smoothed (at the current computer
accuracy of the calculations). However, at small values of θ each curve is increased more sharply in comparison with the angular spectra at
lph = 1 [see Fig. 2(a)]. (c) The multipolar contribution at lph = 3 vs θ : the appearance of one new extremum in each curve forms one new
oscillation. There is a displacement of maximum and minimum in each spectrum in the direction of larger values of θ with increasing energy
of the emitted photons.

Here, cμ′
1 . . . c

μ′
6 and c7 . . . c9 do not depend on the θ angle. The

function δli �=0 is defined as δli �=0 = 0 at li = 0 and δli �=0 = 1
at li �= 0. Formulas for the first few values of li and lf are
presented in Appendix C. On the basis of these formulas we
conclude the following:

(i) Numbers li and lf determine the basic shape of the
angular distribution of the bremsstrahlung probability;
number lph determines oscillations in this shape:
(a) The number of oscillations of this shape is minimal

at lph = 1 and increases with increasing lph.

(b) c
μ′
1 . . . c

μ′
6 and c7 . . . c9 are oscillation weights at

each chosen lph. As integrals J1 and J2 decrease
with increasing lph (at fixed wph), so each matrix
element with the next value of lph gives its own
new contribution to the base shape of the proba-
bility distribution, with smaller intensity but larger
number of oscillations.

(ii) If polynomials P
|mi−μ′|
li±1 at some chosen li or polynomi-

als P
|mf |
lf

at chosen lf in Eqs. (58) [polynomials P
|mi |
li

at some chosen li or polynomials P
|mf |
lf

at the chosen
lf in Eqs. (59)] equal zero for some values of the angle
θ then the differential matrix elements in Eqs. (58)
[in Eqs. (59)] equal zero at any value of lph for this θ .

The angular contributions of the electric component dPel

of the bremsstrahlung emission during proton decay of the
146Tm nucleus for the first three multipoles are presented in
Fig. 9. In Fig. 9(a) one can see that the second and third
multipolar contributions (at lph = 2 and lph = 3, θ = 90◦) are
smaller on 5–7 orders of magnitude in comparison with the
first one (at lph = 1, θ = 90◦). The angular distributions of
these multipolar contributions are shown in Figs. 9(b) and
9(c) for lph = 2 and lph = 3. In particular, one can see that for
smaller values of the angle θ the emission is more intensive
at increasing multipolar order lph (at the same fixed li and lf
for 146Tm).

IV. CONCLUSIONS

A model for bremsstrahlung emission that accompanies
proton decay and collisions of protons off nuclei in the lowest-
to intermediate-energy region has been developed. This model
includes spin formalism, a potential approach for describing
the interaction between protons and nuclei, and an emission
operator that includes the component of magnetic emission
(defined on the basis of the Pauli equation). In the problem
of bremsstrahlung during proton decay the role of magnetic
emission is studied using such a model. For such investigations
the 146Tm nucleus was chosen. We obtain the following results:

(i) Inside the energy region from 50 to 300 keV the
magnetic emission gives a contribution of about 28%
to the full spectrum (see Fig. 1); i.e., it is not so small
and should be taken into account in further estimations
of spectra of bremsstrahlung emission during nuclear
decays with emission of the charged fragments with
nonzero spin. However, the magnetic component sup-
presses the full emission probability: inclusion of the
magnetic component in calculations is determined by
Pel/Pfull � 1.14, which is larger than unity. This effect
of suppressing the total emission can be explained
by the presence of not-small destructive interference
between the electric and magnetic components inside
the entire studied energy region. Ratios of the electric
and magnetic components to the full spectrum do
not depend on the energy of the emitted photon.
The correction of the magnetic component dPmag,2 is
smaller than the electric and magnetic components by
a factor of 106.

(ii) With increasing angle θ between directions of the
outgoing proton and emitted photon the electric and
magnetic components increase proportionally (see
Fig. 2), but their ratio is not changed (see Table I).
So, there is no some angular value where the mag-
netic emission increases essentially relative to the
electric one.
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(iii) The magnetic component dPmag,1(r) depends on the
distance r between centers of mass of the proton and
daughter nucleus, similarly to the electric component
dPmag,1(r) (with the ratio between such two compo-
nents not changing inside a region from 5 to 250 fm). In
the external region both components oscillate (having
maxima and minima at similar spatial locations), while
in the tunneling region they have monotonic shapes with
one possible well (see Fig. 3). In general, the magnetic
emission suppresses the full emission inside the entire
spatial region. The emission from the internal region up
to the barrier is the smallest, and that from the external
region is the strongest.

(iv) The correction of the magnetic component dPmag,2(r)
is essentially smaller than the electric one dPel(r) as a
function of the distance r (see Fig. 4). In the tunneling
region it increases monotonically, in contrast to the
electric and magnetic components. This causes a sharp
peak of the function dPmag,2(r)/dPel(r) close to the
external boundary of the barrier (near 80 fm).

(v) At decreasing photon energy down to zero, the
bremsstrahlung probability increases slowly up to a
finite maximum (at an energy of the emitted photon of

less than 1.5 keV), and then it monotonically decreases
to zero (see Fig. 5). The angular distribution of the
probabilities of bremsstrahlung emission at such small
energies looks like the angular distributions inside the
energy region from 50 to 350 keV studied above.
We show that there is no infrared catastrophe in our
approach.

It is demonstrated that the model is able to describe experimen-
tal data well enough of the bremsstrahlung emission which
accompanies collisions of protons off 9C, 64Cu, and 107Ag
nuclei at an incident energy of Tlab = 72 MeV (at a photon
energy up to 60 MeV) and off 9Be, 12C, and 208Pb nuclei at an
incident energy of Tlab = 140 MeV (at a photon energy up to
120 MeV).

APPENDIX A: LINEAR AND CIRCULAR POLARIZATIONS
OF THE PHOTON EMITTED

We rewrite the vectors of linear polarization e(α) through
vectors of circular polarization ξμ with opposite directions of
rotation (see Ref. [78], (2.39), p. 42):

ξ−1 = 1√
2

(e(1) − ie(2)), ξ+1 = − 1√
2

(e(1) + ie(2)), ξ0 = e(3),

(A1)

where

h± = ∓1 ± i√
2

, h−1 + h+1 = −i
√

2,

(A2)∑
α=1,2

e(α),∗ = h−1ξ
∗
−1 + h+1ξ

∗
+1.

We have (in the Coulomb gauge at e(3) = 0)

e(1) = 1√
2

(ξ−1 − ξ+1), e(2) = i√
2

(ξ−1 + ξ+1), (A3)

∑
μ=±1

ξ ∗
μ · ξμ = 1

2
(e(1) − ie(2)) (e(1) − ie(2))∗ + 1

2
(e(1) + ie(2)) (e(1) + ie(2))∗ = 2. (A4)

We find also multiplications of vectors ξ±1. From Eq. (A1) we obtain

ξ ∗
−1 = −ξ+1, ξ ∗

+1 = −ξ−1. (A5)

From here we find

[ξ−1 × ξ+1] =
[

1√
2

(e(1) − ie(2)) × −1√
2

(e(1) + ie(2))

]
= − 1

2
[(e(1) − ie(2)) × (e(1) + ie(2))]

= − 1

2
{i [e(1) × e(2)] − i [e(2) × e(1)]} = −i [e(1) × e(2)] = −i ez, (A6)

[ξ ∗
−1 × ξ+1] = − [ξ+1 × ξ+1] = 0, [ξ ∗

−1 × ξ−1] = −[ξ+1 × ξ−1] = i ez,
(A7)

[ξ ∗
+1 × ξ−1] = − [ξ−1 × ξ−1] = 0, [ξ ∗

+1 × ξ+1] = −[ξ−1 × ξ+1] = −i ez.
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APPENDIX B: ANGULAR INTEGRALS IE , IM , AND Ĩ

We calculate the integrals in Eqs. (39) and (41):

IM (li , lf , lph, l1, μ) =
∫

Y ∗
lf mf

(nr) Tli l1, mi
(nr) T∗

lph lph, μ
(nr) d�,

IE (li , lf , lph, l1, l2, μ) =
∫

Y ∗
lf mf

(nr) Tli l1, mi
(nr) T∗

lphl2, μ
(nr) d�, (B1)

Ĩ (li , lf , lph, n, μ) = ξμ

∫
Y ∗

lf mf
(nr) Ylimi

(nr) T∗
lphn, μ(nr) d�.

Substituting the function Tj l,m(nr) defined by Eq. (27), we obtain (at ξ0 = 0)

IM (li , lf , lph, l1, μ) =
∑

μ′=±1

(l1, 1, li | mi − μ′, μ′,mi) (lph, 1, lph|μ − μ′, μ′, μ)
∫

Y ∗
lf m(nr)Yl1,mi−μ′(nr)Y

∗
lph, μ−μ′(nr) d�,

IE (li , lf , lph, l1, l2, μ) =
∑

μ′=±1

(l1, 1, li |mi −μ′, μ′,mi) (l2, 1, lph|μ− μ′, μ′, μ)
∫

Y ∗
lf m(nr)Yl1, mi −μ′(nr)Y

∗
l2, μ − μ′(nr) d�, (B2)

Ĩ (li , lf , lph, n, μ) = (n, 1, lph | 0, μ, μ) ×
∫

Y ∗
lf mf

(nr) Ylimi
(nr) Y ∗

n0(nr) d�. (B3)

Here, we have taken the orthogonality of vectors ξ±1 into account. In these formulas we find the angular integral∫
Y ∗

lf mf
(nr) Yl1,mi−μ′(nr) Y ∗

n,μ−μ′(nr) d� = (−1)lf +n+mi−μ′
ilf +l1+n+|mf |+|mi−μ′|+|mi−mf −μ′|

×
√

(2lf + 1) (2l1 + 1) (2n + 1)

16π

(lf − |mf |)!
(lf + |mf |)!

(l1 − |mi − μ′|)!
(l1 + |mi − μ′|)!

(n − |mi − mf − μ′|)!
(n + |mi − mf − μ′|)!

×
∫ π

0
P

|mf |
lf

(cos θ ) P
|mi−μ′|
l1

(cos θ ) P
|mi−mf −μ′|
n (cos θ ) sin θ dθ, (B4)

where P m
l (cos θ ) are associated Legandre polynomials, and we obtain the conditions

for integrals IM, IE : μ = mi − mf , n � |μ − μ′| = |mi − mf + μ′|, μ = ±1,

for integral Ĩ : mi = mf . (B5)

Using formula (B4), we calculate integrals (B2) and (B3):

IM (li , lf , lph, l1, μ) = δμ,mi−mf

∑
μ′=±1

C
mimf μ′

li lf lphl1lph

∫ π

0
f

mimf μ′

l1lf lph
(θ ) sin θ dθ,

IE (li , lf , lph, l1, l2, μ) = δμ,mi−mf

∑
μ′=±1

C
mimf μ′

li lf lphl1l2

∫ π

0
f

mimf μ′

l1lf l2
(θ ) sin θ dθ, (B6)

Ĩ (li , lf , lph, n, μ) = C
miμ

li lf lphn

∫ π

0
f

mimi0
li lf n (θ ) sin θ dθ,

where

C
mimf μ′

li lf lphl1l2
= (−1)lf +l2+mi−μ′

ilf +l1+l2+|mf |+|mi−μ′|+|mi−mf −μ′|

× (l1, 1, li |mi − μ′, μ′,mi) (l2, 1, lph|mi − mf − μ′, μ′,mi − mf )

×
√

(2lf + 1) (2l1 + 1) (2l2 + 1)

16π

(lf − |mf |)!
(lf + |mf |)!

(l1 − |mi − μ′|)!
(l1 + |mi − μ′|)!

(l2 − |mi − mf − μ′|)!
(l2 + |mi − mf − μ′|)! , (B7)

C
miμ

li lf lphn
= (−1)lf +n+mi+|mi | ilf +li+n(n, 1, lph

∣∣ 0, μ, μ)

√
(2lf + 1) (2li + 1) (2n + 1)

16π

(lf − |mi |)!
(lf + |mi |)!

(li − |mi |)!
(li + |mi |)! , (B8)

f
mimf μ′

l1lf l2
(θ ) = P

|mi−μ′|
l1

(cos θ ) P
|mf |
lf

(cos θ ) P
|mi−mf −μ′|
l2

(cos θ ). (B9)
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We define differential functions on the integrals (B6) with an angular dependence as

d IM (li , lf , lph, l1, μ)

sin θ dθ
= δμ,mi−mf

∑
μ′=±1

C
mimf μ′

li lf lphl1lph
f

mimf μ′

l1lf lph
(θ ),

d IE (li , lf , lph, l1, l2, μ)

sin θ dθ
= δμ,mi−mf

∑
μ′=±1

C
mimf μ′

li lf lphl1l2
f

mimf μ′

l1lf l2
(θ ), (B10)

d Ĩ (li , lf , lph, n, μ)

sin θ dθ
= δmimf

C
miμ

li lf lphn
f

mimi0
li lf n (θ ).

APPENDIX C: DIFFERENTIAL MATRIX ELEMENTS FOR THE FIRST li AND l f

We perform calculations for the some first values of li and lf , at arbitrary lph:
(1) For li = 0, lf = 0,

dpM
lphμ

sin θ dθ
=

dpE
lphμ

sin θ dθ
= 0,

d̃p
M

lphμ

sin θ dθ
= c7 P 0

lph
,

d̃p
E

lphμ

sin θ dθ
= c8 P 0

lph−1 − c9 P 0
lph+1, mi = mf = 0. (C1)

(2) For li = 0, lf = 1,

d pM
lphμ

sin θ dθ
= − sin2 θ

∑
μ′=±1

c
μ′
2 P

|μ−μ′|
lph

, mi = 0, mf = ±1,

d pE
lphμ

sin θ dθ
= sin2 θ

∑
μ′=±1

{
c
μ′
5 P

|μ−μ′|
lph−1 − c

μ′
6 P

|μ−μ′|
lph+1

}
, mi = 0, mf = ±1,

(C2)
d p̃M

lphμ

sin θ dθ
= c7 cos θ P 0

lph
, mi = 0, mf = 0,

d p̃E
lphμ

sin θ dθ
= cos θ

{
c8 P 0

lph−1 − c9 P 0
lph+1

}
, mi = 0, mf = 0.

(3) For li = 0, lf = 2,

d pM
lphμ

sin θ dθ
= − 3 sin2 θ cos θ

∑
μ′=±1

c
μ′
2 P

|μ−μ′|
lph

, mi = 0, mf = ±1,

d pE
lphμ

sin θ dθ
= 3 sin2 θ cos θ

∑
μ′=±1

{
c
μ′
5 P

|μ−μ′|
lph−1 − c

μ′
6 P

|μ−μ′|
lph+1

}
, mi = 0, mf = ±1,

(C3)
d p̃M

lphμ

sin θ dθ
= c7

2
(3 cos2 θ − 1) P 0

lph
, mi = 0, mf = 0,

d p̃E
lphμ

sin θ dθ
= 1

2
(3 cos2 θ − 1)

{
c8 P 0

lph−1 − c9 P 0
lph+1

}
, mi = 0, mf = 0.

(4) For li = 1, lf = 1,

d pM
lphμ

sin θ dθ
= cos θ

∑
μ′=±1

{ − δmi,0 3 c
μ′
2 sin2 θ + δmi,±1

[
δmiμ′ c

mi

1 − c
μ′
2 P

|mi−μ′|
2

]}
P

|μ−μ′|
lph

, |mi − mf | = 1,

d pE
lphμ

sin θ dθ
= cos θ

∑
μ′=±1

{
δmi,0 3 sin2 θ c

μ′
5 + δmi,±1

[
δmiμ′ c

mi

3 + c
μ′
5 P

|mi−μ′|
2

] }
P

|μ−μ′|
lph−1

− cos θ
∑

μ′=±1

{
δmi,0 3 sin2 θ c

μ′
6 + δmi,±1

[
δmiμ′ c

mi

4 + c
μ′
6 P

|mi−μ′|
2

] }
P

|μ−μ′|
lph+1 , |mi − mf | = 1, (C4)
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d p̃M
lphμ

sin θ dθ
= c7(P |mi |

1 )2 P 0
lph

, mi = mf = 0,±1,

d p̃E
lphμ

sin θ dθ
= (

P
|mi |
1

)2{
c8 P 0

lph−1 − c9 P 0
lph+1

}
, mi = mf = 0,±1. (C5)
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