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Correlation between α-particle preformation probability
and the energy levels of parent nuclei
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A realistic density-dependent nucleon-nucleon (NN ) interaction with a finite-range exchange part which
produces the nuclear matter saturation curve and the energy dependence of the nucleon-nucleus optical potential
model is used to calculate the preformation probability, Sα , of α decay from Po isotopes to superheavy nuclei.
The variation of Sα with the neutron number for the isotopes of Po, Rn, Ra, Th, and U elements is studied below
and above the magic neutron number N = 126. We found a strong correlation between the behavior of Sα and the
energy levels of the parent nucleus at and just below the Fermi level. Sα has a regular behavior with the neutron
number if the neutron pair of α particles, emitted from adjacent isotopes, comes from the same energy level or
from a group of levels, assuming that the order of levels in this group is not changed. Irregular behavior of Sα

with the neutron number occurs if the levels of the adjacent isotopes change or holes are present in lower levels.
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I. INTRODUCTION

α decay is one of the most important decay modes
for heavy and superheavy nuclei (SHN) [1]. It provides
some reliable knowledge on nuclear structure [1–4]. It gives
unique information on masses (via the decay energy Qα)
and excitation energies of the closely spaced excited and
ground states, for which other common experimental methods
are not yet possible. α decay also presents a useful tool
for study of the spectroscopy of unstable nuclei [5], which
is essentially connected with the phenomenon of α-cluster
formation in decaying nuclei. In recent experiments, the
investigation of α-decay chains of SHN is indispensable to the
identification of new elements and isomeric states [6,7]. New
synthesized superheavy elements such as Z = 107–113 have
been successfully synthesized by the cold fusion reactions at
GSI in Germany [1,8] and RIKEN in Japan [9], and elements
114–118 have also been synthesized by hot fusion reactions at
Dubna in Russia [7,10–12]. Encouraged by these experimental
achievements, extensive α-decay studies based on various
models have been devoted to pursue a quantitative description
of SHN.

The α-decay process is treated conventionally in the
framework of the Gamow model [13] assuming a sub-barrier
penetration of α particles through the barrier, caused by
interactions between α particles and the daughter nucleus.
Many effective theoretical approaches have been used to
describe α decay, such as the generalized liquid-drop model
[14], the density-dependent cluster model (DDCM) [15], the
united model for α decay and α capture [16], and the Coulomb
and proximity potential model [17], and all of them have been
successful in reproducing the experimental data and also in
predicting half-life values.

The absolute α-decay width is mainly determined by the
α-cluster penetration probability, which can be obtained in
terms of the well-known Wentzel-Kramers-Brillouin (WKB)
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semiclassical approximation [18]. Calculation of the penetra-
tion probability requires a reliable input of the α-nucleus in-
teraction potential, which consists of both Coulomb repulsive
and nuclear attractive parts. The Coulomb part is well known,
but the nuclear part is less well defined. It is either introduced
phenomenologically [19,20] (e.g., Woods-Saxon shape with
adjusted parameters) or generated microscopically in some
approximation using calculated nuclear densities [21,22] (e.g.,
double-folding model).

The most important problem of the α decay is how
to estimate the preformation probability, or the so-called
spectroscopic factor Sα , that the α particle exists as a
recognizable entity inside the nucleus before its emission.
It is very dependent on the structure of the states of the
parent and daughter nuclei [23–25]. One needs a very large
shell model basis to obtain the experimental values of the
α-preformation probability. The combined shell and cluster
model [26], which treats a large shell model basis up to the
continuum states through the wave function of the spatially
localized α cluster, explains the experimental decay width well
. In these calculations the wave function is necessary, and it is
not easy to extend the approaches for nuclei including more
nucleons outside the double-magic core.

In the present work, the preformation factor, Sα , is extracted
from the experimental α-decay half-life and the penetration
probability is obtained from the WKB approximation in
combination with the Bohr-Sommerfeld quantization con-
dition. The potential barrier is numerically determined in
the well-established double-folding model for both Coulomb
and nuclear potentials. A realistic density-dependent M3Y
interaction [27], based on the G-matrix elements of the Paris
NN potential, has been used in the folding calculation. The
local approximation for the nondiagonal one-body density
matrix in the calculation of the exchange potential was
included by using the harmonic oscillator representation of the
nondiagonal density matrix of the α particle [28,29]. Moreover,
we tried to correlate the behavior of Sα with the variation of
the neutron number, N , for isotopes of Z = 84–92 elements
with spins of adjacent odd-neutron-number isotopes.
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This paper is organized as follows. In Sec. II the double-
folding model is introduced and the methods for determining
the decay width, penetration probability, assault frequency,
and preformation probability are presented. In Sec. III the
calculated results are presented and discussed. The conclusion
is given in Sec. IV.

II. THEORETICAL FRAMEWORK

In the density-dependent cluster model, the ground state of
the parent nucleus is assumed to be an α particle interacting
with the daughter nucleus. The total α-core potential is the
sum of the nuclear, Coulomb, and centrifugal potentials and is
given by [15,21]

VT(R) = λ VN (R) + VC(R) + h̄2

2 μ

(
� + 1

2

)2

R2
, (1)

where the renormalization factor λ is the depth of the nuclear
potential, R is the separation between the mass center of the
α particle and the mass center of the core, and � is the angular
momentum carried by the α particle.

In the first order of the many-body theory, the microscopic
α-nucleus potential can be evaluated as an antisymmetrized
Hartree-Fock-type potential for the dinuclear system in the
framework of the folding model based on the effective M3Y
nucleon-nucleon (NN ) interaction [29],

V =
∑

i∈α,j∈d

[〈ij |υD|ij 〉 + [〈ij |υEx|ji〉] , (2)

where |i〉 and |j 〉 are the single-particle wave functions of
nucleons in the α and daughter nuclei, respectively. So, we
fold in the nuclear density distributions of the two fragments
with the realistic M3Y effective interaction. Here, υD and
υEx are the direct and exchange parts of the effective NN

interaction. The antisymmetrization of the dinuclear system
is done by taking into account the so-called single-nucleon
knock-on exchange effects (the interchange of nucleons i and
j ).

The direct term is local (provided that the NN interaction
itself is local) and can be written in terms of the one-body
spatial densities,

VD(R) =
∫

d�r1

∫
d�r2ρα(�r1) υD(ρ,E, s) ρd (�r2), (3)

where s is the relative distance between a constituent nucleon
in the α particle and one in the core nucleus. ρα(�r1) and ρd (�r2)
are, respectively, the density distributions of the α particle and
residual core nucleus.

In all previous calculations of the α-particle decay pro-
cesses, it is assumed that the exchange part of the NN interac-
tion, VEx, has a zero range [15,21,25,30]. By this assumption,
one neglects antisymmetrization between the nucleons in the
α-particle and the nucleons in the daughter nucleus, which
is essential to satisfy the Pauli exclusion principle. Recently,
the antisymmetrization of the dinuclear system is taken into
account [31] but through more complicated calculations. If VEx

is assumed to be zero ranged [υEx(s) = −V0 δ(s)], the second

term in Eq. (2) becomes

VEx(R) = −V0

∫
d�r ρα(�r + �R) ρd (�r), (4)

which can be calculated more rapidly than VD(R) given by
Eq. (3). The exchange term is, in general, nonlocal. However,
an accurate local approximation can be obtained by treating
the relative motion locally as a plane wave [32,33],

VEx(E,R) =
∫

d�r1

∫
d�r2ρα(�r1, �r1 + �s) ρd (�r2, �r2 − �s)

× υEx(ρ,E, s) exp

[
i�k(R) · �s

M

]
. (5)

Here k(R) is the relative motion momentum given by

k2(R) = 2 μ

h̄2 [Ec.m. − VN (E,R) − VC(R)] , (6)

where μ is the reduced mass for the reacting nuclei, Ec.m.

is the center-of-mass (c.m.) energy. VN (E,R) = VD(E,R) +
VEx(E,R) and VC(R) are the total nuclear and Coulomb
potentials, respectively. The folded potential is energy depen-
dent and nonlocal through its exchange term and contains
a self-consistency problem because k depends on V . The
exact treatment of the nonlocal exchange term is complicated
numerically, but one may obtain an equivalent local potential
by using a realistic approximation for the nondiagonal density
matrix (DM) [29,32]

ρ(�r, �r + �s) � ρ

(
�r + �s

2

)
ĵ1

(
keff

(
�r + �s

2

)
s

)
, (7)

with

ĵ1(x) = 3 j1(x)/x = 3(sin x − x cos x)/x3. (8)

The α particle is a unique case where a simple Gaussian can
reproduce very well its ground-state density [34]. Assuming
four nucleons to occupy the lowest s 1

2 harmonic oscillator shell
in 4He, one obtains exactly the nondiagonal ground-state DM
for the α particle as [29]

ρα(�r, �r + �s) � ρα

(∣∣∣∣�r + �s
2

∣∣∣∣
)

exp

(
− s2

4 b2
α

)
. (9)

To accelerate the convergence of the density matrix expan-
sion, Campi and Bouyssy [35] have suggested to choose, for
a spherically symmetric ground-state density, the local Fermi
momentum keff(r) in the following form:

keff(r) =
{

5

3ρ(r)

[
τ (r) − 1

4
∇2ρ(r)

]}1/2

. (10)

Using the extended Thomas-Fermi approximation, the
kinetic energy density is then given by

τ (r) = 3

5

(
3π2

2

)2/3

ρ(r)5/3 + 1

3
∇2ρ(r) + 1

36

| �∇ρ(r)|2
ρ(r)

.

(11)

The first term in this expression stands for the Thomas-Fermi
approximation, while the other two terms represent the surface
correction.
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One easily obtains the self-consistent and local exchange
potential VEx as

VEx(E,R) = 4π

∫ ∞

0
ds s2 υEx(ρ,E, s)j0(k(E,R)s/M)

×
∫

d�y ρd (|�y − �R|)ĵ1(keff(|�y − �R|)s)

×ρα(y) exp

(
− s2

4 b2
α

)
. (12)

VEx depends on the total potential, V (R) = VD + VEx +
VC , through the relative motion momentum given by Eq. (6).
So, the problem of obtaining V (R) is a self-consistent problem.
The exchange potential, Eq. (12), can then be evaluated by an
iterative procedure which converges very fast.

The NN interaction used in the α-decay calculations is
usually an M3Y-Reid interaction with zero-range exchange
part. This type of force is successful when heavy-ion in-
teraction is dominated by strong absorption, i.e., when the
elastic scattering data are sensitive to the potential only on
the surface region. For α decay, the potential used in the
calculations should correctly describe the bulk properties of
the nucleus, as a part of the α-decay calculations depends on
the value of interaction potential in the interior region. So
we use, for the first time, a realistic NN interaction whose
parameters reproduce consistently the equilibrium density and
binding energy of normal nuclear matter as well as the density
and energy dependence of the nuclear optical potential. The
density-dependent M3Y-Paris effective NN force considered
in the present work, BDM3Yn, has the factorized form [27]

υD(ρ,E, s) =
[

11061.625
e−4s

4 s
− 2537.5

e−2.5s

2.5 s

]
F (ρ) g(E),

(13)

υEx(ρ,E, s) =
[

− 1524.25
e−4s

4 s
− 518.75

e−2.5s

2.5 s

− 7.8474
e−0.7072s

0.7072 s

]
F (ρ) g(E), (14)

with the density and energy dependence, respectively,

F (ρ) = c(1 − γρn), (15)

g(E) = (1 − 0.003 EAp), (16)

The parameters c, γ , and n are adjusted to reproduce normal
nuclear matter saturation properties for a given equation of
state for cold nuclear matter. For BDM3Y1, c = 1.2521,
γ = 1.7452 fm3, and n = 1, which generate a nuclear matter
equation of state with the incompressibility value, K =
270 MeV. EAp is the incident energy per projectile nucleon
in the laboratory system.

The matter density distribution of the α particle is a standard
Gaussian form, namely,

ρα(r) = 0.4229 exp(−0.7024 r2). (17)

The matter density distribution for the daughter nucleus can
be described by the spherically symmetric Fermi function,

ρd (r) = ρ0

1 + exp
(

r−R0
a

) , (18)

where the value of ρ0 has been fixed by integrating the matter
density distribution equivalent to the mass number of the
residual daughter nucleus Ad . The half-density radius, R0,
and the diffuseness parameter, a, are given by [21,36,37]

R0 = 1.07A
1/3
d fm, a = 0.54 fm. (19)

The renormalization factor λ, introduced to the nuclear part
of the folding potential based on the M3Y interaction, is not
an adjustable parameter, but it is determined separately for
each decay by applying the Bohr-Sommerfeld quantization
condition [38],∫ R2

R1

dr

√
2 μ

h̄2 |VT (r) − Qα| = (2n+ 1)
π

2
= (G− �+ 1)

π

2
,

(20)

where the global quantum number G = 20 (N > 126) and
G = 18 (82 < N � 126) [15]. Here, n expresses the number
of nodes of the quasibound wave function of the α-nucleus
relative motion. Qα is the Q value of the α decay. Ri

(i = 1, 2, 3) are the three turning points for the α-daughter
potential barrier where VT (r)|r=Ri

= Qα .
In the framework of the preformed cluster model, the α-

decay partial half-lifetime, T1/2, of the parent nucleus is given
in terms of the α-decay width, �, as

T1/2 = h̄ln 2

�
. (21)

The absolute α-decay width is mainly determined by the
barrier penetration probability (Pα), the assault frequency (ν),
and the preformation probability, the spectroscopic factor of
the α cluster inside the parent nucleus (Sα), � = h̄ Sα ν Pα .
The barrier penetration probability, Pα , could be calculated as
the barrier transmission coefficient of the well-known WKB
approximation, which works well at energies well below the
barrier:

Pα = exp

(
− 2

∫ R3

R2

dr

√
2μ

h̄2 |VT (r) − Qα|
)

. (22)

The assault frequency of the α particle, ν, can be expressed
as the inverse of the time required to traverse the distance back
and forth between the first two turning points, R1 and R2,
as [38]

ν = T −1 = h̄

2μ

⎡
⎣∫ R2

R1

dr√
2 μ

h̄2 |VT (r) − Qα|

⎤
⎦

−1

. (23)

Finally, the spectroscopic factor (the preformation proba-
bility) of the α cluster inside the parent nucleus can then be
obtained as the ratio of the calculated half-life, without Sα , to
the experimental one [25,39]:

Sα = T cal
1/2/T

exp
1/2 . (24)
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FIG. 1. Extracted α-preformation probability, Sα , for Po isotopes
using three NN interactions with different compressibility coeffi-
cients, K , with the neutron number, N .

III. RESULTS AND DISCUSSION

Based on the realistic density-dependent effective
BDM3Y1-Paris NN interaction, the half-lives of the ground
state–to–ground state α decay of the even-even radioactive
nuclei from Po isotopes to SHN have been calculated. The
main effect of antisymmetrization under exchange of nucleons
between the α and the daughter nuclei has been included in
the folding model through the finite-range exchange part of the
NN interaction. The implementation of the Bohr-Sommerfeld
quantization condition in the WKB approach determines the
renormalization factor λ of the nuclear potential separately for
each decay. The value of λ, in the present calculations, ranges
from 0.85 to 0.96, which is close to unity. The calculated total

interaction potential, after adding the Coulomb part, is used
to obtain the tunneling probability and the assault frequency,
which are required to find the half-lifetime. The preformation
probability is then calculated for each parent nucleus using
the experimental Q values and α-decay half lives [40,41].
The preformation factor may be considered as the overlap
of the actual ground-state configuration and the configuration
representing the α coupled to the ground state of the daughter.
Obviously it is expected to be much less than unity [23–26].

In the present calculation, we select the even-even nuclei
to study the preformation probability. First, Po isotope chains
are chosen. Figure 1 shows the variation of the preformation
probability, Sα , with the neutron number, N , for Po iso-
topes calculated using three Paris-type NN forces BDM3Y1,
CDM3Y1, and DDM3Y1. These forces correspond to different
values of the nuclear matter incompressibility coefficients
K = 270, 188, and 176 MeV, respectively [42]. Figure 1
shows that each force produces the same behavior of Sα

with N ; a clear minimum occurs at N = 126, which is a
neutron magic number. The preformation probability increases
strongly and almost linearly for N > 126. This is because
the large gap above the magic number enhances the value of
the preformation probability. The nucleus tends to get rid of
the nucleons in the proton and neutron levels above magic
numbers. For N < 126, Sα increases slowly, reaching about
0.1 at N = 112, then decreases for N < 112. As the value of K

increases, the value of Sα predicted by the NN force decreases.
The largest preformation probability predicted by CDM3Y1
and DDM3Y1 forces is about 0.2, while for BDM3Y1 it has
a value of about 0.14. Table I lists the detailed calculations
of α decay for Po isotopes using the three different NN

interactions.
Our results are comparable to other values. For example,

our calculated value of Sα for 212Po α emission is 0.061 using
BDM3Y1 NN interactions, to be compared with 2.5 × 10−2

TABLE I. The preformation probability, Sα , and the α-decay half-lives, T calc
1/2 , calculated without Sα , for Po isotopes using three different

NN interactions. Experimental Q values and α-decay half-lives are taken from Refs. [40,41].

Parent nucleus Expt. BDM3Y1-Paris CDM3Y1-Paris DDM3Y1-Paris

Z A Qexp
α (MeV) T

exp
1/2 (s) T calc

1/2 (s) Sα T calc
1/2 (s) Sα T calc

1/2 (s) Sα

84 188 8.082 4.3 × 10−4 1.30 × 10−5 0.030 1.70 × 10−5 0.039 1.74 × 10−5 0.041
84 190 7.693 2.5 × 10−3 1.74 × 10−4 0.070 2.27 × 10−4 0.091 2.34 × 10−4 0.094
84 192 7.319 3.3 × 10−2 2.60 × 10−3 0.079 3.42 × 10−3 0.104 3.52 × 10−3 0.107
84 194 6.987 3.9 × 10−1 3.44 × 10−2 0.088 4.54 × 10−2 0.116 4.67 × 10−2 0.120
84 196 6.657 5.9 × 100 5.52 × 10−1 0.094 7.30 × 10−1 0.124 7.52 × 10−1 0.127
84 198 6.309 1.9 × 102 1.34 × 101 0.070 1.79 × 101 0.094 1.85 × 101 0.097
84 200 5.981 6.2 × 103 3.32 × 102 0.054 4.47 × 102 0.072 4.61 × 102 0.074
84 202 5.701 1.4 × 105 7.15 × 103 0.051 9.81 × 103 0.070 1.01 × 104 0.072
84 204 5.485 1.9 × 106 8.25 × 104 0.043 1.17 × 105 0.062 1.21 × 105 0.064
84 206 5.327 1.4 × 107 5.07 × 105 0.036 7.20 × 105 0.051 7.43 × 105 0.053
84 208 5.215 9.1 × 107 1.86 × 106 0.020 2.70 × 106 0.029 2.76 × 106 0.030
84 210 5.407 1.2 × 107 1.70 × 105 0.014 2.41 × 105 0.020 2.49 × 105 0.021
84 212 8.954 3.0 × 10−7 1.84 × 10−8 0.061 2.34 × 10−8 0.078 2.41 × 10−8 0.080
84 214 7.833 1.6 × 10−4 1.78 × 10−5 0.111 2.29 × 10−5 0.143 2.36 × 10−5 0.147
84 216 6.906 1.5 × 10−1 1.93 × 10−2 0.129 2.53 × 10−2 0.169 2.61 × 10−2 0.174
84 218 6.115 1.9 × 102 2.71 × 101 0.143 3.62 × 101 0.191 3.73 × 101 0.196
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FIG. 2. Extracted α-preformation probability, Sα , for (a) Rn isotopes, (b) Ra isotopes, (c) Th isotopes, and (d) U isotopes using the
BDM3Y1-Paris NN interaction with the neutron number, N .

deduced in [26] by a combined shell and cluster model. A value
of 3.1 × 10−2 was obtained by Mohr [43] in a double-folding
model calculation using the density from the experimentally
known charge distribution.

The closer the nucleon number to the magic number,
the more difficult α formation in the parent nucleus is. The
behavior of Sα in the vicinity of the magic number N = 126
for Z = 86 isotopes, calculated using BDM3Y1-type force, is
shown in Fig. 2(a). The behavior of Sα in this figure is exactly
the same as in Fig. 1 except for a sudden increase in Sα , from
about 0.18 at N = 112 to a value of 0.35 at N = 110. This
is compared to a small decrease in Fig. 1, from Sα = 0.094
at N = 112 to Sα = 0.088 at N = 110. The values of Sα for
Z = 86 are larger by a factor of about 2 compared to those for
Po isotopes.

Clearly the closed shell structures play a key role for the
preformation mechanism. The closer the nucleon number to
shell closure, the more difficult it is for the α particle to form
in the parent nuclei. The dramatic change in the preformation
factor around the magic number indicates that the shell effects

play an important role in the α formation mechanism in the
parent nuclei. Or in other words, the preformation factor can
reflect the shell effects.

For the isotopes of the element with Z = 88 [shown in
Fig. 2(b)], the preformation factors behave with N variation
as for elements Z = 84 and 86. They have almost the range
of values as in Fig. 2(a), except that irregular behavior of Sα

appears at N = 130, 132, and 134. The behavior around the
magic number is the same as in Figs. 1 and 2(a). The same
behavior at N = 130, 132, and 134 appears for Z = 90 as
shown in Fig. 2(c). For Z = 92, the behavior of Sα against N

changes irregularly with increasing N values.
In the following we try to correlate the behavior of the

α-decay preformation factor, Sα , with the ground-state energy
levels of parent nuclei. For the elements Z = 84, 86, 88, 90,
and 92, we found that the behavior of Sα around the neutron
magic number N = 126 is the same for the five elements. Sα

increases almost linearly in the vicinity of N = 126. Sα varies
smoothly for the Po and Rn elements, while it has ripples for
the other elements.
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FIG. 3. Schematic representation of the spin and parity, J π , for
Po, Rn, Ra, Th, and U isotopes.

For N = 127 of the Po isotope, Jπ = 9/2+, which means
that the neutron level above the neutron closed shell N = 126
is the 2g9/2 single-particle level that can be filled by 10
neutrons. The isotopes of Po nucleus with N = 129, 131,
and 133 also have Jπ = 9/2+, as indicated in Fig. 3, and the
preformation probability for the Po isotopes with N = 128,
130, 132, and 134 increases strongly and regularly with the
number of neutrons in the energy level 2g9/2, as shown in
Fig. 1.

The odd-neutron-number Po isotopes with N below the
neutron magic number, N = 126, have spin and parity Jπ =
1/2−, 5/2−, 3/2−, 13/2+, and 7/2−, as indicated in Fig. 3.
The two neutrons in the last filled level for the N = 126 Po
isotope occupy the 3p1/2 single-particle level, and the two
levels below this one are 2f5/2 and 3p3/2, which are filled by 6
and 4 neutrons, respectively. The preformation factor increases
slowly and regularly as pairs of neutrons are emitted from these
levels (as the neutron number decreases from 126 to 116). For
the N = 114 Po isotope, the level 3p3/2 appears as if it is filled
again by 4 neutrons, which are emitted, leaving the N = 110
Po isotope. The N = 109 Po isotope has Jπ = 13/2+, which
means that the pairs of neutrons emitted in α decay from the
N = 110 Po isotope is from level 1i13/2, which is filled by
14 neutrons. For this isotope, Sα decreases, compared to the
N = 112 Po isotope, and it still decreases as N decreases to
104. In the N -variation range (110–104), the spins of the levels
of Po isotopes change rapidly and each neutron pair is emitted
from a different level.

The behavior of Sα for the Rn isotopes with 110 < N �
126 is exactly the same as the corresponding behavior for Po

isotopes in the same neutron number range [as shown in Figs. 1
and 2(a); also see Table II]. The levels of odd-neutron-number
Rn isotopes in the above neutron range is exactly the same as
the corresponding Po isotopes. For N > 126, the level 2g9/2

is repeated three times, as indicated in Fig. 3 (for Rn isotopes
with N = 127, 129, 131), producing variation of Sα similar to

TABLE II. The same as Table I, but for Rn, Ra, Th, and U
isotopes using the BDM3Y1-Paris NN interaction.

Z A Qexp
α (MeV) T

exp
1/2 (s) T calc

1/2 (s) Sα

86 196 7.617 4.7 × 10−3 1.65 × 10−3 0.351
86 198 7.349 6.5 × 10−2 1.20 × 10−2 0.184
86 200 7.044 1.0 × 100 1.32 × 10−1 0.132
86 202 6.774 1.2 × 101 1.29 × 100 0.108
86 204 6.545 1.1 × 102 1.00 × 101 0.091
86 206 6.384 5.5 × 102 4.35 × 101 0.079
86 208 6.261 2.4 × 103 1.35 × 102 0.056
86 210 6.159 9.0 × 103 3.55 × 102 0.039
86 212 6.385 1.4 × 103 3.52 × 101 0.025
86 214 9.208 2.7 × 10−7 2.19 × 10−8 0.081
86 216 8.200 4.5 × 10−5 8.62 × 10−6 0.192
86 218 7.262 3.5 × 10−2 7.28 × 10−3 0.208
86 220 6.405 5.6 × 101 1.31 × 101 0.235
86 222 5.590 3.3 × 105 8.63 × 104 0.262
88 202 8.020 2.6 × 10−3 4.79 × 10−4 0.184
88 204 7.636 5.9 × 10−2 7.42 × 10−3 0.126
88 206 7.415 2.4 × 10−1 3.85 × 10−2 0.160
88 208 7.273 1.4 × 100 1.12 × 10−1 0.080
88 210 7.152 3.8 × 100 2.86 × 10−1 0.075
88 212 7.032 1.4 × 101 7.48 × 10−1 0.053
88 214 7.273 2.5 × 100 9.20 × 10−2 0.037
88 216 9.526 1.8 × 10−7 1.86 × 10−8 0.103
88 218 8.546 2.6 × 10−5 5.08 × 10−6 0.195
88 220 7.592 1.8 × 10−2 3.62 × 10−3 0.201
88 222 6.697 3.8 × 101 6.53 × 100 0.172
88 224 5.789 3.3 × 105 8.27 × 104 0.251
88 226 4.871 5.3 × 1010 1.78 × 1010 0.336
90 210 8.053 1.7 × 10−2 1.85 × 10−3 0.109
90 212 7.952 3.6 × 10−2 3.58 × 10−3 0.100
90 214 7.826 1.0 × 10−1 8.52 × 10−3 0.085
90 216 8.071 2.7 × 10−2 1.33 × 10−3 0.049
90 218 9.849 1.1 × 10−7 1.57 × 10−8 0.142
90 220 8.953 9.7 × 10−6 2.16 × 10−6 0.222
90 222 8.127 2.0 × 10−3 4.35 × 10−4 0.218
90 224 7.298 1.0 × 100 2.31 × 10−1 0.231
90 226 6.451 1.8 × 103 5.05 × 102 0.281
90 228 5.520 6.0 × 107 1.81 × 107 0.302
90 230 4.770 2.4 × 1012 7.78 × 1011 0.324
92 218 8.786 1.5 × 10−3 6.04 × 10−5 0.040
92 220 10.30 6.0 × 10−8 7.09 × 10−9 0.118
92 222 9.500 1.4 × 10−6 4.43 × 10−7 0.316
92 224 8.620 7.0 × 10−4 8.60 × 10−5 0.122
92 226 7.701 5.0 × 10−1 5.87 × 10−2 0.117
92 228 6.803 8.0 × 102 1.29 × 102 0.162
92 230 5.993 2.7 × 106 6.39 × 105 0.237
92 232 5.414 3.2 × 109 9.53 × 108 0.298
92 234 4.858 7.7 × 1012 2.29 × 1012 0.298
92 236 4.573 7.4 × 1014 4.28 × 1014 0.578

that in Fig. 1, then it is replaced by the levels 5/2+ and 7/2+ for
N = 133 and 135, respectively. This level replacement does
not affect the behavior of Sα .
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TABLE III. The same as Table II, but for heavier nuclei in recent experiments [47–53] including new data with improved accuracy.

Parent nucleus Expt. BDM3Y1-Reid BDM3Y1-Paris

Z A Qexp
α (MeV) T

exp
1/2 T calc

1/2 Sα T calc
1/2 Sα

118 294 11.81(6) 0.89+1.07
−0.31 ms 0.088 ms 0.099 0.081 ms 0.091

117 294 10.96(10) 78+370
−36 ms 4.507 ms 0.058 4.139 ms 0.05

117 293 11.18(8) 14+11
−4 ms 1.316 ms 0.094 1.208 ms 0.086

115 289 10.45(9) 0.22+0.26
−0.08 s 0.023 s 0.106 0.022 s 0.098

114 289 10.01(3) 2.1+0.8
−0.4 s 0.172 s 0.082 0.158 s 0.075

114 288 10.09(3) 0.69+0.17
−0.11 s 0.105 s 0.152 0.097 s 0.140

113 285 9.88(8) 5.5+5.0
−1.8 s 0.200 s 0.036 0.184 s 0.034

112 285 9.34(3) 29+11
−6 s 3.503 s 0.121 3.223 s 0.111

110 281 8.88(3) 144+250
−12 s 20.696 s 0.144 19.050 s 0.132

108 265 10.588(15) 1.7+1.7
−0.6 ms 0.089 ms 0.052 0.082 ms 0.048

108 263 11.06(6) 0.74+0.48
−0.21 ms 0.007 ms 0.010 0.007 ms 0.009

107 262 9.839(15) 83 ± 14 ms 3.776 ms 0.045 3.473 ms 0.042

107 261 �10.16 11.8+3.9
−2.4 ms 0.547 ms 0.046 0.503 ms 0.043

106 267 8.32(5) 471 s 68.409 s 0.145 63.007 s 0.134

106 265 8.82(5) 15+7
−4 s 1.494 s 0.100 1.376 s 0.092

106 260 9.900(10) 4.95 ± 0.33 ms 1.216 ms 0.246 1.119 ms 0.226

105 257 9.300(20) 0.67 ± 0.6 s 0.028 s 0.041 0.025 s 0.038

103 253 8.859(20) 1.32 ± 0.14 s 0.116 s 0.088 0.107 s 0.081

101 249 8.157(10) 23 ± 3 s 4.155 s 0.181 3.828 s 0.1664

98 237 8.220(20) 1.14 ± 0.29 s 0.230 s 0.202 0.212 s 0.186

96 236 7.074(20) 2278 ± 278 s 521.601 s 0.229 481.272 s 0.211

96 233 7.473(20) 164+93
−43 s 16.487 s 0.101 15.210 s 0.093

For the odd-neutron-number Ra isotopes [Fig. 2(b)], with
N > 126, the level 2g9/2 is repeated twice, producing the same
regular behavior in Sα , then the order of levels change after
every emitted neutron pair, producing irregular behavior in
Sα at N = 132 and 134. The level 2g9/2 is still occupied by
6 neutrons. The same happens for N < 126, where the level
2f5/2 did not emit all its neutrons and irregular behavior of Sα

occurs at N = 118.
Figures 2(c) and 2(d) for the variation of Sα with the

neutron number for Th and U isotopes, respectively, reflect the
same correlation between the behavior of Sα and the energy
levels of the parent nucleus. This correlation has the following
characteristics:

(i) For specific isotope, the α-decay preformation proba-
bility (Sα) increases almost linearly with an increase
in the number of neutrons above the neutron magic
number N = 126 if the neutron pair of α particle is
emitted from one single level. This is clear in Figs. 1
and 2(a)–2(d) from the behavior of Sα for N � 126
when the neutrons are emitted from the level 2g9/2.

(ii) For N � 126, a number of neutron single-particle
energy levels with small occupation numbers such
as 3p1/2, 2f5/2, and 3p3/2 contribute to α decay. Sα

increases regularly with an increase in the number of
neutron holes in levels below N = 126 assuming that

the order of levels does not change during the emission
process and the upper level emits all its neutrons. The
increase in Sα , in this case, is slower than the emission
of a single level in the N > 126 case. As an example,
the α decay for isotopes of Po and Rn with neutron
numbers N = 124, 122, and 120 in Figs. 1 and 2(a) is
from the neutron level 2f5/2. Also, for N = 118, 116,
114, and 112 in Po and Rn isotopes, the α particle is
emitted from the level 3p3/2, which contributes to the α

decay when level 2f5/2 becomes empty. Note that level
3p3/2 is filled, leaving four holes in a lower level.

(iii) Irregular behavior, a ripple, or a decrease in prefor-
mation probability occurs if the levels of the parent
nucleus change after each α emission process or holes
are present in the lower levels.

We have extended our calculations of the preformation
probability of α decay to the recently synthesized heavy and
SHN. The synthesis of new superheavy elements is a hot and
attractive topic. The isotopes of elements 112, 114, 116, and
294118 have been produced by irradiations of 233,238U, 242Pu,
248Cm, and 249Cf targets with a 48Ca beam at various energies
in the fusion evaporation reactions [44,45]. The very recent
synthesis of the new isotopes 293,294117 [46,47] fills the final
gap to Z = 118 in the nuclide chart. Given that α decay is
the primary decay mode of SHN, the observation of α-decay
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chains has been a reliable tool to identify new SHN and new
isomeric states. The new experiments in Darmstadt, Berkeley,
and Dubna [47–53] provide a perfect opportunity to test the
present α-decay study strictly, and this study may in turn check
whether these measured values, such as decay energies and
half-lives, in these α-decay chains are consistent with each
other to some extent. Detailed numerical results for the newly
observed α-decay of heavier nuclei are listed in Table III. It
should be noted that odd-A SHN have nonzero spins and spin-
parity conservation might force an α particle to carry away
nonzero angular momentum. However, we assume that all α

transitions between the ground states of parent and daughter
SHN took place at � = 0, owing to nonavailability of the spin
parities of these nuclei [22]. The experimental error bar is
also relatively large in the measurement of decay energies and
half-lives owing to experimental difficulties and the paucity of
observed decay events. Various model calculations including
the DDM3Y with a zero-range exchange interaction [30] have
focused on the new SHN. Now the preformation probability
is calculated using the realistic density-dependent NN inter-
action, BDM3Y1, of Reid and Paris types together with their
experimental data on α-decay half-lives and Q values [47–53].
The results are reported in Table III. One can see that the orders
of half-lives range from milliseconds to seconds. These results
indicate that SHN are weakly bound, and such nuclei will
quickly decay through α emission when synthesized.

IV. CONCLUSION

In summary, we investigated the dependence of the prefor-
mation probability, spectroscopic factor, of an α cluster on the
neutron number. The main effect of antisymmetrization under
exchange of nucleons between the α and the daughter nuclei
has been included in the folding model through the finite-range
exchange part of the NN interaction. The variation of Sα

with the neutron number for the isotopes of Po, Rn, Ra, Th,
and U elements is studied around the neutron magic number
N = 126.

The study clarifies that it is difficult to form an α cluster in
the parent nuclei when the nucleon number is close to the magic
number. Moreover, we have found a strong correlation between
the behavior of Sα with the variation in neutron number and
spins of adjacent odd-neutron-number isotopes. Sα shows a
regular behavior with the neutron number if the neutron pair
of α particles, emitted from adjacent isotopes, comes from
the same energy level or from a group of levels, assuming
that the order of levels in this group is not changed. Irregular
behavior of Sα with the neutron number occurs if the levels
of the adjacent isotopes change or holes are present in lower
levels.

The calculations extending to the recently synthesized SHN
show that they are weakly bound. They quickly decay through
emission of α clusters when synthesized.
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