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Temperature-dependent binding energies in a dynamical cluster-decay model applied to the decay
of hot and rotating 56Ni∗
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The dynamical cluster-decay model (DCM), a nonstatistical description developed by Gupta and collaborators
to account for the decay studies of excited compound nuclei formed in low-energy reactions has been applied
to study various reactions. One of the main ingredient of the model is the use of temperature-dependent binding
energies. In the present work, the effect of temperature-dependent binding energies in the model is analyzed.
In earlier works on the DCM, the temperature-dependent liquid drop energy from Davidson et al.’s work
[N. J. Davidson, S. S. Hsiao, J. Markram, H. G. Miller, and Y. Tzeng, Nucl. Phys. A 570, 61 (1994)], with two
of its constants refitted for each isotopic chain to reproduce ground-state experimental binding energies, is used.
In this work, the temperature-dependent binding energy formulas of Krappe [H. J. Krappe, Phys. Rev. C 59,
2640 (1999)] and Guet et al. [C. Guet, E. Strumberger, and M. Brack, Phys. Lett. B 205, 427 (1988)] are used
in the DCM without any refitting of the coefficient of the liquid drop needed to study the decay of the hot and
rotating 56Ni∗ system formed in the 32S + 24Mg reaction at two incident energies, Ec.m. = 51.6 and 60.5 MeV.
The use of Krappe’s formula results in the explicit preference of a four-nucleon transfer, indicating a strong
minima in the potential energies corresponding to α-structured nuclei as well as exhibiting structural effects in
the preformation calculations favoring α-structured nuclei. The overall cross sections for the light particles and
intermediate mass fragments are nicely reproduced by the use of Krappe’s formula. However, the individual
channel cross-sections exhibit a strong distribution only for α nuclei, and for other fragments the results are
lower by a factor of 2 to 3. The use of Guet et al.’s formula though does not show any explicit structure effects in
the potential energy calculations or the preformation calculations; the overall cross sections calculated for light
particles and intermediate mass fragments compare well with the experimental data. The results of individual
channel cross-sections, however, do not exhibit any explicit preference for the α-structured nuclei; rather, the
individual channel cross sections decreases with an increase in the mass number of the fragments. The calculated
average kinetic energies using both formulas for the favored α fragments compares well with experimental values.
Without any refitting of the coefficients of the temperature-dependent binding energies, the DCM works out well
and the explicit preference of α structure depends mainly on the choice of formula used.
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I. INTRODUCTION

In low-energy heavy-ion collisions when two nuclei ap-
proach each other, the mutual Coulomb repulsion between
them opposes the formation of a compound nucleus (CN).
To overcome this, the projectiles should have larger kinetic
energies to enter into the range of nuclear proximity. A CN
formed in this way is in a highly excited state, carrying large
angular momentum. The deexcitation and/or decay of the
CN depends on the temperature and on angular-momentum-
dependent potential barriers [1]. In general, the CN deexcites
through the emission of light particles (LPs) with A � 4
and Z � 2 (n, p, α) and/or γ radiation. The emission of
intermediate mass fragments (IMFs) and/or heavy fragments,
even though suppressed, has been observed in lighter systems,
A � 80 [1], formed in low-energy reactions that are always
accompanied by light particle emission. For such systems,
the low spin fission barriers are too high for the competition
between light particle emission and fission channels.

Theoretically, different models have been employed to
explain the deexcitation of a CN formed in a low-energy
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heavy-ion collision. Within the dinuclear system (DNS) model
concept, the fusion-fission process leading to the production of
light nuclei and the characteristics of quasifission products of
several reactions in different mass regions have been studied
[2–4]. A full description of the DNS concept is given in
Ref. [5]. Within the generalized liquid drop model and a
two-center shell model Royer et al. [6,7] have studied the light
particle emission of 44Ti, 56Ni, and 126Ba compound systems.
The statistical models like the scission point fission model [8],
the saddle point transition state model (TSM) [9,10], and the
extended Hauser-Feshbach model (EHFM) [11] account very
well for the production of IMFs; however, the emission of LPs
in these models is treated within the Hauser-Feshbach analysis
only. Even though statistical fission models are able to predict
the cross sections satisfactorily, extensive experimental studies
have demonstrated the nonstatistical origin of the observed
spectra, angular distributions of the fragments, which strongly
supports a resonance phenomena [12] as an interpretation.
The importance of fission mechanisms in the production of
symmetric fragments has been suggested in connection with
the observation of narrow resonances in excitation functions
[12–14]. The equilibrium orbiting model [15,16], based on
the full transport theory, accounts for the reaction data in
the dinucleus complex trapped by the pocket of interaction
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potential, which allows the subsequent fusion or orbiting
behavior of the composite system.

The dynamical cluster-decay model (DCM), a nonstatis-
tical description, was developed by Gupta and collaborators
[17–30] to account for the emission of both light particles
and intermediate and/or heavy mass fission fragments from
the excited CN. Initially, within a renormalization procedure,
the DCM is used to calculate decay constants (for s waves)
and total kinetic energies [17,18]. Later, temperature effects
[19–22] and deformation and orientation effects [23] in the
model were incorporated to calculate the actual cross sections
and average kinetic energies of light particles and heavy
fragments. Thus far, the DCM has been applied to study
different observables from several reactions [17–30].

In the DCM, the deexcitation and/or decay of a hot and rotat-
ing nucleus has been understood as a collective clusterization
process. Moreover, in this model the light particle emission and
the intermediate and/or heavy fragment emission are treated
as the dynamical mass motion of preformed clusters passing
the interaction barrier. Since, the deexcitation of fragments are
treated within the cluster-decay process, the structural effects
enter the model via the preformation of the fragments.

One of the main ingredients of the DCM is the use of
temperature (T )-dependent binding energies. Thus far, the T -
dependent liquid drop model (LDM) energy of Davidson et al.,
[31] along with the Myers-Swiatecki shell corrections [32],
has been used within a Strutinsky procedure. However, the
liquid drop part of Davidson et al.’s formula [31] was refitted
for two of its constants (for each isotopic chain), viz., the
bulk constant associated with the volume term and the proton-
neutron asymmetry constant so as to give the ground state (at
T = 0 MeV) experimental binding energies [17,19,23]. The
mass excess values calculated from the temperature-dependent
liquid drop binding energy of Davidson et al. [31] were used to
calculate the temperature-dependent fragmentation potentials.
In the present work to study the effect of temperature-
dependent binding energies in the DCM two different forms
of temperature-dependent binding energies calculated using
Krappe’s formula [33] and Guet et al.’s formula [34] are used.

In Guet et al.’s formula [34], the temperature dependence
of the coefficients in a liquid drop model type expansion of
the free energy of a hot nucleus is determined by using the
extended Thomas-Fermi density functional approach [35,36].
In Krappe’s formula [33], the Gibbs free energy of hot,
finite nuclei is described by generalizing the Yukawa plus
exponential mass formula [37] and the temperature depen-
dence of the coefficients is obtained by fitting the results
of temperature-dependent Thomas Fermi calculations. Since
Guet et al.’s formula [34] is proposed to give the T dependence
of the leading LDM and droplet model coefficients it does
not have terms like pairing and Wigner terms. However, in
Krappe’s formula [33], in addition to the liquid drop energy
proper, the temperature dependence of the pairing and Wigner
terms are also given. However, in the present calculations
the temperature effects in pairing and Wigner terms are not
considered.

In the present calculations no refitting of the coefficients
was done; rather the actual form of the expressions given
in Refs. [33,34] are used. In both formulas, the empirical

FIG. 1. (Color online) Ground-state binding energies (at T =
0 MeV) calculated using Krappe’s formula and Guet et al.’s, formula
are compared with experimental values [38] of some representative
isobars with mass numbers A = 12, 56, 82, and 116.

shell corrections of Myers and Swiatecki [32] are added so as
to reproduce the ground-state experimental binding energies
[38]. However, at the temperatures that interest us these shell
corrections are considered to vanish exponentially as given in
Eq. (13) of Ref. [21]. Krappe’s formula, without any refitting
of the constants, reproduces the experimental ground-state
binding energies as presented in Fig. 1 for some representative
isobars with mass numbers A = 12, 56, 82, and 116. In this
figure, the solid circles correspond to the experimental values,
the solid triangles are the values calculated using Krappe’s
formula, and the solid squares are the results obtained from
Guet et al.’s formula. The Guet et al. formula gives the shape
of the mass parabola, but it does not compare well with the
experimental binding energies as is evident from this figure. As
stated earlier this may be due to the noninclusion of terms like
pairing and Wigner terms. Though these terms are important
to reproduce the ground-state binding energies, they may not
play a crucial role if the temperature effects are considered.
At the temperatures that interest us, the contribution of these
terms will be negligible and the structural effect present, if any,
will be due to the liquid drop terms only.

Though no refitting of the constants is done, the contribution
of the Wigner term in Krappe’s formula is considered only for
nuclei with A > 11. For A < 12, the inclusion of the Wigner
term resulted in a larger deviation with respect to experimental
binding energies and hence the contribution due to the Wigner
term is not considered for A < 12. The results for the isobars
with mass numbers A = 4 to 11 are presented in Fig. 2.

In the present work, the role of temperature-dependent
binding energies calculated using Krappe’s formula and Guet
et al.’s formula in the DCM is studied for the deexcitation
of 56Ni∗ formed in the 32S + 24Mg reaction at two different
incident energies. In the 32S + 24Mg reaction, the primary,
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FIG. 2. (Color online) Ground-state binding energies calculated
using Krappe’s formula with and without the inclusion of Wigner
term are compared with the experimental values for nuclei with mass
numbers A = 4 to 11.

pre-evaporation mass distribution, prior to secondary light
particle emission, is measured using coincident detection at
two incident energies, viz., Elab = 121.1 and 141.8 MeV
corresponding to the center of mass energy of Ec.m. = 51.6
and 60.5 MeV [9]. The fragment masses, through momentum
conservation, were measured for the four-nucleon fragments
A = 12 to 28. For the incident energy Ec.m. = 51.6 MeV
only even-A fragments were measured. Also, the mass-
asymmetric breakup of the compound system is favored over
symmetric fission. The average total kinetic energies TKE for
α fragments were also measured in this experiment. The fission
channel cross section estimated in one of these experiments
is 59 ± 12 mb. The CN fusion cross sections due to multiple
pre-evaporations at these energies are also measured; they are
1080 ± 130 and 1050 ± 100 mb, respectively, at Ec.m. = 51.6
and 60.5 MeV.

The paper is organized as follows. The DCM is explained
in Sec. II for the use of two temperature-dependent binding
energy formulas. Results obtained from both the T -dependent
forms for the reaction 32S + 24Mg formed at two incident
energies are discussed in detail in Sec. III. Finally, a summary
of the results is presented in Sec. IV.

II. THE METHODOLOGY

The collective coordinates of the DCM are the relative
separation R between the centers of the two fragments and
the mass (and charge) asymmetry given as

η = (A1 − A2)

(A1 + A2)
; ηZ = (Z1 − Z2)

(Z1 + Z2)
, (1)

(where 1 and 2 refer to heavy and light fragments, respec-
tively). The temperature-dependent fragmentation potential
V (η) at a fixed R is given by

V (η, T , �) = −
2∑

i=1

[BELDM(Ai, Zi, T )] +
2∑

i=1

δUi(T )

+ Z1Z2e
2

R(T )
+ VP (T ) + h̄2�(� + 1)

2IS(T )
, (2)

where e2 = 1.44 MeV fm and R(T ) is the relative separation
distance between the centers of the fragments and at touching
denoted as Rt (T ) = R1(T ) + R2(T ) with the radius expression
defined as in Ref. [33] as

Ri(T ) = 1.16(1 + 7.63 × 10−4T 2)A1/3
i fm. (3)

Here i = 1 and 2 correspond to the heavy and light fragments,
respectively. (It should be mentioned that, in our earlier works
regarding the use of Davidson et al.’s [31] formula, the radius
expression used is as given in Refs. [18,31], with radius R

having a linear dependence on temperature T .) Whenever two
nuclei are closer to each other an additional attraction will
contribute to the total energy; for this additional attraction the
nuclear proximity potential of Blocki et al. [39] is used and is
defined as

VP (T ) = 4πR̄(T )γ b(T )�[s(T )], (4)

with R̄(T ) = R1(T )R2(T )
Rt (T ) defining the inverse of the root mean

square radius of the Gaussian curvature. �[s(T )] and γ

are universal functions independent of the geometry of the
system and the nuclear surface energy coefficient, respectively
(See Eqs. (17) and (18) of Ref. [21]), with

s(T ) = R(T ) − [R1(T ) + R2(T )]

b(T )
(5)

being the separation distance between the two surfaces in units
of b(T ), which is defined in Ref. [33] as

b(T ) = 0.68(1 + 7.37 × 10−3T 2) fm. (6)

The moment of inertia in the complete sticking limit is

IS(T ) = μR2
t (T ) + 2

5A1mR2
1(T ) + 2

5A2mR2
2(T ). (7)

Here μ = [A1A2/(A1 + A2)]m is the reduced mass with m as
the nucleon mass.

Using the fragmentation potential defined in Eq. (2), the
solution of the following stationary Schrödinger equation,
{

− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ VR(η, T )

}
ψν(η) = Eνψν(η),

(8)

after normalization would give the the preformation probabil-
ity as

P0 (Ai) =| ψ[η(Ai)] |2 √
Bηη

2

A
. (9)

The mass parameters Bηη(η), representing the kinetic energy
part in Eq. (9), are the smooth classical hydrodynamical
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masses [40]. The temperature dependence of preformation
probability is calculated as

|ψ|2=
∞∑

ν=0

|ψν|2 exp(−Eν/T ). (10)

For R coordinate motion, at a fixed η, the WKB approxima-
tion is used to find the barrier penetration probability between
the two turning points Ra and Rb as

P = exp

[
−2

h̄

∫ Rb

Ra

{2μ[V (R) − Qeff]}1/2dR

]
. (11)

The T -dependent scattering potential V (R) in Eq. (11) is the
sum of the last three terms in Eq. (2). For the decay of the CN,
as suggested in Refs. [17–19], the first turning point Ra(T ) is
considered to be

Ra(T ) = Rt (T ) + �R(T ), (12)

with the corresponding potential V (Ra) acting as an effective
Q value, Qeff , and Rb as the second turning point satisfying

V (Ra) = V (Rb) = Qeff = TKE(T ). (13)

Here, �R(T ) is the only free parameter (to fit the experimental
data) of the model that is allowed to vary between 0.1 and
1.5 fm where the proximity forces are said to exist. TKE(T )
refers to the total kinetic energy, with the available CN
excitation energy shared as

E∗
CN = |Qout(T )| + TKE(T ) + TXE(T ). (14)

The excitation energy of the CN for the deexcitation is due
to the sum of the entrance channel center of mass energy
Ec.m. and the Q value, Qin, for the incoming channel. For the
calculation of Qin, we use the experimental binding energies
[38]. TXE(T ) is the excitation energy carried by the emitted
fragments that will be shed by the secondary particle emission,
which, however, is not treated in the model. In the DCM, the
decay cross section [18,19] is defined as

σ =
�max∑
�=0

σ� = π

k2

�max∑
�=0

(2� + 1)P0P ; k =
√

2μEc.m.

h̄2 , (15)

with �max taken as the � value where the light particle cross
section σLP → 0. The value of � could also be taken as a
variable parameter to fit the experimental data; however, this
is not attempted here.

III. RESULTS AND DISCUSSION

The fragmentation potential as defined in Eq. (2) (at R =
Rt and � = 0h̄) for the fragmentation of 56Ni∗ formed in the
reaction 32S + 24Mg at T = 0 MeV is presented in Fig. 3 as
a function of the fragment mass number A2. The solid line
corresponds to the use of ground-state experimental binding
energies [38]. Dashed and dotted lines correspond to the use of
Krappe’s and Guet et al.’s binding energies, respectively. The
results due to experimental binding energies clearly exhibit
strong minima at α nuclei indicating a four-nucleon transfer
of the mass asymmetry coordinate η.

FIG. 3. The fragmentation potential of 56Ni at T = 0 MeV, R =
Rt , and � = 0 h̄. The solid line corresponds to the use of experimental
binding energies [38] and the dashed and dotted lines correspond to
the use of binding energies calulated using Krappe’s formula and Guet
et al.’s, formula, respectively. The α-structured nuclei are labeled.

The calculations obtained with Krappe’s formula have a
structure similar to that of the results due to experimental
binding energies. Strong minima are present for α nuclei.
However, the calculations obtained using Guet et al.’s formula
do not show any strong minima in the potential; rather a
small minima is present at 4He and 16O. As mentioned earlier,
Guet et al.’s. formula without any refitting done to reproduce
the ground-state experimental binding energies has a larger
deviation due to the noninclusion of terms like the Wigner
term, pairing, and other microscopic correction terms. The
potential more or less depicts the shell structure present at 4He
and 16O. Odd-even structure is also not strongly present in
this calculation. However, this potential at T = 0 MeV does
not enter into any calculations. The temperature-dependent
fragmentation potential as a function of the fragment mass
number A2 and the angular momentum � is presented in Figs.
4 and 5 for Krappe’s formula and Guet et al.’s formula.
In these figures the potentials are plotted at R = Rt f m

and T = 3.3272 MeV, corresponding to the center of mass
energy Ec.m. = 51.6 MeV. In Fig. 4, even with the temperature
included, the potential energy retains the favored α-nuclei
structure, exhibiting strong minima at the α nuclei. This
structure remains for higher angular momentum values as well.
In Fig. 5, using Guet et al.’s formula, the preferred α structure
is not present, rather only an odd-even structure is present for
the all the angular momentum states considered. It should be
mentioned here that, in earlier works by one of us [21], when
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FIG. 4. The fragmentation potential of 56Ni∗ obtained using
Krappe’s formula at T = 3.3272 MeV as a function of the fragment
mass number (A2) and the angular momentum. Strong minima are
seen at the α-structured nuclei.

FIG. 5. Same as Fig. 4 but for binding energies obtained using
Guet et al.’s formula. The α-structured nuclei are not showing strong
minima, rather an odd-even effect is present in the potential.

Davidson et al.’s formula [31] was used, the potential had only
an odd-even structure and there was no explicit preference for
the α-structured nuclei, and it was interpreted that with the
inclusion of temperature not only the shell effects vanish but
also the explicitly preferred α-nucleus structure also vanishes.
However, from the present study it is inferred that the form
of the temperature-dependent binding energies determines the
presence of the shell effect and/or the α-nucleus structure as
is evident from Figs. 4 and 5.

However, in all three calculations, the preference of
asymmetric channels over symmetric channels in low angular
momentum states and the preference of symmetric channels
over asymmetric channels at higher angular momentum states
are seen. The effect of strong minima in the potential energy
curve is reflected in the calculations of preformation probabil-
ity and in turn in the cross-section calculations. Similar results
are seen for another temperature, T = 3.5405 MeV; however,
these are not presented here.

In Fig. 6, the preformation probabilities (P0) as a function
of angular momentum (�) and fragment mass number (A2) are
presented in the upper (a) and lower (b) panels corresponding
to Krappe’s formula and Guet et al.’s formula, respectively,
for the temperature T = 3.3272 MeV. For the light particles,
the touching configuration is extended by the free parameter
�R taking a value of 1.11 and 0.88 fm corresponding to
Krappe’s formula and Guet et al.’s formula, respectively, so

FIG. 6. (Color online) The fragment preformation probability
(P0) as a function of angular momentum � for the 56Ni∗ compound
system is calculated by both Krappe’s formula (a) and Guet et al.’s
formula (b) at T = 3.3272 MeV and Ec.m. = 51.6. Here the P0 values
for LPs and IMFs are plotted for fitted �R values. The α-structured
nuclei are strongly favored.
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FIG. 7. (Color online) The fragment penetration probability P as
a function of angular momentum � for the 56Ni∗ compound system
is calculated by both Krappe’s formula (a) and Guet et al.’s formula
(b) at T = 3.3272 MeV and Ec.m. = 51.6. �R is the same as in
Fig. 6.

as to reproduce the experimental cross sections. Similarly,
for IMFs the touching configuration is extended by the free
parameter �R taking values of 0.82 and 0.84 fm corresponding
to Krappe’s formula and Guet et al.’s formula, respectively. In
Fig. 6(a), the preformation probability value corresponding to
the fragment 1H has a large value at � = 0 h̄ onward, and it
decreases as the � value increases. For other light particles the
preformation probabilities are too low and in this scale it is
not showing any structural effect. The summed preformation
probabilities of LPs goes to zero at an � value of 38h̄ which is
taken as �max in the calculations. In Fig. 6(a) the α-structured
nuclei clearly exhibit structural effects. The fragment 4He has
large preformation probability values starting from � = 0h̄
onward and they increase as the � value increases and reach a
maximum value around 25h̄, beyond this they start to decrease.
For 8Be the preformation probability values start to contribute
after 15h̄ and increase with angular momentum and attaining a
maximum around 30h̄ and beyond which they decrease. For the
other α-structured nuclei, viz., 12C to 28Si, the preformation
probability starts to contribute beyond 25h̄. For rest of the
fragments the values are too low.

The use of Krappe’s formula exhibits strong preformation
for α-structured nuclei as a function of angular momentum.
However, in Fig. 6(b), the calculations obtained with Guet
et al.’s formula do not show any strong preformation for α-
structured nuclei. The structural effects are present only for
1,2H and 28Si. The preformation probability is largest for 1H

FIG. 8. Light particle cross sections σLP (solid line), intermediate
mass fragment cross sections σIMF (dashed line), and their sum σTotal

(dotted line) are calculated for 56Ni∗ at fitted �R with � summed using
Krappe’s formula (a) and Guet et al.’s formula (b), respectively.

and it starts to contribute from � = 0h̄ onward and it decreases
as the � value increases. A similar variation is seen for 2H but
with small values. For 28Si, the preformation probability starts
to contribute beyond 30h̄. Similar results are seen for another
temperature considered, T = 3.5405 MeV.

Since the cross section is a combined effect of preforma-
tion and penetration probability the variation of penetration
probability as a function of angular momentum and fragment
mass number is presented in Fig. 7. Figures 7(a) and 7(b)
correspond to Krappe’s formula and Guet et al.’s formula,
respectively. The �R values are the same as those discussed
in Fig. 6. In Fig. 7(a), the penetration probability starts to
contribute beyond � = 25h̄ for fragments with A > 4. For
A < 4, the contribution starts from lower � values, say starting
from around � = 5h̄ onward. In the preformation values as
well as the penetration probability values 4He overlaps very
much with light particles. Thus, 4He could compete with light
particles at lower angular momentum states. Though the LPs
penetration probabilities are higher than the IMFs at large
� values, the LPs have smaller preformation probabilties at
these � values and hence LPs would not compete with the
emission of IMFs at large � values. In Fig. 7(b), since the
free parameter �R values for LPs and IMFs are very close
to each other, we can hardly see any distinguishing division
between LPs and IMFs as is seen in Fig. 7(a). The contribution
of penetration probability starts beyond � = 15h̄. Though the
values are comparable at larger � values, the combined effect of
preformation and penetration probabilities will show whether
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TABLE I. The calculated cross sections for each experimentally observed fragment corresponding to the two incident energies using
Krappe’s formula and Guet et al.’s formula are compared with the earlier results obtained from Davidson et al.’s formula [21] and the results
of EHFM [11] and TSM [10]. Also presented are the average total kinetic energies of our calculations compared with experimental data [9].
Summed values of LPs, IMFs, and total cross sections obtained with Krappe’s formula and Guet et al.’s, formula are compared with experimental
results [9].

Ec.m. A2 Cross section (σ ) (mb) TKE (MeV)
∑�max

�=0 σ (mb)

(MeV) Exp. Krappe Guet et al. [21] EHFM TSM Exp. Krappe Guet et al. Exp. Krappe Guet et al.

51.60 12 9.20 9.71 3.59 11.48 7.50 9.91 26.19 28.94 28.38
14 0.70 0.03 2.66 22.54 0.73 2.50 - - -
16 3.82 5.43 2.30 3.26 5.27 5.55 30.52 31.65 31.53 σLP 1080 ± 130 1097.74 1049.19
18 0.30 0.14 2.13 2.55 0.27 1.55 - - -
20 1.62 3.39 1.25 0.79 0.91 3.91 35.50 34.29 33.85 σIMF 59±12 61.88 58.54
22 0.41 0.16 1.46 0.87 0.59 1.23 - - -
24 3.03 2.51 1.05 0.22 3.00 3.00 38.53 35.29 35.02 σTotal 1139±142 1159.62 1107.73
26 0.90 0.10 0.84 0.14 1.68 1.05 - - -
28 1.84 4.32 2.59 0.05 4.36 2.50 38.10 36.03 35.37

60.50 12 17.49 21.07 9.10 24.27 14.52 15.79 28.08 29.60 28.64
13 2.21 0.59 4.15 4.21 1.02 2.68 - - -
14 2.50 0.05 6.72 47.68 3.15 2.83 - - -
15 1.21 0.62 3.79 2.04 1.87 2.42 - - -
16 10.01 12.97 6.02 9.47 11.46 9.95 32.44 32.56 32.13
17 1.26 0.77 3.64 0.93 2.01 1.93 - - - σLP 1050±100 1059.34 1032.47
18 1.84 0.37 5.92 8.17 2.24 2.39 - - -
19 1.26 0.70 3.63 0.87 0.64 1.35 - - -
20 5.57 8.87 3.54 3.71 3.65 7.06 35.00 35.08 34.60 σIMF 75.64a 68.81 76.06
21 1.48 0.73 3.93 0.99 1.02 1.33 - - -
22 2.47 0.45 4.29 3.90 2.99 2.20 - - -
23 2.82 0.71 2.75 0.68 1.16 1.31 - - - σTotal 1125.64 1128.15 1108.53
24 6.14 6.91 3.10 1.61 5.04 5.51 38.23 36.27 35.69
25 4.27 0.62 2.16 0.43 2.17 1.29 - - -
26 5.60 0.27 2.40 0.87 8.51 1.76 - - -
27 3.33 1.08 3.14 0.37 3.02 1.27 - - -
28 6.18 12.05 7.78 0.93 13.73 5.07 37.42 37.02 35.83

aThis data is extracted from Fig. 12 of Ref. [9].

really light particles can compete with emission of IMFs at
larger � values.

The combined effect of preformation and penetration
probability can be seen in the cross-section calculations. In
Fig. 8, we present the cross sections for LPs (σLP), IMFs
(σIMF), and total cross sections (σTotal = σLP + σIMF) in panels
(a) and (b), corresponding to Krappe’s formula and Guet et al.’s
formula, respectively. The cross-section values are summed
from � = 0 to �max. In Fig. 8(a) corresponding to Krappe’s
formula, the cross section for LPs starts to contribute from
very low � values, say from � = 5h̄ onward and it reaches a
maximum value around � = 25h̄ and starts to decrease with
further increases in � values. The results of Guet et al.’s formula
presented in Fig. 8(b) show that the cross section for LPs starts
to contribute beyond � = 10h̄ and reaches a maximum value
around � = 30h̄ and decreases with increases in � values. The
cross section of IMFs starts to contribute beyond � = 30h̄ in
both cases and it increases with increases in � values. The
fission channels start to compete with LPs only at higher
angular momentum states, a result already reflected in the
potential energies presented in Figs. 4 and 5, respectively,
for Krappe’s formula and Guet et al.’s formula. To fit the

experimental cross section of LPs the neck length parameter
�R = 1.11 fm and �R = 0.88 fm are used, respectively, for
Krappe’s formula and Guet et al.’s formula. However, fine
tuning of this free parameter to reproduce the exact value of
experimental data is not attempted. For the IMF cross section
the neck length parameters �R = 0.82 fm and �R = 0.84 fm
are used, respectively, for Krappe’s formula and Guet et al.’s,
formulas. Our calculated values, which are given in the legends
within parentheses, are to be compared with the experimental
values, viz., σLP = 1080 ± 130 mb, σIMF = 59 ± 12 mb, and
σTotal = 1139 ± 142 mb. For the other energy at 60.5 MeV,
our calculated values corresponding to σLP are 1059.34 and
1032.47 mb, respectively, for the use of Krappe’s formula
and Guet et al.’s formula and are to be compared with the
experimental value of σLP = 1050 ± 100 mb; these values are
also listed in Table. I. Furthermore, for the incident energy
Ec.m. = 60.5 MeV, the experimental σIMF = 75.64 mb, as
shown in Table I, is the sum of cross sections for fragments
from A = 12 to 28 whose values are taken from Fig. 12 of
Ref. [9]. The corresponding calculated values using Krappe’s
formula and Guet et al.’s, formula are 68.81 and 76.06 mb,
respectively, which are also the sums of cross sections for the
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FIG. 9. (Color online) Histograms of the calculated IMF cross
sections σIMF using Krappe’s formula and Guet et al.’s formula
are compared with the experimental data [9] at Ec.m. = 51.6 and
60.5 MeV in panels (a) and (b), respectively.

fragments from A = 12 to 28. For IMFs the single parameter
is used for all the fragments with mass numbers A > 5.
Though this parameter reproduces the IMF cross section fairly
well with experimental data, the calculated cross section for
each channel however does not match well with that of the
experimental values as is shown in Fig. 9.

In Fig. 9, for both the energies considered, we compare
our calculated cross section for each channel with respect to
the experimental data. In Figs. 9(a) and 9(b), corresponding
to the energies Ec.m. = 51.6 and 60.5 MeV, the cross section
for A = 12 to 28 (for 51.6 MeV only even mass fragments
are observed [9], and for 60.5 MeV the odd mass fragments
are also observed) are compared with our results. The results
of Krappe’s formula for both the energies considered exhibit
a strong distribution of cross sections only for α-structured
nuclei. For the rest of the fragments, the cross-section values
predicted are at least lower by a factor of 2 to 3 compared with
the experimental data as is seen from the numerical values
presented in Table I. This may be due to the presence of
strong minima in the potential valley for α nuclei as well as to
strong preformation of α nuclei as presented in Figs. 4 and 6.
However, the calculations obtained with Guet et al.’s formula
though do not show any explicit preference for α-structured
nuclei, but compare reasonably well with experimental data
at least for some fragments. The cross section values for the
non-α even-A fragments obtained with Guet et al.’s formula
at both the energies decrease with an increase in mass number

except for a small hike at A2 = 22 and a large value at
A2 = 28. For the odd-A fragments corresponding to the energy
Ec.m. = 60.5 MeV similar results are also seen; however, for
odd-A fragments the cross-section values are lower than those
for even-A fragments.

Also given in Table I are the results from earlier work by one
of us using Davidson’s formula and the results of two other
models EHFM [11] and TSM [9]. The average TKE values
are calculated as the weighted average of the TKE with the
weight factor taken as the ratio of each fragment cross section
corresponding to each angular momentum and the total cross
section. To fit with the experimental values, the � value is varied
and for Krappe’s formula and Guet et al.’s formula the values
are varied as follows: � = 26h̄ and � = 25h̄, respectively, for
the energy 51.6 MeV and � = 26h̄ and � = 24h̄, respectively,
for the energy 60.5 MeV. However, the value of the parameter
�R remains the same as that used to reproduce the overall
cross sections for the IMFs.

IV. SUMMARY

In summary, the DCM is used to study the role
of temperature-dependent binding energies. For this the
temperature-dependent binding energy formulas of Krappe
and Guet et al. are used without any refitting of their
coefficients. Due to the presence of terms like pairing and
the Wigner term the Krappe formula reproduces very well the
ground-state binding energies. The inclusion of the Wigner
term for light nuclei resulted in a large deviation and hence
is not considered for light nuclei with mass numbers up to
A = 11. Due to the absence of pairing and Wigner terms in
Guet et al.’s formula the ground-state binding energies are not
reproduced well. However, at the temperatures that interest
us these terms may not play a crucial role. Unlike in earlier
works on the DCM, the calculated binding energies are used
rather than the mass excess values. The temperature-dependent
radius expression also is now considered to have a quadratic
dependence on temperature which also differs from earlier
works on the DCM.

This reformulated DCM is applied for the decay of hot
and rotating 56Ni∗ compound systems formed in 32S + 24Mg
at two different incident energies. The results obtained
using Krappe’s formula exhibit an explicit preference for
α-structured nuclei which is reflected in the fragmentation
potential energy, preformation calculations, and in the indi-
vidual channel cross sections. The overall cross-section values
for the LPs and IMFs as well as the individual channel
cross sections for the α-structured nuclei compare well with
experimental data. The calulations using Guet et al.’s formula
though do not exhibit any strong structural effects in the
results of fragmentation potential or preformation probability
calculations; rather the results compare reasonably well with
the overall experimental cross sections for the LPs and IMFs.
The explicit preference for α structure is shown not to vanish
with the inclusion of temperature and rather it is shown as the
inherent property of the form of the binding energy formulas
we use. Also it is shown that refitting of the coefficients of the
original forms of the binding energy formulas is not required.
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