Precise half-life measurement for the ground state of 94Nb

G. Z. He,^{1,*} S. Jiang,^{1,†} Z. Y. Zhou,¹ M. He,¹ W. Z. Tian,¹ J. L. Zhang,¹ L. J. Diao,¹ and H. Li²

¹*China Institute of Atomic Energy, P.O. Box 275(46), Beijing 102413, China*

²*College of Physics Science and Technology, Guangxi University, Nanning 530004, China*

(Received 16 May 2012; published 9 July 2012)

The half-life of the ground state of ⁹⁴Nb has been remeasured by a combination of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) for the determination of the isotope ratio 94Nb*/*93Nb and *γ* -ray spectrometry for the determination of ⁹⁴Nb activity. The resulting value, (2.04 \pm 0.04) \times 10⁴ yr, is in agreement with the latest literature value of $(2.03 \pm 0.16) \times 10^4$ yr [R. P. Schuman and P. Goris, [J. Inorg. Nucl. Chem.](http://dx.doi.org/10.1016/0022-1902(59)80084-1) 12, [1 \(1959\)\]](http://dx.doi.org/10.1016/0022-1902(59)80084-1) within uncertainty limits, but has a much reduced uncertainty.

DOI: [10.1103/PhysRevC.86.014605](http://dx.doi.org/10.1103/PhysRevC.86.014605) PACS number(s): 21*.*10*.*Tg, 23*.*40*.*−s, 25*.*40*.*Lw, 27*.*60*.*+j

I. INTRODUCTION

In nucleosynthesis of natural elements, the monoisotopic element Nb was produced mostly by the slow neutron capture process (*s* process) via the decay of the long-lived radioactive nuclide ^{93}Zr ($T_{1/2} = 1.5$ million years). ^{$\bar{9}3$}Nb can be used to discriminate between intrinsic and extrinsic asymptotic giant branch (AGB) stars [\[1\]](#page-4-0). An accurate half-life of $94Nb$ is required in the study of nucleosynthesis of naturally occurring elements because of its position in the weak *s*-process path.

With an uncomplicated decay mode $[2]$, ⁹⁴Nb has been selected by International Atomic Energy Agency (IAEA) as one of the *γ* -ray decay data standards for detector calibration and other applications [\[3\]](#page-4-0). So, it is essential to have an accurate half-life value of ⁹⁴Nb.

The recently developed niobium-containing zirconium alloy exhibits excellent burn-up characteristics, making it an ideal material for the pressure tubes in some reactors and the cladding of most light water reactors because of its long-term corrosion resistance and favorable mechanical properties. A half-life value of ⁹⁴Nb with sufficient accuracy is therefore required in radioactive waste management and reactor decommissioning.

In our studies on AMS measurement of $92Nb$, a unique nuclide in cosmophysics as one of the four most accurate *p*-process extinct chronometers and the only "shielded" *p*process nuclide, an absolute method had to be used due to the lack of a $\frac{92}{10}$ Nb standard sample. In order to evaluate the feasibility and accuracy of the absolute Accelerator Mass Spectrometry (AMS) method, ⁹⁴Nb, produced by reactor neutron activation on ⁹³Nb and standardized for ⁹⁴Nb/Nb by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS), was used as the reference in the absolute AMS measurement of ⁹²Nb.

Taking the advantage of the simple and well established decay scheme of ⁹⁴Nb and sophisticated HPGe *γ*-ray spectrometry, the specific activity of $94Nb$ was determined. Combining the 94 Nb/Nb isotope ratio with the specific activity of ⁹⁴Nb, a new value of the half-life of ⁹⁴Nb was obtained with

0556-2813/2012/86(1)/014605(5) 014605-1 02012 American Physical Society 014605-1

unprecedented accuracy. This enables the quantification of the atom ratio 94Nb/Nb simply by HPGe *γ* -ray spectrometry.

II. EXPERIMENT

A. Production of 94Nb by 93Nb(*n***,***γ* **) reaction**

Several grams of high-purity niobium powder (99.99%), packaged and sealed in an aluminum can (5 mm in inner diameter and 6 mm high), were irradiated for 200 h in a thermal column of the swimming pool research reactor at CIAE. The thermal neutron flux at the sample position was about 10^{11} *n* cm⁻² s⁻¹.

After six months of cooling, all of the metastable states of niobium 94 (94Nb^m , $T_{1/2} = 6.26 \text{ min}$) and other short-lived nuclides had decayed. The specific activity and the isotopic abundance ratio of ⁹⁴Nb/Nb in the samples were then measured by HPGe *γ* -ray spectrometry and MC-ICP-MS, respectively.

B. Measurement of 94Nb specific activity

For the *γ* -spectrum measurement, 94.83 mg of the irradiated niobium powder was weighed by a microbalance and packaged in a polyethylene bag $(5 \text{ mm} \times 5 \text{ mm})$.

The sample was measured by a low-background anti-Compton *γ* spectrometer, consisting of a coaxial HPGe detector [model GEM-10020(P), ORTEC corporation, USA; FWHM 1.88 keV and relative efficiency 115.7% for 1332 keV *γ* rays] as the main detector surrounded by a well-type anticoincidence detector group composed of a suite of annular and cylindrical NaI(Tl) scintillation detectors.

A full energy efficiency curve was established at the sample position of 30 cm from the top surface of the main detector by a series of standard γ sources (⁵⁷Co, ¹³⁷Cs, ⁶⁰Co, ¹⁵²Eu, and 182Ta) with relative standard uncertainties in activities of less than 1%, certified by the National Institute of Metrology of China.

As shown in Fig. [1,](#page-1-0) the decay scheme of $94Nb$ [\[2\]](#page-4-0), two prominent γ rays with energies of 702.6 and 871.1 keV are emitted in cascade following the β^- decay of ⁹⁴Nb to the ground state of 94 Mo. A γ -ray spectrum was taken on the anti-Compton HPGe detector at the sample position of 30 cm

^{*}hegz@ciae.ac.cn

[†] jiangs@ciae.ac.cn

FIG. 1. (Color online) Decay scheme of ⁹⁴Nb.

from the surface of the main detector, to make coincidence losses of the cascade *γ* rays negligible.

The currently recommended values of the emission probabilities of 702 and 871 keV γ rays [\[3\]](#page-4-0), applied in following calculation, and the detection efficiencies from the above mentioned efficiency curve are listed in Table I.

A full view γ -ray spectrum of a ⁹⁴Nb sample is presented in Fig. 2. It shows that the main interferences in the activity determination came from the Compton continuum of the impurity ¹⁸²Ta. Fortunately, the peaks of the interested γ rays are still quite clear and prominent, as presented in Fig. [3.](#page-2-0)

The spectrum was acquired by 116000 s counting. The net peak areas of 702.6 and 871.1 keV were obtained after the dead time corrections.

The resulting specific activity of 94 Nb is given in Table II.

C. Measurement of 94Nb/Nb

For the isotope ratio determination, several milligrams each of the irradiated and the unirradiated niobium powder samples were respectively weighed and dissolved with nitric acid plus hydrofluoric acid. After the removal of fluorine, the solution was adjusted to about 1 mg*/*L niobium in 2% nitric acid medium.

The isotopic ratios of $94Nb/93Nb$ in both irradiated and unirradiated (blank) samples were measured by a set of MC-ICP-MS (IsoprobeTM, GV corporation, U.K.). The intensive events of 93Nb were measured on Faraday collectors with static mode. The sparse events of ⁹⁴Nb and impurities with $A =$ 94 were recorded by the Daly-photomultiplier ion counting

FIG. 2. (Color online) The full view of the *γ* -ray spectrum.

system. The resulting $94A/93$ Nb values from 12 independent measurements for each of an unirradiated and two irradiated samples are listed in Tables [III](#page-2-0) and [IV,](#page-2-0) respectively.

For the unirradiated sample, the ions with $A = 94$ were contributed by $94Zr^+$, $94Mo^+$, and the molecular ion $93Nb^1H^+$. For the irradiated sample, in addition to the same contributors as for the unirradiated sample, $94Nb⁺$ is a dominate contributor of all nuclides with $A = 94$.

In the data analysis, the underlined data in Tables [III](#page-2-0) and [IV](#page-2-0) were rejected because they are outside of the confidence interval. The average isotope ratio of $94A/93$ Nb in the two irradiated samples was calculated to be $\frac{94}{A}/\frac{93}{Nb} = (1.1228 \pm \frac{1}{24})$ 0.0064) \times 10⁻⁵, with a relative standard deviation (RSD) of 0.57%. Subtracting the ratio of ⁹⁴*A/*93Nb of the unirradiated sample from that of the irradiated sample, the isotopic ratio of 94Nb to 93Nb, 94Nb*/*93Nb, was preliminarily obtained to be $(7.412 \pm 0.106) \times 10^{-6}$ with a relative standard deviation of 1.43%.

Because there was no ⁹⁴Nb standard available for mass spectrometry, the standard reference material SRM 987 (strontium carbonate, isotopic standard, National Institute of Standards & Technology, USA) certified for the isotopic ratios of ⁸⁶Sr to ⁸⁸Sr and ⁸⁴Sr to ⁸⁸Sr, was used to correct for instrumental mass bias and the efficiency ratio between Daly and Faraday detectors. The certified and measured (uncorrected for efficiency and cup ratio) values for the strontium isotopic abundance ratios were compiled in Table [V.](#page-3-0)

TABLE I. Emission probabilities and detection efficiencies of 702 and 871 keV *γ* rays.

Energy (keV)	Efficiency	Rel. unc.	Emission probability	Rel. unc.
702.63	0.0005811	0.7%	0.99815	0.006%
871.11	0.0004878	0.7%	0.99892	0.003%

TABLE II. Calculation for specific activity of ⁹⁴Nb.

Energy (keV)	area			Net peak Rel. unc. Activity Rel. unc. Avg. specific activity
702.63		355966 0.37% 5.29 kBq	0.8%	55.68 ± 0.32
871.08		297797 0.44% 5.27 kBq	0.8%	Bq/g

FIG. 3. (Color online) The local zoom of the *γ* -ray spectrum.

The correction factors for the mass bias and Daly-Faraday gain, β and K , were respectively obtained by Eqs. (1) and (2) to be $\beta = -3.020$ and $K = 1.114$:

$$
\beta = \ln((N_{\text{Sr86}}/N_{\text{Sr88}})_{\text{certified}}/(N_{\text{Sr86}}/N_{\text{Sr88}})_{\text{measured}})/\ln(86/88),
$$
\n(1)

$$
K = (NSr84/NSr88)certified/(NSr84/NSr88)measured/(86/88)β,
$$
\n(2)

where N_{Sr86}/N_{Sr88} and N_{Sr84}/N_{Sr88} are the isotopic ratios of 86Sr*/*88Sr and 84Sr*/*88Sr, respectively.

The corrected 94 Nb/⁹³Nb is (7.994 \pm 0.128) × 10⁻⁶ calculated by Eq. (3),

$$
(N_{\text{Nb94}}/N_{\text{Nb93}})_{\text{corrected}} = K \times (94/93)^{\beta}
$$

$$
\times (N_{\text{Nb94}}/N_{\text{Nb93}})_{\text{uncorrected}}, \quad (3)
$$

Cycle	Daly ^a	Faraday ^a	$^{94}A/^{93}Nb$
1	2.860×10^{-5}	7.606	3.760×10^{-6}
2	2.937×10^{-5}	7.643	3.843×10^{-6}
3	2.912×10^{-5}	7.548	3.858×10^{-6}
4	2.889×10^{-5}	7.515	3.844×10^{-6}
5	2.866×10^{-5}	7.568	3.786×10^{-6}
6	2.841×10^{-5}	7.556	3.760×10^{-6}
7	2.851×10^{-5}	7.560	3.771×10^{-6}
8	2.921×10^{-5}	7.539	3.875×10^{-6}
9	2.915×10^{-5}	7.518	3.877×10^{-6}
10	2.803×10^{-5}	7.463	3.756×10^{-6}
11	2.878×10^{-5}	7.481	3.847×10^{-6}
12	2.978×10^{-5}	7.538	3.950×10^{-6}
	Average isotope ratio		3.816×10^{-6}
	$RSD(\%)$		1.29

TABLE III. Results of $94A/93$ Nb for an unirradiated sample.

^aBeam intensities on both Daly and Faraday cups are in volts.

where (N_{Nb94}/N_{Nb93}) _{uncorrected} and (N_{Nb94}/N_{Nb93}) _{corrected} represent the ratios of ⁹⁴Nb/⁹³Nb before and after correction, respectively.

III. RESULTS

A. Half-life

The half life was calculated by Eq. (4) to be (2.04 ± 1) $0.04) \times 10^4$ yr:

$$
T_{1/2} = (N_{94}/N_{93}) \div A_{SP} \times (1/93) \times R \times \ln 2, \qquad (4)
$$

where A_{SP} is specific activity of ⁹⁴Nb in the irradiated sample, $A_{\rm SP} = A/\varepsilon/\gamma$ (55.68 \pm 0.32 Bq/g), with *A* being the average counting rate of the 702.6 (or 871.3) keV full-energy peak for a 1 g sample, *ε* the full-energy peak efficiency for 702.6 (or

TABLE IV. Results of ⁹⁴*A/*93Nb for two irradiated samples.

Cycle		Sample 1			Sample 2	
	Daly ^a	Faraday ^a	$^{94}A/^{93}Nb$	Daly ^a	Faraday ^a	$^{94}A/^{93}Nb$
	7.060×10^{-5}	6.344	1.113×10^{-5}	1.030×10^{-4}	9.188	1.120×10^{-5}
\overline{c}	7.193 \times 10 ⁻⁵	6.342	1.134×10^{-5}	1.028×10^{-4}	9.106	1.129×10^{-5}
3	7.046×10^{-5}	6.362	1.108×10^{-5}	1.012×10^{-4}	9.077	1.115×10^{-5}
4	7.082×10^{-5}	6.308	1.123×10^{-5}	1.037×10^{-4}	9.107	1.138×10^{-5}
5	6.933×10^{-5}	6.297	1.101×10^{-5}	1.055×10^{-4}	9.254	1.140×10^{-5}
6	7.083×10^{-5}	6.241	1.135×10^{-5}	1.037×10^{-4}	9.214	1.126×10^{-5}
7	6.953×10^{-5}	6.254	1.112×10^{-5}	1.048×10^{-4}	9.213	1.137×10^{-5}
8	7.038×10^{-5}	6.250	1.126×10^{-5}	1.023×10^{-4}	9.131	1.120×10^{-5}
9	6.965×10^{-5}	6.243	1.116×10^{-5}	1.026×10^{-4}	9.138	1.122×10^{-5}
10	6.952×10^{-5}	6.272	1.108×10^{-5}	1.025×10^{-4}	9.118	1.124×10^{-5}
11	6.929×10^{-5}	6.227	1.113×10^{-5}	1.026×10^{-4}	9.036	1.135×10^{-5}
12	6.867×10^{-5}	6.191	1.109×10^{-5}	1.040×10^{-4}	9.102	1.142×10^{-5}
	Average isotope ratio		1.116×10^{-5}			1.129×10^{-5}
	$RSD(\%)$		0.97			0.80

^aBeam intensities on both Daly and Faraday cups are in volts.

TABLE V. Certified and measured Sr isotopic ratios of the SRM 987.

Certified isotope ratio	${}^{88}Sr/{}^{86}Sr$ ${}^{87}Sr/{}^{86}Sr$ 84Sr/86Sr	8.37861 ± 0.00325 0.71034 ± 0.00026 0.05655 ± 0.00014
Measured isotope ratio (uncorrected)	${}^{88}Sr/{}^{86}Sr$ ${}^{87}Sr/{}^{88}Sr$ ${}^{84}Sr/{}^{88}Sr$	8.98110 ± 0.00790 0.08187 ± 0.00012 0.00526 ± 0.00001

871.3) keV *γ* rays at 30 cm source-detector distance, and *γ* the emission probability of 702.6 (or 871.3) keV *γ* rays in the decay of ⁹⁴Nb. N_{94}/N_{93} is the isotopic ratio of ⁹⁴Nb to ⁹³Nb $[(7.994 \pm 0.128) \times 10^{-6}]$, and *R* is the Avogadro constant.

B. Uncertainties

The total uncertainty of the 94 Nb half-life consists of the uncertainties in the specific activity, A_{SP} , and the isotope abundance ratio, *N*94*/N*93, as detailed in Table VI.

The uncertainty in specific activity was mainly contributed by peak counting statistics and efficiencies, which were calibrated by a set of standard sources certified by the National Institute of Metrology of China with relative standard uncertainties of less than 1%. The uncertainties in the efficiencies of 702 and 871 keV *γ* rays were estimated to be lass than 0.7%, taking advantage of the locations of the two *γ* rays being at the linear region of the efficiency curve (in log-log scale). The summing effect of the *γ* -ray cascades of interest (702 and 871 keV) is negligible due to the total efficiencies of 702 and 871 keV *γ* rays being smaller than 0.1% at the counting position 30 cm from the top surface of the detector.

In the mass spectra measurement, the relative statistic uncertainty was 1.5%, estimated by the relative standard deviation of multiple measurements. The main contributors of systematic uncertainty are the difference in the interference of $A = 94$ for the irradiated and nonirradiated Nb samples, and

TABLE VI. Uncertainty budget.

	Uncertainty item	Relative Standard Uncertainty $(RSU)(\%)$
Activity	Peak area	0.3
measurement	Sample mass	0.01
	ν -ray branching uncertainty	< 0.01
	Efficiency	0.7
	Sample self-absorption and	< 0.01
	geometrical correction	
Isotope ratio measurement	Statistics	1.5
	Mass bias correction	0.01
	Correction in Daly-Faraday gain ratio	0.2
	SRM 987	0.3
	Interference correction	${<}0.01$
	Total relative standard uncertainty in half-life of ⁹⁴ Nb	1.8

TABLE VII. ⁹⁴Nb half-life values so far determined.

$T_{1/2}$ (yr)	Standard uncertainty (yr)	Time	Reference
>0.01	No information	1948	$\lceil 8 \rceil$
5×10^4	No information	1952	$\lceil 7 \rceil$
2.2×10^{4}	0.5×10^{4}	1953	[6]
2.7×10^{4}	0.4×10^{4}	1955	$\lceil 5 \rceil$
2.03×10^{4}	0.16×10^{4}	1959	$\lceil 4 \rceil$
2.04×10^{4}	0.04×10^{4}	2011	This work

the normalization for mass bias and Daly-to-Faraday efficiency ratio by NIST SRM. For the former, 94Nb*^m* produced by the reaction of $93Nb(n,\gamma)$ decays with a branching ratio of 0.6% and a half-life of 3.26 m directly to 94 Mo, which causes the $^{94}A/^{93}$ Nb ratio for the irradiated sample to be a little higher than that for the nonirradiated one. The relative uncertainty caused by this additional ⁹⁴Mo was estimated based on the cross sections of the $93Nb(n,\gamma)^{94}Nb^m$ reaction and the branching ratio of $94Nb^m$ decay to $94Mo$ to be less than 0.01%. For the latter, the uncertainties introduced in the corrections for mass bias and Daly-to-Faraday efficiency ratio were estimated to be about 0.01% and 0.2%, respectively.

IV. DISCUSSION

A summary of the $T_{1/2}$ (⁹⁴Nb) so far determined experimentally is presented in Table VII.

All previous measurements were made more than a half century ago, when neither sophisticated mass spectrometry nor modern high-resolution HPGe *γ* -ray spectrometry was invented. That severely limited the measurement precision. In addition, no international or national standards were used to guarantee the traceability of the values obtained in those measurements. That made the accuracy of those values unreliable. Evaluation values published in *Table of Isotopes*, 8th edition in 1996 [\[2\]](#page-4-0) and more recently by Woods in 2007 [\[3\]](#page-4-0) were all based on those values, and therefore unsatisfactory in both accuracy and precision.

In this work, high-purity Nb samples with Zr and Mo contents of *<*1 mg*/*kg each were used. The burn-up losses of ⁹⁴Mo and ⁹⁴Zr in the irradiated sample are therefore negligible. There is essentially no difference in the interference from the formation of the molecular ions 93 NbH⁺ between unirradiated and irradiated samples. Thus, a subtraction of ⁹⁴*A/*93Nb in the unirradiated sample from that in the irradiated one eliminated all isobaric and molecular interferences and resulted in the net ⁹⁴Nb/⁹³Nb in the irradiated sample.

With a combination of the high-energy resolution of the HPGe spectrometer and the high sensitivity of MC-ICP-MS, the new half-life value of $94Nb$, (2.04 \pm 0.04) \times 10⁴ yr, was obtained with a much reduced uncertainty and clearer traceability.

ACKNOWLEDGMENTS

The authors are grateful to the crew of the swimming pool research reactor at CIAE for the sample irradiation. This work was supported by the National Natural Science Foundation of China under Grant No.10975195.

- [1] Q. Z. Yin, S. B. Jacobsen, W. F. McDonough, and I. Horn, [APJ](http://dx.doi.org/10.1086/312718) **535**[, L49 \(2000\)](http://dx.doi.org/10.1086/312718)
- [2] R. B. Firestone, *Table of Isotopes*, 8th ed. (John Wiley & Sons, New York. 1996).
- [3] IAEA, *Update of X ray and γ -ray decay data standards for detector calibration and other applications, Volume 2: Data Selection, Assessment and Evaluation Procedures*, Report No. STI*/*PUB*/*1287 (International Atomic Energy Agency, Vienna, 2007), p. 154.
- [4] R. P. Schuman and P. Goris, [J. Inorg. Nucl. Chem.](http://dx.doi.org/10.1016/0022-1902(59)80084-1) **12**, 1 (1959).
- [5] M. A. Rollier, E. Saeland, A. Morpurgo, and A. Daqiieris, [Acta](http://dx.doi.org/10.3891/acta.chem.scand.09-0057) [Chem. Scand.](http://dx.doi.org/10.3891/acta.chem.scand.09-0057) **9**, 57 (1955).
- [6] D. L. Douglas, A. C. Mewherter, and R. P. Schuman, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRev.92.369) **92**[, 369 \(1953\).](http://dx.doi.org/10.1103/PhysRev.92.369)
- [7] R. E. Heine, C. M. Flower, and R. H. McFarland, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRev.85.138) **85**, [138 \(1952\).](http://dx.doi.org/10.1103/PhysRev.85.138)
- [8] M. Goldhaber and C. O. Muehlhause, Phys. Rev. **74**, 1248 (1948).