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In this paper we study the one- and two-nucleon separation energies (Sn, Sp , S2n, and S2p) by using the Atomic-
Mass-Evaluation-2011 Preview. We show the linear dependence of separation energies, previously investigated
for Sn and Sp of even-even nuclei, in terms of αNp + βNn (Np and Nn is the valence proton number and valence
neutron number, respectively, with respect to the nearest magic closure), hold in a broader sense. It is applicable
equally well to odd-mass and odd-odd nuclei. New odd-even staggerings are found for Sn and Sp , and are
discussed by using the pairing interaction and the symmetry energy. Predictive power of these simple relations is
discussed.
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Nucleon separation energies and mass (or binding energy)
are fundamental quantities of a nucleus. They provide us with
useful information on structural evolutions of atomic nuclei as
well as the key input for theoretical studies on the origin of the
heavy elements, especially those on the rapid proton (rp) and
rapid neutron (r) capture processes. Therefore, describing and
predicting nuclear masses and separation energies have been
one of the focuses of the nuclear structure physics in recent
years. For comprehensive reviews, see Refs. [1,2].

In 1996 Streletz and collaborators discovered a very
interesting fact [3]: Sn (one-neutron separation energy) and
Sp (one-proton separation energy) of even-even nuclei follow
compact and linear trajectories in terms of the variable
αNp + βNn. Here Np and Nn are, respectively, the valence
proton number and valence neutron number with respect to the
nearest magic closure. α is a constant (positive for particles and
negative for holes) optimized by using experimental data. β is
set to be either −1 for particles or +1 for holes in each half-
major shells. This valence correlation scheme of separation
energies was studied by using the seniority mass equation [4].
There are a number of valence correlation schemes which
are very useful in studies of evolution of various observables
in different regions in the nuclear chart. See Refs. [5,6] for
reviews.

The purpose of this paper is to revisit the linear relations
of separation energies in terms of αNp + βNn, discussed in
Ref. [3], by using the latest version of experimental masses, the
Atomic-Mass-Evaluation-2011 Preview (AME2011-preview)
[7]. Here our discussion is not restricted to Sn and Sp of even-
even nuclei. We investigate Sn, Sp, and two-proton and two-
neutron separation energies (S2n and S2p) of even-even, odd-A,
and odd-odd nuclei, on the same footing. New features of
odd-even staggering are discerned and discussed in terms of
pairing interaction and symmetry energy.

*Corresponding author: ymzhao@sjtu.edu.cn

Let us first define Sp, Sn, S2p, and S2n, by differences of the
binding energies as follows:

Sp(Z,N) = B(Z,N ) − B(Z − 1, N ),

Sn(Z,N) = B(Z,N ) − B(Z,N − 1),
(1)

S2p(Z,N) = B(Z,N ) − B(Z − 2, N ),

S2n(Z,N) = B(Z,N ) − B(Z,N − 2).

We take the convention that binding energy B(Z,N) is posi-
tive. Under this convention, Sp , Sn, S2p, and S2n are all positive.

We begin our discussion by the linear relation between the
separation energies Sn and αNp + βNn [3]:

Sn = K(αNp + βNn) + C, (2)

where K and C are constants optimized by using experimental
data. Here all single- and double-magic nuclei, and N = Z

nuclei are excluded. Sp follow the same relation except that
the constants are different.

The correlation of Sn and Sp with optimal αNp ± Nn are
shown in Figs. 1 and 2. Here we take experimental data
compiled in the AME2011-preview [7], and consider not
only even-even but also odd-mass and odd-odd nuclei, with
proton numbers Z � 29. The results in each panel correspond
to different shells. The results of even-even, even-Z-odd-N ,
odd-Z-even-N , and odd-odd nuclei are denoted by squares,
diamonds, stars, and circles, respectively. One sees from
Figs. 1 and 2 that Sn and Sp in each of these four groups (even-
even, even-Z-odd-N , odd-Z-even-N , and odd-odd) follow
compact linear trajectories versus αNp ± Nn.

On the other hand, there are two types of odd-even
staggerings as follows. First, Sn (see Fig. 1) of nuclei with
even neutron numbers N are systematically larger than those
of their odd-N neighbors, and Sp (see Fig. 2) of nuclei with
even proton numbers Z are larger than those of their odd-Z
neighbors. Such odd-even staggering in separation energies
has been well known and understood in terms of the pairing
interaction. Second, there is an interesting and subtle odd-even
staggering in both Sn and Sp: If one scrutinizes the results of
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FIG. 1. (Color online) Experimental Sn (in MeV, taken from the AME2011-preview [7]) versus αNp + βNn for different mass regions. The
numbers in each panel correspond to Z, N , α, and β, respectively; for instance (29 ∼ 39, 39 ∼ 49, +1.99, +1) in (a) means that Z = 29 ∼ 39,
N = 39 ∼ 49, α = +1.99, and β = +1. Strong linear correlation between Sn and αNp + βNn is easily noticed.

Sn, one sees that the trajectory of Sn for even-even nuclei is
very slightly higher than that of its neighboring nuclei with
odd Z and even N , and the trajectory of Sn for odd-odd nuclei
is very slightly larger than that of its neighboring nuclei with
even Z and odd N . Similarly, the trajectory of Sp for even-even
nuclei is slightly higher than that with even Z and odd N , and
that for odd-odd nuclei is slightly higher than that with odd Z

and even N . Such subtle odd-even staggerings are new, and
are pointed out here for the first time.

We furthermore suggest that these odd-even staggerings can
be essentially traced back to the pairing interaction [denoted
by Vpairing(Z,N )] and the symmetry energy [denoted by
Vsym(Z,N)] in the modified Bethe-Weizsäcker formula [8].
According to Ref. [8],

Vpairing(Z,N ) = apairingA
−1/3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 − I for even Z and even N,

I for odd Z and odd N,

1 − I for odd Z and even N with Z < N,

1 for odd Z and even N with Z > N,

1 − I for even Z and odd N with Z > N,

1 for even Z and odd N with Z < N,

(3)

and

Vsym(Z,N) = csymI 2A

(
1 − κ

A1/3
+ 2 − I

2 + IA

)
, (4)

where apairing = 5.4423 MeV, csym = −29.1563 MeV, κ = 1.3484, and I = |N − Z|/A.
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FIG. 2. (Color online) Same as Fig. 1 except for Sp (in MeV) versus αNp + βNn.

From Eq. (1) we obtain the energies in [Sn(Z,N ) − Sn(Z,N − 1)] contributed by the pairing interaction and the symmetry
energy as follows:

[Sn(Z,N ) − Sn(Z,N − 1)]pairing = Vpairing(Z,N) + Vpairing(Z,N − 2) − 2Vpairing(Z,N − 1)

� 2apairingA
−1/3 + apairingA

−4/3

{
8/3 − 2IA even Z, even N

14/3 − 4IA odd Z, even N
, (5)

and

[Sn(Z,N ) − Sn(Z,N − 1)]sym

= Vsym(Z,N ) + Vsym(Z,N − 2) − 2Vsym(Z,N − 1)

� 2csym(A−1 − κA−4/3) + 2csymA−2(3 − 2IA)

+ 8csymκA−7/3(2IA/3 − 1), (6)

where N > Z is assumed. There are two terms on the right
hand side of Eq. (5). The first term is very large which is
∼1.90 MeV for A = 188. The second term is much smaller,
and different for odd and even Z (∼ −0.35 MeV for even Z and

∼ −0.68 MeV for odd Z, taking 188
76 Os and 189

77 Ir as examples).
Thus the average value of [Sn(Z,N) − Sn(Z,N − 1)]pairing is
1.40 MeV. The contribution from the symmetry energy of
Eq. (6) is ∼ −0.16 MeV for A = 188. Summing over these
two terms, one obtains that the value of Sn(Z,N ) of even-N
nuclei is larger than its odd-N neighboring nuclei by 1.24
MeV, on average. Because the contribution in [Sn(Z,N) −
Sn(Z,N − 1)] from other terms in the mass formulas are
negligibly small (�25 keV for A � 100), we conclude that
the odd-even difference of Sn (for even-N and odd-N ) is
dominantly given by the pairing interaction and the symmetry
energy.
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According to Eq. (2),

Sn(Z,N ) − Sn(Z,N − 1) � [C(Z,N ) − C(Z,N − 1)] − K,

(7)

where we assume the value of K is identical for even-even
and even-odd nuclei. The magnitude of the staggering for

C(Z,N) − C(Z,N − 1) of Fig. 1(j) is ∼2.00 MeV for even Z

and ∼1.20 MeV for odd Z, K is ∼0.14 MeV. Thus on average
the values of Sn(Z,N) with even N are larger than those with
odd N by ∼1.46 MeV. This difference is close to our evaluation
(∼1.24 MeV) contributed by pairing interaction and symmetry
energy in Eqs. (5) and (6), by using A = 188 − 189 nuclei.

Similarly, we obtain for N > Z + 1 and A > 100,

[Sn(Z,N ) − Sn(Z − 1, N)]pairing = Vpairing(Z,N ) + Vpairing(Z − 1, N − 1) − Vpairing(Z,N − 1) − Vpairing(Z − 1, N )

� apairingA
−4/3

{
(IA + 4I + 1/3) for even Z and even N

(IA − 4I/3 − 1/3) for odd Z and odd N

� apairingA
−4/3|N − Z|, (8)

and

[Sn(Z,N ) − Sn(Z − 1, N)]sym = Vsym(Z,N ) + Vsym(Z − 1, N − 1) − Vsym(Z,N − 1) − Vsym(Z − 1, N)

� −2csym(A−1 − κA−4/3). (9)

The value of [Sn(Z,N ) − Sn(Z − 1, N )]pairing on the right
hand side of Eq. (8) ∼0.18 MeV for 188

76 Os and 188
77 Ir, and

[Sn(Z,N) − Sn(Z − 1, N)]sym for A = 188 is ∼0.24 MeV.
Summing over these two terms, we obtain that the total
contribution of pairing interaction and symmetry energy
in [Sn(Z,N ) − Sn(Z − 1, N)] is ∼0.42 MeV. According to
Eq. (2),

Sn(Z,N ) − Sn(Z − 1, N )

� [C(Z,N ) − C(Z − 1, N)] + K|α|. (10)

The magnitude of staggering for C(Z,N ) − C(Z − 1, N)
in Fig. 1(j) is ∼0.30 MeV for even Z and ∼0.45 MeV
for odd Z, |Kα| is ∼0.27 MeV. Therefore the value
of Sn(Z,N ) − Sn(Z − 1, N ) for A = 188 in Fig. 1(j) is
0.64 MeV (close to 0.42 MeV, evaluated in terms of pairing
and symmetry energy). We note that the value of [Sn(Z,N ) −
Sn(Z − 1, N)] is ∼0.44 MeV by using Eqs. (8) and (9) and
[Sn(Z,N) − Sn(Z − 1, N)] ∼0.53 MeV in Fig. 1, on average
for A � 100.

The results for Sp are very similar. We have very similar
formulas and explanations of odd-even staggerings as above
for Sn.

We also note that the above discussions are consistent with
the previous interpretation [9] of the odd-even staggering in
proton-neutron interaction [10–16] between the last one proton
and one neutron, denoted by δV1p−1n(Z,N ),

δV1p−1n(Z,N ) = Sn(Z,N) − Sn(Z − 1, N)

= Sp(Z,N) − Sp(Z,N − 1).

In Ref. [9] it was noted that the values of δV1p−1n(Z,N)
for even-A nuclei are systematically larger in magnitude than
those of their odd-A neighboring nuclei.

Now we come to the two-proton and two-neutron separation
energies S2n and S2p, the results of which are summarized in
Figs. 3 and 4, respectively. It is easy to obtain

S2n(Z,N) = Sn(Z,N) + Sn(Z,N − 1),
(11)

S2p(Z,N) = Sp(Z,N) + Sp(Z − 1, N ).

Thus nuclei with Z = Zmagic, N = Nmagic, N = Nmagic + 1,
Z = N , and Z = N − 1 for S2n, the nuclei with Z = Zmagic,
N = Nmagic, Z = Zmagic + 1, Z = N , and Z = N + 1 for S2p

(Zmagic and Nmagic denote magic numbers for protons and
neutrons, respectively) are excluded and should be treated as
exceptions, as shown in Eq. (11).

Figures 3 and 4 show that both S2n and S2p are linear in
terms of αNp ± Nn, without noticeable differences between
the results those of even-even, odd-mass, and odd-odd nuclei.
Here also we note a few “exceptions” which show slight
deviations to our linear correlations. These exceptions include
S2n with Z = 39 of panels (b) and (d), Z = 66 and N = 93
of panel (h), Z = 83, 84 and N = 153, 154 of panel (l) of
Fig. 3; and S2p with Z = 30, 39 and N = 39 of panel (a),
Z = 39 of panel (d) and Z = 84–86 of panel (l) of Fig. 4.
These exceptional cases are either very close to closed shells
or midshell. The reason for these deviations should be studied
in the future.

From Eqs. (3)–(4) we obtain

[S2n(Z,N ) − S2n(Z,N − 1)]pairing = Vpairing(Z,N ) − Vpairing(Z,N − 2) − Vpairing(Z,N − 1) + Vpairing(Z,N − 3)

� −apairingA
−4/3

{
8/3(1 − I ) for even Z and even N

14/3 − 16I/3 for odd Z and even N
,
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[S2n(Z,N ) − S2n(Z,N − 1)]sym = Vsym(Z,N ) − Vsym(Z,N − 2) − Vsym(Z,N − 1) + Vsym(Z,N − 3)

� 4csym(A−1 − κA−4/3) + 2csymA−2(9 − 4IA) + 8csymκA−7/3(4IA/3 − 3). (12)

In Eq. (12) [S2n(Z,N ) − S2n(Z,N − 1)]pairing ∼ −0.01 and
−0.02 MeV for 188

76 Os and 189
77 Ir, and [S2n(Z,N) − S2n(Z,N −

1)]sym∼ −0.33 MeV for 188
76 Os and 189

77 Ir. Eq. (12) shows that
S2n(Z,N ) is always smaller than S2n(Z,N − 1) by ∼0.3 MeV
on average for A � 100. This is essentially originated from the
symmetry energy. Without details we note a subtle odd-even
effect as follows. Suppose that both Z and N are even. Ac-
cording to the experimental data, S2n(Z,N) − S2n(Z,N − 1)
� −0.41 MeV, and S2n(Z,N−1) − S2n(Z,N − 2) � −0.28
MeV, on average. In Fig. 1(j), K is 0.14 MeV, and by using
Eqs. (7) and (11) one obtains that S2n(Z,N) − S2n(Z,N − 1)
� −2K � −0.28 MeV. This is close to [S2n(Z,N) −
S2n(Z,N − 1)]sym∼ −0.33 MeV. For [S2n(Z,N ) − S2n

(Z − 1, N)], [S2p(Z,N ) − S2p(Z − 1, N)], and [S2p(Z,N) −
S2p(Z,N − 1)], the situation is very similar.

In Table I, we list the root-mean-squared deviations
(RMSD) (in keV) of predicted values by using Eq. (2)
with respect to experimental values for Sn, Sp, S2n, and S2p

compiled in the AME2011-preview [7] in different shells. One
sees large RMSD values for S2n of Figs. 3(b), 3(d), 3(h), and
3(l) and for S2p of Figs. 4(a), 4(d), and 4(l). The RMSD values
of these cases would be reduced if our above exceptions were
excluded: the RMSD values would be 368, 291, 368, and
380 keV for S2n in Figs. 3(b), 3(d), 3(h), and 3(l); is 342, 336,
383 keV for S2p in Figs. 4(a), 4(d), and 4(l), respectively.

The small RMSD of Eq. (2) from experimental data encour-
ages us to go further. One might apply these linear relations
in terms of αNp ± Nn in predicting unknown separation
energies. Towards that goal, one should first investigate their
predictive power. Here we take the experimental database

0 10 20 30
10

20

30

S
2n

(M
eV

)

(a) (29~39,39~49,+1.90,+1)

5 10 15
5

10

15

20
(b) (29~39,52~66,+1.75,−1)

−25 −20 −15 −10
20

25

30
(c) (39~49,39~49,−2.40,+1)

−30 −20 −10 0

10

20

30
(d) (39~49,52~66,−1.69,−1)

−10 −5 0 5 10 15

10

15

20 (e) (39~49,66~81,−2.50,+1)

−15 −10 −5 0
15

20

25
(f) (51~66,52~66,+1.62,−1)

0 10 20 30

15

20

25 (g) (51~66,66~81,+1.71,+1)

0 10 20 30 40
5

15

25
(h) (51~66,84~104,+2.61,−1)

−50 −40 −30 −20 −10
10

15

20

25 (i) (66~81,84~104,−1.65,−1)

−10 0 10 20
10

15

20
(j) (66~81,104~125,−2.01,1)

0 5 10 15 20 25

15

20

25
(k) (83~104,104~125,1.38,1)

−10 0 10 20
5

10

15

20

α N
p
 + β N

n

(l) (83~104,128~154,2.09,−1)

even−Z, even−N even−Z, odd−N odd−Z, even−N odd−Z, odd−N

FIG. 3. (Color online) Same as Fig. 1 except for S2n (in MeV) versus αNp + βNn.
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FIG. 4. (Color online) Same as Fig. 1 except for the S2p (in MeV) versus αNp + βNn.

of the AME2003 [17] and predict separation energies. We
compare our predicted separation energies which were not

TABLE I. The root-mean-square deviations (RMSD) (in keV) of
linear relations in terms of αNp ± Nn for Sn, Sp , S2n, and S2p with
respect to the AME2011-preview [7], for different mass regions.

Z Sn Sp S2n S2p

(a) 254 305 335 455
(b) 267 197 422 158
(c) 170 287 190 185
(d) 258 230 328 452
(e) 166 283 190 235
(f) 201 211 108 185
(g) 195 138 225 184
(h) 259 241 432 303
(i) 191 215 245 304
(j) 174 213 248 299
(k) 92 120 88 96
(l) 291 277 473 479

accessible experimentally in the AME2003 [17] but were
measured in the last decade and compiled in the AME2011-
preview [7]. These new experimental data include 131 Sn,
131 Sp, 104 S2n, and 118 S2p. In Table II the RMSD values
of our predicted separation energies with respect to these
new experimental data are listed and compared with those of
predicted results in Refs. [9,17]. One sees that the predictions
in this paper works very well except cases (a)–(c) and (l) (i.e.,
small-A and the largest A cases). Among them, for (d), (e),
(g), and (k) the predicted results are competitive with those in
Refs. [9,17]. Therefore, we present our predicted separation
energies based on the AME2011 experimental database [7] for
these four cases. Our predicted results include 480 unknown
Sn, 296 Sp, 354 S2n, and 221 S2p by either interpolation or
extrapolation according to Eq. (2). These predicted results are
tabulated in [18].

To summarize, in this paper we study separation energies,
Sn, Sp, S2n, and S2p, in the valence correlation scheme. These
separation energies are linear in terms of αNp ± Nn. This work
is an extension of Ref. [3], in which Sn and Sp of even-even
nuclei were investigated. Here we consider all types of nuclei,
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TABLE II. The RMSD’s (in keV) of our predicted separation energies based on the experimental database compiled in the AME2003 [17],
with respect to new experimental data which are not experimentally accessible in the AME2003 but compiled in the AME2011-preview [7],
including 131 Sn, 131 Sp , 104 S2n, and 118 S2p. (I, II, III) correspond to the RMSD of our predicted results assuming the experimental database
of AME2003, and the RMSD of predicted results in the AME2003 [17] and in Ref. [9], respectively. We also present the numbers of these
new experimental data of the AME2011-preview [7] in each mass region (denoted as N ). One sees that the accuracy of our predictions are
competitive in a few regions in comparison with Refs. [9,17].

Z Sn Sp S2n S2p

(I)/(II)/(III)/N (I)/(II)/(III)/N (I)/(II)/(III)/N (I)/(II)/(III)/N

(a) 522/178/288/3 677/279/246/4 384/393/369/3 1084/246/205/4
(b) 260/207/309/15 393/227/231/15 442/278/438/12 432/271/372/15
(c) 568/430/355/12 327/374/459/14 766/557/574/8 327/378/385/15
(d) 180/179/206/7 308/343/341/8 229/410/471/7 248/631/576/7
(e) 256/194/182/15 258/432/376/13 356/310/264/13 468/648/516/13
(f) 210/77/177/16 240/106/202/16 467/117/192/12 305/123/142/10
(g) 186/410/197/3 275/430/241/6 200/413/204/3 201/369/176/2
(h) 326/193/192/16 277/339/260/17 607/233/223/15 580/326/270/17
(i) 208/101/104/16 322/99/91/13 141/113/119/7 457/95/101/9
(j) –/–/–/– –/–/–/– –/–/–/– –/–/–/–
(k) 173/–/232/6 81/–/302/5 73/–/213/7 99/–/160/5
(l) 369/84/111/22 330/82/214/20 614/89/172/17 547/98/261/21

not only even-even but also odd-mass and odd-odd. In addition
we also discuss S2n and S2p.

Two types of odd-even staggerings are discussed. First,
Sn for nuclei with even neutron numbers N are systematically
larger than those of their odd-N neighbors, and similarly, Sp for
nuclei with even proton numbers Z are systematically larger
than those of their odd-Z neighbors. This odd-even staggering
has been known and understood well in the literature. Second,
Sn for an even-even nucleus is very slightly larger than that of
its neighboring nuclei with odd Z and even N , and Sn of an
odd-odd nucleus is slightly larger than that of its neighboring
nuclei with even Z and odd N . Similarly, Sp for an even-even
nucleus is slightly larger than its neighboring nuclei with even
Z and odd N , and Sp of an odd-odd nucleus is slightly
larger than that of its neighboring nuclei with odd Z and
even N . This is a very subtle effect, and is discerned in this
paper.

We discuss the above odd-even staggerings of these separa-
tion energies in terms of pairing correlation and symmetry

energy of the mass formula in Ref. [8]. The pairing and
symmetry energy terms present the staggerings reported here
with desired behaviors, yet there are sizable differences
(20–30%) in magnitude between staggerings exhibited by
experimental data (i.e., Figs. 1–4) and those given by pairing
and symmetry energy. Further studies in future are thus
warranted to understand these staggerings.

We also discuss the accuracy of the linear relations between
these separation energies in terms of αNp ± Nn. For many
cases these relations works remarkably well. We make use
of these relations and predict Sn, Sp, S2n, and S2p for a few
regions.
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