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Validity of the generalized density matrix method for the microscopic calculation
of a collective/bosonic Hamiltonian
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Recently a generalized density matrix (GDM) procedure was proposed [Jia and Zelevinsky, Phys. Rev.
C 84, 064311 (2011)] for calculating a collective/bosonic Hamiltonian microscopically from the shell-model
Hamiltonian. In this work we examine the validity of the method by comparing the GDM results with those of
the exact shell-model diagonalization in a number of models. It is shown that the GDM method reproduces the
low-lying collective states quite well, both for energies and transition rates, across the whole region going from
vibrational to γ -unstable and deformed nuclei.
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I. INTRODUCTION

A long-standing problem in nuclear physics is under-
standing how macroscopic collective dynamics arise from
microscopic single-particle motion. The shell model (config-
uration interaction) successfully reproduces various collective
behaviors by diagonalizing the nucleonic Hamiltonian in a
huge Slater-determinant basis. However, the dimension of
the basis makes it impractical for cases with many relevant
orbitals. On the other hand, phenomenological bosonic ap-
proaches are often successful in explaining the experimental
data (first of all the geometric Bohr Hamiltonian [1,2] and the
interacting boson model [3]). This shows that, out of the huge
Slater-determinant space, there exist a few collective degrees
of freedom, which are usually sufficient for describing the
low-lying collective states. Serious efforts were devoted to
deriving the parameters of the collective Hamiltonian from the
underlying shell-model Hamiltonian. However, the complete
theory is still missing.

Recently we proposed [4] a procedure based on the gener-
alized density matrix (GDM) that was originally formulated
in Refs. [5–8]. This procedure is simple, clean, and consistent.
In compact form, there are only two equations, Eqs. (14)
and (23) in Ref. [4]. Results from the lowest orders give the
well-known Hatree-Fock (HF) equations and random phase
approximation (RPA). Higher orders fix the anharmonic terms
in the collective/bosonic Hamiltonian. The aim of this work is
to demonstrate the validity of the GDM method. In the next
section we compare the GDM results with those of the exact
shell-model diagonalization in a number of models.

II. COMPARISON WITH EXACT RESULTS

In this work, for simplicity, we restrict ourselves to systems
without rotational symmetry. The GDM formulation with
angular-momentum vector coupling has been considered in
Ref. [9]. The single particle (s.p.) space in this work is drawn
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schematically in Fig. 1. There are two groups of degenerate
s.p. levels. The Fermi surface is in between; thus without
interaction, the lower levels are completely filled and upper
levels are empty. Each s.p. level has a quantum number m

that is a half integer. Degenerate time-reversal pairs have m of
opposite sign, m1̃ = −m1. For fermions, | ˜̃1〉 = −|1〉, and we
choose the phases such that

|m̃〉 = |−m〉, |−̃m〉 = −|m〉 (m > 0).

We assume a two-body Hamiltonian,

H =
∑

1

e1a
†
1a1 + 1

4

∑
1234

V1234N [a†
1a

†
2a3a4], (1)

where the s.p. energies e1 = ± 1
2 for the upper and lower levels,

respectively. The density matrix without interaction is ρ12 =
δ12n1, where the occupation number n1 = 1(0) for the lower
(upper) s.p. levels. N [a†

1a
†
2a3a4] is the normal-ordering form

of operators. The residual interaction is of multipole-multipole
type,

V1234 = −κ(q14q23 − q13q24),

where the multipole operator Q = ∑
12 q12a

†
1a2 is Hermitian

and time even. For simplicity we assume that q is real, and
thus

q12 = q21 = q2̃1̃ = q1̃2̃.

Operator q has certain selection rules with respect to quantum
number m, which will be specified later. We further set
diagonal matrix elements of q to zero, q11 = 0; hence in the
mean field, Q(00) = Tr[qρ] = 0.

Following the procedure in Ref. [4], we are able to map the
fermionic Hamiltonian (1) onto a bosonic Hamiltonian,

Hb = ω2 α2

2
+ π2

2
+ 	(30) α

3

3!
+ 	(12) {α, π2}

4
+ 	(40) α

4

4!

+	(22) {α2, π2}
8

+ 	(04) π
4

4!
+ 	(50) α

5

5!
+ · · · , (2)

where the collective coordinate α and momentum π satisfy
[α, π ] = i. Together, the generalized density matrices r (mn)
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FIG. 1. Single-particle level scheme. 1̃ is the time-reversal level of 1. Each level has a quantum number m.

defined in the expansion

R12 ≡ a
†
2a1 = ρ12 + r

(10)
12 α + r

(01)
12 π + r

(20)
12

α2

2
+ · · · (3)

are solved in terms of 	(mn). The bosonic Hamiltonian Hb

(2) should reproduce the low-lying collective spectrum of
the original nucleonic Hamiltonian H (1). Substituting the
solution (3) into Q = ∑

12 q12a
†
1a2, we get the boson image of

the multipole operator,

Qb = Q(10)α + Q(20) α
2

2
+ Q(02) π

2

2
+ Q(30) α

3

3!
+ · · · , (4)

where Q(mn) = Tr[qr (mn)], and time-odd terms vanish auto-
matically. The transition rates calculated from Qb between
eigenstates of Hb should reproduce those of Q between
eigenstates of H .

As shown in Ref. [4], the GDM method fixes Hb completely.
In each even order (quadratic, quartic,. . .) in Hb, the GDM
method gives one constraint on 	(mn)’s. The number of
constraints is the same as that of independent parameters in
Hb, removing in Eq. (2) superficial degrees of freedom owing
to canonical transformations of α and π conserving [α, π ] = i.

In the following we consider four models with different
structures (different configurations of s.p. levels and different
selection rules of q).

Model 1. We start with the simplest case. Both the
upper and lower group have 12 degenerate s.p. levels with
quantum numbers m = ± 1

2 ,± 3
2 , . . . ,± 11

2 . Operator q has the
selection rule 
m = 0; that is, q12 vanishes unless m1 = m2.
The nonvanishing matrix elements q12 (m1 = m2) are set
to be 1.

In this model we find by numerical computation an addi-
tional “symmetry.” Namely, in Hamiltonian (2) there are only
three nonvanishing terms: ω2, 	(40), and 	(22) (besides π2/2).
This is similar to the “quasi-angular-momentum symmetry”
in the Lipkin model, where the only three nonvanishing terms
are ω2, 	(40), and 	(04) (see Ref. [4]).

The results for this model are shown in Fig. 2. The GDM
calculation reproduces the exact results of the shell model quite
well, both for energies and transition rates. In the shell model
we calculate the lowest several states by the Lanczos method.
The dashed line in the upper panel is the beginning of the
s.p. continuum (s.p. excitations with high level density); only
those collective states below the continuum are calculated (due
to computation time). In the GDM calculation the resulting
bosonic Hamiltonian is diagonalized in a finite “physical”
bosonic space, {|0 � n � 12〉}, where 12 is the number of
fermions. |n〉 is the n-phonon state, A†A|n〉 = n|n〉, and

A† = (uα + ivπ )/
√

2, uv = −1. The coefficient u is fixed by
minimizing A|HF〉 in its one-particle–one-hole components,
where |HF〉 is the Hartree-Fock ground state that is mapped

onto the bosonic state |n = 0〉. The result is u4 =
∑

2<F<1 |r (10)
12 |2∑

2<F<1 |r (01)
12 |2 ,

where the summation indices 1 and 2 run over unoccupied and
occupied s.p. levels, respectively (F denotes Fermi surface).
In models of this work, u is a number close to 1. The shown
GDM energies and transitions are practically independent of
small variations of u around the above value.

As κ increases, the system goes from vibrational to γ -
unstable region. In the vibrational region, higher excited states
are influenced more by the anharmonicities, as expected. At
large κ the spectrum becomes doubly degenerate in a deep
double-well potential (large negative ω2). This is the analog of
γ -instability of realistic nuclei in three dimensions.
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FIG. 2. (Color online) Excitation energies En − E0 and transition
matrix elements 〈m|Q|n〉 in model 1 as a function of κ . The black
solid lines are exact results of shell-model diagonalization. The black
dashed line is the beginning of the single-particle continuum. The
red dashed-dotted lines are the RPA results. The blue symbols are the
GDM results. The stars are energies; the squares, circles, up triangles,
and down triangles are matrix elements of Q between different states.
Matrix elements 〈m|Q|n〉 that are not shown vanish in both the shell
model and the GDM calculations.
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FIG. 3. (Color online) Excitation energies En − E0 and transition
matrix elements 〈0|Q|1〉 in model 2 as a function of κ . The black
solid lines are exact results of shell-model diagonalization. The black
dashed line is the beginning of the single-particle continuum. The
red dashed-dotted lines are the RPA results. The blue symbols (stars,
up triangles, and circles) are results of three different sets of GDM
calculations, as labeled in the legend.

An important point is that the GDM method works better
with increasing collectivity �, the number of effective simple
particle-hole excitations contributing to the collective mode.
Another calculation has been done (not shown here) with 8
particles in 16 s.p. levels. The GDM results of the current
calculation (12 particles in 24 s.p. levels) have very clear
improvement over those of the former. In other words, the
error in Fig. 2 may be of order 1/�. The largest part of this
error may come from the RPA frequency ω2. At the current
stage, the GDM method calculates all 	(mn) in their leading
order of 1/� but not the next. If the correct ω2 = 	(20) was
smaller by a 1/� term than the one determined here by the
RPA equation, all the GDM curves would be shifted to the
left (smaller κ), which would decrease greatly the systematic
error (see Fig. 2). This systematic error owing to inaccurate ω2

was present in all models in this work (see Figs. 3–5). Also, it
is confirmed in the Lipkin model where everything is known
analytically (see Ref. [4]). Hence an achieved improvement
would be calculating ω2 in its next-to-leading order of 1/�.

Model 2. This model has the same s.p. configuration,
but the operator q has now the selection rule 
m = 0,±1.
Nonvanishing q12 are still set to be 1. Here we do not find
additional symmetry as in model 1, so the problem exists of
what should be the “best” mapping. In the following we did
three sets of GDM calculations. The first calculation is possibly
simplest, which keeps only 	(40) (besides ω2α2/2 and π2/2)
in Hb, fixed by the constraint from the fourth order in equation
of motion (EOM). The second calculation keeps the lowest
two potential (no π dependence) terms 	(40) and 	(60), which
are fixed by the two constraints from up to the sixth order in
EOM. The third calculation keeps all quartic anharmonicities,
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FIG. 4. (Color online) Excitation energies En − E0 and transition
matrix elements 〈m|Q|n〉 in model 3 as a function of κ . The black
solid lines are exact results of shell-model diagonalization. The black
dashed line is the beginning of the single-particle continuum. The
red dashed-dotted lines are the RPA results. The blue symbols are
the GDM results. The stars are energies; the squares, circles, and up
triangles are matrix elements of Q between different states.

	(40), 	(22), and 	(04), fixed by the three constraints from up
to the eighth order in EOM.

We first notice in Fig. 3 that in this model the s.p. continuum
goes down with increasing κ , as opposed to going up in model
1. This is because now mixing of s.p. levels within the upper
(lower) group is allowed by the selection rule that 
m can be
±1. As a result, originally degenerate levels from the upper
(lower) group get a finite spread, which reduces the gap of the
s.p. continuum. Only the first excited state is within the gap
and calculated in the shell model.

In the GDM calculations we see that the simplest one-
degree-of-freedom (	(40)) calculation is reasonably good in
most cases except at very large κ . The other two calculations
(	(40/60) and 	(40/22/04)) give essentially the same results
(for the quantities shown in Fig. 3), although their common
parameter, 	(40), is different. This insensitivity of GDM results
to the degrees of freedom chosen, is important. As we said,
two different bosonic Hamiltonians could be equivalent if they
were related by canonical transformations/renormalizations of
variables α and π . This insensitivity simply says that the GDM
formalism knows these renormalizations and does them cor-
rectly. In model 1 we also find this insensitivity (not shown). Fi-
nally we notice that in regions of ω2 ∼ 1/�, calculations that
go to higher orders in EOM may give unphysical results. This is
again because the EOMs are accurate only in the leading order
of 1/�. The fact that this “divergence” appears slightly before
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FIG. 5. (Color online) Excitation energies En − E0 and transition
matrix elements 〈m|Q|n〉 in model 4 as a function of κ . The black
solid lines are exact results of shell-model diagonalization. The black
dashed line is the beginning of the single-particle continuum. The
red dashed-dotted lines are the RPA results. The blue symbols are
the GDM results. The stars are energies; the squares, circles, and up
triangles are matrix elements of Q between different states.

the instability point of RPA shown in Fig. 3 indicates again that
the correct ω2 may be smaller than the one calculated by RPA.

Models 3 and 4. At last we consider two models with s.p.
configurations that are asymmetric in upper and lower groups,
which generates odd anharmonicities that are necessary for
deformation. In model 3, the lower group has 10 s.p. levels
with m = ± 3

2 , . . . ,± 11
2 , and the upper group has 14 s.p. levels

with m = ± 1
2 , . . . ,± 13

2 . In model 4, the lower group has
12 s.p. levels with m = ± 1

2 , . . . ,± 11
2 , and the upper group

has 10 s.p. levels with m = ± 1
2 , . . . ,± 9

2 . In both models,
operator q still has the selection rule of 
m = 0,±1, with
nonvanishing matrix elements set to be 1. Model 3 has a
slightly larger asymmetry than that of model 4, and their signs
of the asymmetry are different.

These two models are more complicated in the sense
that now there are more active degrees of freedom (odd
anharmonicities). In the GDM method, possibly the simplest
calculation is done. We keep in Hb only 	(30), 	(12), and
	(40) (besides ω2α2/2 and π2/2). 	(30) and 	(12) are fixed
by requiring Q(20) = Q(02) = 0 in the solution (4). Then 	(40)

is fixed by the constraint from the fourth order in EOM. The
requirement Q(20) = Q(02) = 0 is the same as that for models
1 and 2 without upper-lower asymmetry, by which 	(30) and
	(12) vanish.

The results are shown in Figs. 4 and 5. The deformation
begins around the critical point of RPA when ω2 becomes
negative. In the vibrational region the potential is stiff and
deformation is not easy. As κ increases, the potential becomes
flat on the bottom and finally has a double-well shape. Then,

even a relatively small odd anharmonicity (here mainly 	(30))
can tilt the potential and generate large deformation. We
notice first that the GDM calculations give the correct sign
of deformations: positive and negative for the ground and
first-excited state of model 3, and vice versa for model 4. In
realistic situation 	(30)[(α̂ × α̂)2 × α̂]0 ∼ 	(30)β3 cos 3γ (α̂ is
the quadrupole phonon and β, γ are Bohr angles), the sign of
	(30) “determines” the intrinsic shape of the nucleus (prolate
or oblate). This is especially interesting in the transitional
regions, where the rotor formula is not applicable. Second,
the quantitative agreement of deformation is also good except
at the largest κ . There the deformation “saturates” toward its
maximal possible value within the model space, favored by
energy. Meanwhile in the boson mapping, we are too close
to the boundary of the finite physical bosonic space, and
the GDM results become inaccurate. In realistic nuclei this
“saturation” may not happen. The number of participating and
active nucleons is usually around 30 in well-deformed nuclei,
which is much larger than the number (typically 10) in the
current models. Finally, we point out that the first-excited
state in our simple models is not a “rotational” state; rather
it corresponds to the next “band head” in realistic rotational
nuclei. The rotational states that are very low in energy come
in only in three dimensions.

III. CONCLUSION

In this work we demonstrate the validity of the GDM pro-
cedure for microscopic calculation of the collective/bosonic
Hamiltonian. The lowest several states of this bosonic Hamil-
tonian reproduce quite well the collective states of the exact
shell model, both for energies and transition rates, in a wide
range from vibrational, γ -unstable, to deformed systems.
Specifically, we show that deformation can be described
without introducing a deformed mean field. The traditional
procedure of “symmetry breaking and restoration,” first “stat-
ically” breaks rotational symmetry in the ground state by
representing the latter as a Slater determinant of deformed
s.p. levels (Nilsson levels) and then projects afterward to
good angular momentum. However, in the case of large
shape fluctuations (flat minimum of energy surface) or shape
coexistence (two close minima), it may fail. On the other
hand, the GDM procedure always conserves the rotational
symmetry. Deformations are put in “dynamically” at higher
orders (for example, cubic terms) beyond the mean field. Thus
it is suitable to describe such phenomena as shape fluctuations
and coexistence.

In realistic nuclei, the gap of s.p. continuum is generated
by the pairing correlations. The GDM formalism based on
the Hartree-Fock-Bogoliubov variational method is straight-
forward as shown in Ref. [9]. However, another treatment may
be possible. Instead of introducing Bogoliubov quasiparticles
and representing the ground state as their vacuum, the pairing
correlations are considered in higher orders beyond the mean
field, by keeping both the particle-hole and particle-particle
channels in the factorization a

†
4a

†
3a2a1 ≈ a

†
4a1 · a

†
3a2 − a

†
4a2 ·

a
†
3a1 + a

†
4a

†
3 · a2a1. In this way the exact particle number is

always conserved. Work along this line is in progress, and
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results seem promising. We are also generalizing the GDM
code by including angular-momentum vector coupling that is
necessary for realistic calculations.
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