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Beyond-mean-field study of the possible “bubble” structure of 34Si
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4CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan, France
(Received 10 May 2012; revised manuscript received 24 May 2012; published 9 July 2012)

Recent self-consistent mean-field calculations predict a substantial depletion of the proton density in the
interior of 34Si. In the present study, we investigate how correlations beyond the mean field modify this finding.
The framework of the calculation is a particle-number and angular-momentum projected generator coordinate
method based on Hartree-Fock-Bogoliubov + Lipkin-Nogami states with axial quadrupole deformation. The
parametrization SLy4 of the Skyrme energy density functional is used together with a density-dependent pairing
energy functional. For the first time, the generator coordinate method is applied to the calculation of charge
densities. The impact of pairing correlations, symmetry restorations and shape mixing on the density profile is
analyzed step by step. All these effects significantly alter the radial density profile, and tend to bring it closer to
a Fermi-type density distribution.

DOI: 10.1103/PhysRevC.86.014310 PACS number(s): 21.10.Ft, 21.60.Jz, 21.10.Re, 27.30.+t

I. INTRODUCTION

Charge distributions in atomic nuclei [1–7] provide very
detailed information about nuclear structure. They are obtained
through the analysis of elastic electron-nucleus scattering data.
Because of the absence of suitable targets, data on unstable
nuclei are available, to the best of our knowledge, only for 14C
[8] and 3H [9,10]. The SCRIT project [11–13] of constructing
a high-resolution electron spectrometer that is underway in
Japan and ELISe [14], planned to be constructed at FAIR, are
expected to provide data about the charge distributions and
transition form factors for many exotic nuclei in the future.

Because of the saturation properties of the nuclear medium,
the radial dependence of the nuclear density takes, at the lowest
order, the form of a Fermi distribution. However, the density
often deviates from this simple behavior because of quantal
effects related to the filling of single-particle states with wave
functions that have specific spatial behavior. In this context,
s1/2 orbits in spherical nuclei have a very peculiar signature,
as they are the only ones that contribute to the density at the
nuclear center. Depending on whether they are filled or empty,
s1/2 orbits can generate a central bump in the density as it has
been observed for 40Ca [15], or a central depression.

Mean-field-based methods [16] are the tools of choice when
modeling the nuclear density distribution. Indeed, they include
the ingredients required for this task: the full model space of
occupied single-particle states as degrees of freedom together
with an effective interaction that reproduces the empirical
saturation properties of nuclear matter.

The density profile and the spatial dependence of the single-
particle potentials are closely related and self-consistently
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linked to each other. A central depression in the density
might be accompanied by two very specific properties of the
mean-field potential, one related to its central part and a second
one related to the spin-orbit potential.

A central depression of the density is reflected in the central
potential by a maximum at the origin and a minimum for some
finite distance r . This is often called a “wine-bottle” shaped
central potential, referring to the shape of the bottom of a
bottle of wine. Levels with low orbital angular momentum �

are then pushed up relatively to those with large � that are
pulled down. For sufficiently large rearrangement, the order
of single-particle levels can even change, lowering the central
density even more and leading to the so-called “bubble nuclei”.
For specific “bubble magic numbers” 18, 34, 50, 58, 80,
120, ... [17,18] large shell effects might compensate for the
loss in binding energy due to the reduced central density well
below the nuclear matter saturation value. There was some
speculation in the 1970s whether such structure could exist
in nuclei that were about to become accessible for detailed
studies, in particular 36Ar and some Hg isotopes [17–24].
However, the possibility of a bubble structure in these nuclei
has been ruled out by experiment. By contrast, predictions that
superheavy and hyperheavy nuclei beyond the currently known
region of the mass table might take the form of bubbles [25–29]
are still standing. In fact, for a large charge number Z, a hollow
density distribution is energetically favored over a regular one
as it lowers the Coulomb repulsion. In this context, one often
distinguishes between “true bubbles”, which have vanishing
density in their center, and “semibubbles”, which have a central
density significantly lower than saturation density, but with a
nonzero value.

The second effect of a central depression concerns the
spin-orbit potential. In self-consistent mean-field models, this
potential is proportional to the gradient of a combination of
proton and neutron densities, whose relative weights depend
on the model and parametrization [16,27]. For nuclei with a
regular density profile, it is peaked at the nuclear surface. For
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nuclei with a central depletion of the density, the spin-orbit
potential has a second peak of opposite sign in the nuclear
interior. This usually reduces the spin-orbit splitting of orbits
located mainly at the nucleus center, whereas that of orbits
situated at the nuclear surface is not affected.

Recently, there has been a renewal of interest in nuclei
presenting a hollow in their density distributions. Some
modern parametrizations of the relativistic mean field [30,31]
and of the Skyrme energy density functional (EDF) [32,33]
predict a hollow proton density for 34Si and some neutron-rich
Ar isotopes. At the time being, 34Si stands out as the only
candidate on which many different effective interactions agree.
The possible proton bubble structure of this nucleus has also
been suggested as an explanation of the results on the transfer
reactions 36S(d, p)37S and 34Si(d, p)35Si. Indeed, the splitting
between the observed neutron 3/2− and 1/2− levels that have
the largest spectroscopic factors in the 2p shell is decreased
from 37S (≈1.7 MeV) to 35Si (≈1.1 MeV) [34,35].

Besides the debatable interaction dependence of the density
distributions, one may wonder whether bubble-type structures
are stable against correlation effects. Indeed, any correlation
will inevitably populate empty levels and in particular the
2s1/2, even in models like the one that we use here, where its
population cannot be easily singled out. In fact, it is known for
a long time that, already for nuclei with a more regular density
distribution, mean-field calculations tend to overestimate the
spatial fluctuations of the density when compared to data.
Correlations usually tend to flatten out the density distribution,
and often bring it closer to data. The effect of pairing has
been studied in Ref. [36], and the impact of fluctuations in
shape degrees of freedom has been studied within the random
phase approximation (RPA) for many spherical nuclei [37–44]
and using a one-dimensional [45] or five-dimensional [39,40,
46] microscopic collective Hamiltonian for some transitional
ones.

The most obvious correlations that could reduce the central
depression of the density are due to pairing [21]. However,
many calculations made for bubble nuclei do not include
them [19,20,22,24]. This can be justified for 34Si, where the
large gap between the proton 1d5/2 and 2s1/2 levels suppresses
pairing, resulting in its unphysical collapse when treated
with the Hartree-Fock-Bogoliubov (HFB) method. Pairing
correlations have then to be treated beyond the mean field
approximation. Another kind of correlations that might affect
the density profile is related to the spreading of the ground-state
wave function around the mean-field configuration. It has been
pointed out in Ref. [47] that the ground states of most light
nuclei may show strong shape fluctuations that in general lead
to a substantial increase of their charge radii when treated in
a beyond-mean-field framework. The same effect may also
strongly influence the density profile.

In the following, we will compare results obtained from
calculations that successively add correlations to the ground-
state wave function:

(i) Spherical mean-field calculations without taking pair-
ing correlations into account (HF).

(ii) Spherical mean-field calculations including pair-
ing correlations within the HFB + Lipkin-Nogami

(HFB + LN) scheme, which constitutes an approximate
variation after projection on particle number.

(iii) Particle-number projection after variation of the spher-
ical mean-field state obtained in HFB + LN.

(iv) Configuration mixing of angular-momentum J = 0 and
particle-number projected mean-field states with differ-
ent intrinsic axial quadrupole moment. We will refer to
these wave functions in the following as symmetry-
restored generator coordinate method (GCM).

In addition, we will study how much the observable charge
density, obtained through convolution of the proton density
with the proton’s internal charge distribution, differs from the
point proton density used to calculate the energy.

Symmetry-restored GCM has been used to describe ground-
state correlations and collective excitation spectra of a large
range of nuclei with reasonable success [48–53]. Its actual
implementations are not yet flexible enough to reproduce
correctly all details of excitation spectra, mainly because of
the usually too low moment of inertia. However, this method
describes rather well properties related to the nuclear shape,
such as transition probabilities. It is therefore important to
enlarge its range of applications by the calculation of charge
and transition densities in the laboratory frame. In this paper,
we report on a first application that enables us to illustrate
the effect of various kinds of correlations on the density
distribution of 34Si.

We will first give a brief outline of the model. Results for
low-lying collective states in 34Si are presented in Sec. III,
whereas the modification of the ground state density distribu-
tion brought by correlations is discussed in Sec. IV. Section V
will summarize our findings.

II. CALCULATIONAL DETAILS

The self-consistent HFB equations are solved on a cu-
bic three-dimensional coordinate-space mesh extending from
−11.2 fm to 11.2 fm in each direction with a step size of
0.8 fm. Thanks to the reflection symmetry with respect to
the x = 0, y = 0, and z = 0 planes imposed on the single-
particle wave functions in our code [54], it is sufficient to solve
the HFB equations in 1/8 of the box. The HFB equations are
complemented by the Lipkin-Nogami prescription to avoid
the unphysical breakdown of pairing correlations at low level
density. A constraint on the axial mass quadrupole moment
q ≡ 〈Q2〉 = 〈2z2 − x2 − y2〉 is used to construct mean-field
states |q〉 with different intrinsic deformation.

Eigenstates of the particle-number operators N̂ and Ẑ are
obtained by applying the projection operator

P̂N0 = 1

2π

∫ 2π

0
dϕ eiϕ(N̂−N0) (1)

for neutrons and protons. Eigenstates of the total angular
momentum in the laboratory frame Ĵ 2 and its z component
Ĵz with eigenvalues h̄2J (J + 1) and h̄M , respectively, are
obtained by applying the operator

P̂ J
MK = 2J + 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin(β)

∫ 2π

0
dγ DJ∗

MK R̂ (2)
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that contains the rotation operator R̂ = e−iαĴx e−iβĴy e−iγ Ĵz and
the Wigner rotation matrixDJ

MK (α, β, γ ) on the nucleus’ wave
function. Both depend on the Euler angles α, β, and γ . The
operator P̂ J

MK picks the component with projection K along
the intrinsic z axis from the mean-field state. Throughout this
study, we will restrict ourselves to axial states with K = 0. As
angular-momentum projected states will be always projected
also on particle number, we drop the indices N0 and Z0 for the
sake of compact notation:

|JMq〉 = P̂ J
M0P̂N0 P̂Z0 |q〉√

〈q|P̂ J
00P̂N0 P̂Z0 |q〉

. (3)

GCM [55] is a very flexible tool that in particular allows us
to study the spreading of the mean-field ground-state wave
function in collective degrees of freedom. It will be used
here to study the fluctuations of the spherical ground state of
34Si with respect to the axial quadrupole moment assuming
a superposition of projected HFB + LN states of different
deformation |q〉:

|JMμ〉 =
∑

q

f J
μ (q) |JMq〉 . (4)

The weight factors f J
μ (q) and the energies EJ

μ of the states
|JMμ〉 are the solutions of the Hill-Wheeler-Griffin equations
[55]

∑
q ′

[HJ (q, q ′) − EJ
μN J (q, q ′)] f J

μ (q ′) = 0 , (5)

where the norm kernel reads N J (q, q ′) = 〈JMq|JMq ′〉 and
where the energy kernel HJ (q, q ′) is given by a multireference
energy density functional that depends on the mixed density
matrix [56].

Throughout this article, we will use the parametrization
SLy4 [57] of the Skyrme energy density functional together
with a local pairing energy functional of surface type [58]
with parameters ρ0 = 0.16 fm−3 for the switching density and
V0 = −1000.0 MeV fm3 for the pairing strength unless noted
otherwise. A soft cutoff at ±5 MeV around the Fermi energy is
used when solving the HFB equations as described in Ref. [58].
More details about the calculations of the GCM kernels can
be found in Ref. [51] and references given therein.

The accuracy of our calculations has been checked by
recalculating the ground-state wave function of 34Si with a
mesh size of 0.4 fm, instead of 0.8 fm. This much smaller mesh
size does not affect the density at r = 0 or its maximum value
by more than 1%. The GCM calculation has been performed
with 15 HFB wave functions extending from −300 fm2 on
the oblate side to +450 fm2 on the prolate side. As checks
performed by modifying this set of points have demonstrated,
this choice ensures a good convergence of our results.

The weight functions f J
μ (q) in Eq. (4) are not orthogonal.

A set of orthonormal collective wave functions gJ
μ(q) can be

constructed as [55]

gJ
μ(q) =

∑
q ′

(N J )1/2(q, q ′) f J
μ (q ′) . (6)

It has to be stressed, however, that |gJ
μ(q)|2 does not represent

the probability to find the deformation q in the GCM state
|JMμ〉. In addition, in the absence of a metric in the definition
of the correlated state |JMμ〉, Eq. (4), the values of gJ

μ(q) for
a converged GCM solution still depend on the discretization
chosen for the collective variable q, which is not the case for
observables like the energy or transition probabilities.

The spatial density distribution of the projected GCM states
is constructed as the expectation value of the operator ρ̂(�r) =∑A

i δ(�̂r − �ri),

ρJMμ(�r) = 〈JMμ| ρ̂(�r) |JMμ〉
=

∑
qq ′

f J∗
μ (q) 〈JMq| ρ̂(�r) |JMq ′〉 f J

μ (q ′)

=
∑
qq ′

f J∗
μ (q)f J

μ (q ′)√
〈q|P̂ J

00P̂N0 P̂Z0 |q〉
√

〈q ′|P̂ J
00P̂N0 P̂Z0 |q ′〉

× 2J + 1

8π2

∫
d
′DJ∗

0M (
′)
∑
K

DJ
KM (
′)

× R̂†(
′)
(2J + 1)

2

∫ π

0
dβ sin(β) dJ

K0(β)

×〈q|R̂(β)
A∑
i

δ(�̂r − �ri) P̂N0 P̂Z0 |q ′〉 , (7)

where we use the shorthand 
 ≡ (α, β, γ ) for the Euler angles.
Note that the calculation of the density in the laboratory frame
requires projectors on the left and on the right. More details
on the calculation of the correlated density will be given in a
forthcoming publication [59].

III. SPECTROSCOPY OF LOW-LYING STATES

The energy curves obtained after projection on particle
number and on angular momentum are shown in Fig. 1. The
abscissa corresponds to the mass quadrupole moment q of the
intrinsic states that is projected (upper scale) and, equivalently,
to the dimensionless quadrupole deformation

β2 =
√

5

16π

4π

3R2A
〈Q2〉 , (8)

where R = 1.2 A1/3 fm.
The particle-number-projected energy curve presents a

spherical minimum with a steep rise with deformation (dotted
line), as expected for a nucleus with large neutron and
proton shell gaps, cf. Fig. 2. The projection on total angular
momentum J = 0 leads to energy curves with prolate and
oblate minima at about the same deformation |β2| ≈ 0.26.
The presence of these two minima is a usual result of
angular-momentum projection when the nonprojected energy
curve presents a spherical minimum [47–49]. In fact, at small
deformation, the states of a given J projected out from prolate
and oblate mean-field states with the same |β2| value are almost
equivalent. Oblate and prolate minima are also obtained for
higher J values. Our results are very similar to those of a
similar calculation using the Gogny interaction [60].
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FIG. 1. (Color online) Energy curves for the particle-number-
projected HFB states (N&Z) and particle-number and angular-
momentum projected states (J = 0, 2, 4, 6 curves) for 34Si as a
function of the intrinsic quadrupole deformation of the mean-field
states they are projected from. The solid square dots correspond to the
lowest GCM solutions, which are plotted at their average deformation∑

q q |gJ
μ(q)|2 (see text).

The energies EJ
μ of the lowest GCM states are also shown

in Fig. 1 (solid square with a label Jπ
μ ) at the mean deformation∑

q q |gJ
μ(q)|2 of the mean-field states on which they are built.

This mean deformation is not an observable; still, it often
provides a good indication about the dominating mean-field
configurations in a GCM state. The mean deformations and the

FIG. 2. (Color online) Nilsson diagram of the eigenvalues of
the single-particle Hamiltonian for neutrons (a) and protons (b) as
obtained with the Skyrme interaction SLy4 for 34Si as a function
of the quadrupole deformation. Solid (dotted) lines represent levels
of positive (negative) parity, and black, red, green and blue color
represents levels with expectation values of 〈jz〉 = 1/2, 3/2, 5/2,
and 7/2. The thick long-dashed line represents the Fermi energy.
Single-particle levels are labeled for the spherical configuration only.

FIG. 3. (Color online) Comparison between the experimental
(left) and calculated (right) excitation energies Ex and B(E2) values
(in units of e2 fm4) for the low-lying states of 34Si. Experimental data
are taken from Ref. [61].

B(E2) transition strengths suggest to organize the correlated
states into the two structures displayed in Fig. 3, where the
computed transition probabilities and the energy of the levels
are also compared with the available experimental values [61].
Our result can be interpreted as resulting from the coexistence
of an anharmonic spherical vibrator and a prolate deformed
band at low excitation energy. Both structures are not pure and
distorted by their strong mixing.

The energy of the recently observed low-energy 0+
2

state [61] and the out-of-band B(E2 : 2+
1 → 0+

2 ) value are
reproduced rather well. However, the electric monopole
ρ2(E0; 0+

2 → 0+
1 ) and the in-band B(E2; 2+

1 → 0+
1 ) are over-

estimated by our model: 58.1 × 10−3 compared to the ex-
perimental value of 13.0 (0.9) × 10−3 [61] for the former and
60.5 e2 fm4 compared to 16.6 e2 fm4 for the latter. This discrep-
ancy might indicate [62] that the two lowest 0+ GCM states
are too strongly mixed in our calculation. The corresponding
collective wave functions gJ

μ(q) are displayed in Fig. 4. Both
are indeed spread over a very wide range of deformations,

FIG. 4. (Color online) Collective wave functions gJ
μ(q) [cf.

Eq. (6)] of the two lowest GCM solutions for J = 0.
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with similar contributions at small deformation |β2| ≈ 0. The
ground state is peaked around the deformations of the two
minima in the J = 0 projected energy curve, cf. Fig. 1. By
contrast,the wave function of the 0+

2 state is peaked at large
prolate and oblate deformations where at least one downslop-
ing level from the neutron f7/2 shell becomes intruder by
crossing the upsloping levels from the sd shell, cf. Fig. 2. This
is consistent with the interpretation of the 0+

2 state in 34Si as a
counterpart of the deformed ground state of the slightly lighter
nuclei located in the so-called “island of inversion” [61].

IV. DENSITY DISTRIBUTION

To quantify the depletion of the proton density distribution,
we will use a depletion factor

Fmax ≡ ρmax,p − ρcent,p

ρmax,p

, (9)

which has been used in Refs. [31,33] and that measures the
reduction of the density at the nucleus center relatively to its
maximum value.

The effect of pairing correlations, projection on good
quantum numbers and configuration mixing on the radial
profiles of the proton, neutron, and total densities is displayed
in Fig. 5. The densities of the HF, HFB + LN and particle-
number projected HFB + LN states are compared to those of
the GCM 0+ ground state. To facilitate the comparison, the
proton and neutron densities are rescaled by A/Z and A/N

factors, respectively.
A large depletion at r = 0 and a bulge at r ≈ 1.8 fm are

obtained for the proton density when the HF method is used
[panel (a) of Fig. 5]. The HF neutron density, however, has
an opposite behavior, with a flat shoulder at intermediate r

values and a bump at the nucleus center. This bump is similar

FIG. 5. (Color online) Neutron, proton, and total radial densities
at x = y = 0 for 34Si for the spherical HF state (a), the spherical
HFB + LN state (b), and its projection on good particle numbers
(c), as well as for the GCM 0+

1 ground state (d). Neutron and
proton densities have been rescaled with the factors A/N and A/Z,
respectively.

to the one found experimentally for the charge density in
40Ca [15]. Altogether, the total density has an almost flat, even
slowly rising, profile in the interior of the nucleus. The same
compensation of neutron and proton densities in the system’s
interior is also found at all other stages of the calculation.

Unconstrained HFB calculations for 34Si give the same
result as the HF approximation. This is because the large
Z = 14 gap of about 4.5 MeV between the proton 1d5/2 and
2s1/2 levels in the single-particle spectrum prevents the protons
from becoming superfluid at the HFB approximation. The even
larger N = 20 gap in the single-particle spectrum has the same
effect for neutrons. The situation is different for nuclei such as
22O and 46Ar, where pairing correlations are already active at
the HFB level and wash out the bubble structure predicted by
HF calculations [33].

The collapse of pairing correlations when the density
of single-particle levels falls below a critical value is a
deficiency of the HFB method [55,63]. It can be partially
corrected by using the LN procedure [panel (b) of Fig. 5].
The level occupation is then smeared over the Fermi energy
and the proton 2s1/2 orbital becomes partially occupied. As
a consequence, the central proton density rises considerably
from Fmax = 0.41 (HF) to Fmax = 0.32 (HFB + LN). The
HFB + LN density presented in Fig. 5 is calculated using
occupation numbers corrected for particle-number projection
by the approximation described for example in Ref. [64]. Using
the noncorrected BCS occupation numbers instead would
overestimate the effect of pairing and give a much larger
reduction of the depletion factor.

Projection of the HFB + LN state on good particle num-
bers [panel (c) of Fig. 5] substantially reduces the pairing
correlations, and the density profiles almost go back to the HF
ones with Fmax = 0.36. This reflects the well-known fact that
the LN approximation overestimates the correlations in the
weak pairing limit (whereas HFB underestimates them), cf.
for example Ref. [65], and indicates that in this case a correct
treatment of pairing requires to go beyond the mean field.

The behavior of the density close to the origin is usually
discussed in terms of the occupation of single-particle states
in the spherical HF basis. This is not obvious in a method
like the one that we use where the mean-field basis is different
for each deformation. Deformation mixes single-particle states
with different orbital angular momentum. In particular, when
one expands a deformed basis in terms of the spherical one,
the proton 2s1/2 level gets partially filled. The situation is even
more complicated after projection and configuration mixing,
cf. panel (d) of Fig. 5. We have seen in Fig. 4 that the collective
wave function of the 0+ GCM ground state is spread over a
wide range of intrinsic deformations.

Figure 6 illustrates how the density distribution of neutrons
(upper panels) and protons (lower panels) is modified at
different levels of our calculation. The left column shows con-
tour plots of both densities for the particle-number projected
HFB + LN state with β2 = 0.26 that after angular-momentum
projection gives the prolate minimum of the J = 0 curve in
Fig. 1. The proton density still exhibits a central depletion, but
less pronounced than it is for the spherical HFB + LN state,
reflecting the partial filling of the 2s1/2 level by deformation.
After projection on total angular momentum J = 0 (middle
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FIG. 6. Contour plots of the neutron (upper panels) and proton
(lower panels) densities in the y = 0 plane for the particle number
projected HFB + LN state with β2 = 0.26 (left column), its projection
on both particle numbers and total angular momentum J = 0 (middle
column) and for the 0+ GCM ground state (right column).

column), the density is obtained in the laboratory frame and
is spherical. However, the central depression of the density is
similar to the one found when projecting on particle numbers
only. The configuration mixing leading to the GCM 0+ ground
state (right column) increases the central proton density again
and simultaneously reduces the value at the bulge, see the
bottom right panel of Fig. 5, which in combination reduces
the depletion factor to Fmax = 0.21. The values of central and
maximum densities and of the depletion factor for the states
discussed above are summarized in Table I.

Up to now we have discussed the density of point protons
and neutrons, thereby neglecting that protons and neutrons
are composite particles of extended size. When searching for
experimental signature of a depleted central density in 34Si
by elastic electron scattering, however, this has to be taken
into account. The observable charge density is calculated by
convolution of the proton density with a Gaussian form factor
[66] with a proton size a = √

2/3 〈r2〉1/2
p = 0.65 fm, which

for spherically symmetric density distributions leads to

ρch(r) = 1

a
√

π

∫
dr ′r ′ ρp(r ′)

[
e−(r−r ′)2/a2

r
− e−(r+r ′)2/a2

r

]
.

(10)

TABLE I. Central and maximum proton density of 34Si and the
depletion factors Fmax,p [cf. Eq. (9)] and Fsat,τ [cf. Eq. (11)]. For the
latter, values for proton, neutron, and the total densities are given. All
densities are in fm−3. The three first lines correspond to a spherical
state. The values labeled with N&Z, J = 0 correspond to the prolate
minimum of the N&Z, J = 0 projected energy curve of Fig. 1.

ρcent,p ρmax,p Fmax,p Fsat,p Fsat,n Fsat,t

HF 0.044 0.074 0.41 0.34 −0.37 −0.08
HFB + LN 0.050 0.074 0.32 0.24 −0.31 −0.08
N&Z 0.047 0.074 0.36 0.28 −0.30 −0.06
N&Z, J = 0 0.051 0.073 0.30 0.22 −0.27 −0.07
GCM(g.s.) 0.057 0.073 0.21 0.13 −0.22 −0.07

FIG. 7. (Color online) Comparison of point-proton densities (a)
with the folded charge densities (b) for 34Si for the same states as in
Fig. 5.

The charge density (right panel) is compared in Fig. 7 to
the point proton density (left panel) for the same four cases
discussed in Fig. 5. Like correlations, the convolution (10)
tends to even out the variations of the density profile: the central
density rises and the maximum density of the outer bulge
becomes smaller. In combination, both leads to a substantial
reduction of the depletion factor from Fmax = 0.41 for the
point proton density in a spherical HF calculation to Fmax =
0.09 for the charge density of the 0+ GCM ground state.

Adding correlations, the root-mean-square (rms) radius
of the point proton density increases from 3.127 fm for
the spherical HF state to 3.133 fm for the particle-number
projected spherical HFB + LN state and to 3.180 fm for the
GCM 0+ ground state. Looking at the density profiles in Fig. 7
the larger radius of the GCM 0+ ground state might appear
counter-intuitive, as, at small radii <3 fm, the protons are
obviously shifted to the inside. At larger radii, however, the tail
of the density of the GCM 0+ ground state becomes slightly
larger than the density of the other states, which is almost
undetectable on the linear scale of Fig. 7. Because of the factor
r4 in the mean-square radius integral in polar coordinates, this
tail is much more important than the center of the nucleus.

Figure 7 puts into evidence that the reduction of the
depletion factor at each stage of the calculation is partly due to
the reduction of the maximum density ρmax Obviously, shell
effects can reduce the density at some radii, but also enhance
it at others. This indicates that the definition of the depletion
factor (9) contains an ambiguity concerning the reference
density. An alternative definition of a depletion factor could be

Fsat,τ ≡ ρsat,τ − ρcent,τ

ρsat,τ
, (11)

where ρsat,τ with τ = p, n, t is now the saturation value
of the proton, neutron, and total density. For 34Si, we
have ρsat,p = (14/34) × 0.16 fm−3 = 0.066 fm−3, ρsat,n =
(20/34) × 0.16 fm−3 = 0.094 fm−3, and ρsat,t = 0.16 fm−3,
respectively. Unlike Fmax, this alternative depletion factor Fsat

can also be used to quantify central bumps in the density
distribution.
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TABLE II. Same as Table I, but for the charge density [cf.
Eq. (10)].

ρcent ρmax Fmax Fsat

HF 0.056 0.071 0.21 0.15
HFB + LN 0.060 0.071 0.16 0.09
N&Z 0.058 0.071 0.18 0.12
N&Z, J = 0 0.060 0.070 0.14 0.09
GCM(g.s.) 0.064 0.070 0.09 0.04

The results of Figs. 5 and 7 using these two depletion
factors are summarized in Tables I and II. The value of ρsat,p

is systematically smaller than the values of ρmax,p and, as a
consequence, the values of Fsat for protons are smaller than
those of Fmax. For neutrons, the value of Fmax,n is always
negative because of the central bump of the neutron density
distribution. Again, the large central bump predicted by the HF
calculation is reduced when correlations are added. Altogether,
the central total density is always larger than saturation density
as evidenced by Fsat,t .

V. FURTHER DISCUSSION AND CONCLUSIONS

There are two major differences between the structure of
34Si as predicted by our calculation and the structure of other
candidates for bubble structure that have been discussed in
the 1970s–1990s. First, as discussed above, the depletion
of the central density in 34Si appears for the proton density
only, whereas the total density has an almost flat distribution
throughout the bulk of the nucleus. Second, the level ordering
of bubble nuclei is usually different from the one of regular
nuclei, which is not the case for 34Si. Take, for example, the
hypothetical bubble-type configuration of the 36Ar discussed
in Ref. [20]. There, the sequence of single-particle levels is
altered such that the 2s1/2 level is pushed above the 1d3/2

level for both protons and neutrons. By contrast, for 34Si
only the relative distance of levels is changed such that
the Z = 14 gap opens up, cf. Fig. 2. In the absence of a
bubble structure of the total density, and of the rearrangement
of shells that is typical for bubble nuclei, the predicted
anomaly of the proton density distribution of 34Si appears
to be an example of a central depression of the density, as
observed also for many other nuclides [5], rather than a nuclear
bubble.

Taking into account correlations reduces the central deple-
tion of the proton density in 34Si, as expected from earlier
studies of other systems. Our main findings are

(i) A HFB + LN calculation overestimates proton pairing
correlations in 34Si. Particle-number projection of the
spherical state constructed with HFB + LN reduces the
pairing correlations, such that the density profile almost
goes back to the HF one. Clearly, a treatment of pairing
correlations beyond the mean field with exact particle-
number projection is needed in this case.

(ii) Fluctuations in quadrupole degrees of freedom strongly
even out the fluctuations in the density profile; the
central depression and the outer bump of the proton

density are reduced, as is the central bump of the
neutron density.

(iii) The central depletion of the density is less pronounced
when looking at the experimentally observable charge
density instead of the point proton density.

While all of the above findings can be expected to be generic
on a qualitative level, the quantitative decrease of the depletion
factor when going from spherical HF to full projected GCM
might depend on choices made for the effective interaction. In
particular, in view of the somewhat too large mixing that we
find between the two lowest 0+ GCM states, our calculation
might slightly overestimate the role of shape fluctuations in
the ground state.

As discussed in the introduction, a central depletion of the
proton density of 34Si has been suggested as an explanation
for the reduction by about 0.6 MeV of the spin-orbit splitting
of the neutron 3/2− and 1/2− levels inferred from transfer
reactions [34,35]. One has to be careful about such conclusion.
First, the connection between the centroids of the spectral
strength function of combined one-nucleon pick-up and
removal reactions and the eigenvalues of the single-particle
Hamiltonian is model-dependent [67], and when looking at the
dominating fragments only, the comparison is far from clear.
Second, as the symmetry-restored GCM method corresponds
to a superposition of many states obtained with different
mean fields, there is no straightforward procedure that would
allow for a statement about effective single-particle energies
based on the density profile from our calculation. The only
meaningful way to compare with the data would be to perform
the same kind of calculation for 35Si and 37S, which at present,
however, is out of our reach.

When discussing the spin-orbit splitting of the neutron 2p

levels in 34Si, there is an additional complication that goes even
beyond these considerations. At spherical shape, the neutron
2p3/2 and 2p1/2 levels are far above the Fermi energy and
outside of the energy interval shown in the Nilsson diagram
of Fig. 2. In our spherical HF calculation of 34Si, the former
is weakly bound at −0.56 MeV, whereas the latter is even
unbound at +0.83 MeV. In such a situation, the coupling to
the continuum has to be carefully taken into account, which
is a task that goes beyond our study. By contrast, both single-
particle levels are predicted to be (weakly) bound in a similar
HF calculation for 36S.

In summary, we find that correlations from pairing and
fluctuations in quadrupole deformation substantially reduce
the central depletion of the proton density in 34Si. The
extension of our method to the calculation of transition
densities in the laboratory frame as observables in inelastic
electron scattering is currently underway [59].
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[28] J. Dechargé, J.-F. Berger, M. Girod, and K. Dietrich, Nucl. Phys.
A 716, 55 (2003).

[29] W. Nazarewicz, M. Bender, S. Cwiok, P.-H. Heenen, A. Kruppa,
P.-G. Reinhard, and T. Vertse, Nucl. Phys. A 701, 165c (2002).

[30] B. G. Todd-Rutel, J. Piekarewicz, and P. D. Cottle, Phys. Rev. C
69, 021301(R) (2004).

[31] Y. Chu, Z. Ren, Z. Wang, and T. Dong, Phys. Rev. C 82, 024320
(2010).

[32] E. Khan, M. Grasso, J. Margueron, and Nguyen Van Giai, Nucl.
Phys. A 800, 37 (2008).

[33] M. Grasso, L. Gaudefroy, E. Khan, T. Niksic, J. Piekarewicz,
O. Sorlin, Nguyen Van Giai, and D. Vretenar, Phys. Rev. C 79,
034318 (2009).
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tions, edited by H. Arenhövel and D. Drechsel, Lecture Notes in
Physics (Springer-Verlag, New York, 1979), Vol. 108, p. 88.
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