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Projected quasiparticle perturbation theory
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The BCS and/or Hartree-Fock-Bogoliubov theories are extended by treating the effect of four quasiparticle
states perturbatively. The approach is tested on the pairing Hamiltonian, showing that it combines the advantage
of standard perturbation theory, valid at low pairing strength, and of nonperturbative approaches breaking the
particle number, valid at higher pairing strength. Including the restoration of particle number further improves
the description of pairing correlation. In the presented test, the agreement between the exact solution and the
combined perturbative plus projection is almost perfect. The proposed method scales friendly when the number
of particles increases and provides a simple alternative to other more complicated approaches.
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I. INTRODUCTION

Theories breaking explicitly the particle number, such
as Bardeen-Cooper-Schrieffer (BCS) or Hartree-Fock-
Bogoliubov (HFB) are the simplest efficient ways to describe
pairing correlations in physical systems. However, these
theories suffer from some limitations especially when the
number of particles becomes rather small as is the case in
mesoscopic systems such as nuclear physics [1] or condensed
matter [2]. The main difficulty is the sharp transition from
normal to superfluid phases as the pairing strength increases.
The second difficulty is a systematic underestimation of
pairing correlations that increases when the particle number
decreases.

Recently, several approaches have been used to overcome
these difficulties. When the number of particles is small
enough, the exact solution of the pairing problem is accessible
by direct diagonalization of the Hamiltonian [3–5] and/or
using the secular equation originally proposed by Richardson
[6–8]. Accurate description of the ground-state energy of
superfluid systems with a larger particle number can be
obtained using either quantum Monte Carlo technique (see
for instance Refs. [9,10]) or extending quasiparticle theories
using variation after projection approaches [11–22] (for recent
applications see Refs. [23–25]). All of these methods are,
however, rather involved and demanding in terms of com-
putational power. The aim of the present work is to show that
a perturbative approach can eventually provide a simpler and
yet accurate alternative to treat the pairing problem.

In the following, standard perturbation theory is first
recalled. It is then explained how to take advantage of both
perturbative approaches and BCS-HFB theories. The impor-
tance of particle number restoration is finally highlighted.

II. STANDARD PERTURBATION THEORY

Our starting point here is similar to the one used in
Refs. [9,26]. We assume a two-body pairing Hamiltonian
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given by

H =
�∑

i=1

εi(a
†
i ai + a

†
ī
aī) +

�∑
i �=j

vij a
†
i a

†
ī
aj̄ aj ≡ H0 + V. (1)

Here, (i, ī) denotes a time-reversed pair. Such a Hamiltonian
can be for instance constructed starting from a realistic self-
consistent mean-field calculation providing single-particle
energies and two-body matrix elements [10].

Here � denotes the maximal number of accessible levels
for the pairs of particles. In the following, we will consider the
specific case of equidistant levels with εi = (i − 1)�ε with
�ε = 1 MeV and a number of particles N = �.

As already noted some time ago [27] and recently dis-
cussed again [26,28], the two-body part V can be treated
perturbatively to provide an accurate description of the pairing
problem in the weak pairing interaction regime. Starting from
the ground state |�0〉 of H0, that corresponds to the Slater
determinant obtained by occupying the lowest single-particle
states, other excited states while other excited states |�n〉 of
H0 can be obtained by considering particle-hole (p-h), 2p-2h,
... excitations built on top of the |�0〉. Using second-order
perturbation theory, the ground state energy of H reads

E0 = E0 + E
(2)
0 , (2)

where E0 = 2
∑

i=1,Npair
εi (with Npair = N/2) is the ground-

state energy of H0 while E
(2)
0 is the standard second-order

correction, that can be found in textbook,

E
(2)
0 =

∑
n�=0

|〈�0|V |�n〉|2
E0 − En

. (3)

In the specific case considered here [i.e., Eq. (1)] only
2p-2h states contribute to the second-order correction. More
precisely, the states n could only differ from the ground state by
one occupied pair above the Fermi sea (denoted by j ) and one
unoccupied pair below (denoted by i): |�i,j 〉 = a

†
j a

†
j̄
aīai |�0〉

and are eigenstates of H0 with energy Eij = E0 + 2(εj − εi).
This leads to

E
(2)
0 = −1

2

∑
i=1,Npair

∑
j=Npair+1,Nmax

|vij |2
εj − εi

, (4)
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FIG. 1. (Color online) Illustration of the correlation energy as a
function of the coupling strength for the case of N = 8 particles and
� = 8. The exact result solution (red solid curve), BCS (black dashed
line), standard perturbation theory (green open squares), and Eq. (3)
and QP2T theory with second-order correction Eq. (14) (blue filled
circles), are displayed.

with Npair = N/2 and Nmax = �/2. This expression has been
obtained in Ref. [28] using a different approach based on the
Richardson-Gaudin equation. It is known [26,27] that standard
perturbation theory provides an appropriate description in the
weak coupling regime.

In Fig. 1, an example of standard perturbation theory
(SPT) is presented for the N = 8 particles and constant
coupling case (i.e., vij = −g). The correlation energy defined
as the difference between the Hartree-Fock energy E0 and
the ground-state energy E0 obtained with STP are compared
to the exact solution and BCS result. In the latter case,
pairing correlation is nonzero only above the threshold value
g/�ε � 0.3. As illustrated from Fig. 1, standard perturbation
theory matches with the exact result below the threshold but
significantly underestimates the correlation for larger g value.
This aspect underlines the highly nonperturbative nature of
the pairing quantum phase transition. On the contrary, one
of the advantages of a theory such as BCS is the possibility
to incorporate nonperturbative physics even in the strong
interaction case by breaking the U (1) symmetry associated
to particle number conservation.

III. QUASIPARTICLE PERTURBATION THEORY

To provide a proper description of both the weak and
strong pairing strength regimes, it seems quite natural to try
to combine theories based on quasiparticles and perturbative
approaches. This possibility has been explored in Refs. [29,30]
mainly to discuss the removal of the dangerous diagram
occurring in normal perturbation theory. Note that recently
it has also been revisited as a possible tool to perform ab
initio calculations in nuclei [31] based on Gorkov-Green
function formalism [32]. In the following, it is assumed that the
BCS-HFB approach has been applied in a preliminary study
and that the Hamiltonian (1) is written in the canonical basis

of the quasiparticle ground state. Then, the ground state takes
the form

|�0〉 =
∏
i>0

(Ui + Via
†
i a

†
ī
)|−〉, (5)

and is the vacuum of the quasiparticle creation operators
defined through

β
†
i = Uia

†
i − Viaī , (6)

β
†
ī

= Uia
†
ī
+ Viai . (7)

In the BCS-HFB theory, the original hamiltonian is replaced
by an effective Hamiltonian that is conveniently written as1

H0 = E0 +
∑

i

Ei(β
†
i βi + β

†
ī
βī), (8)

where E0 is the BCS/HFB ground state energy, while Ei

corresponds to the quasiparticle energy given by

Ei =
√

(εi − λ)2 + �2, (9)

where λ is the Lagrange multiplier used to impose the average
particle number while � is the pairing gap (for a detailed
discussion see Ref. [33]).

For even systems, excited states of H0 are two-quasiparticle
(2QP), four-quasiparticle (4QP), ... excitations with respect to
the ground state. The original Hamiltonian H contains many
terms that are neglected in H0 [1] and that are responsible from
the deviation between the quasiparticle and the exact solution.
However, noting that

H |�0〉 =
(

H0 −
∑
i �=j

vijU
2
i V 2

j β
†
i β

†
ī
β
†
j β

†
j̄

)
|�0〉, (10)

it can be anticipated that the main source of discrepancy is due
to the coupling of �0 with the 4QP states. Some arguments
showing that 4QP states should improved the description of
pairing especially in the weak coupling regime have been given
in Ref. [34].

Below, perturbation theory is applied assuming that H0

[Eq. (8)] is the unperturbed Hamiltonian while the perturbation
V is given by

V = −
∑
i �=j

vijU
2
i V 2

j β
†
i β

†
ī
β
†
j β

†
j̄
. (11)

V couples the ground state with the 4QP states, defined as (for
i > j )

|�i,j 〉 = β
†
i β

†
ī
β
†
j β

†
j̄
|�0〉 (12)

and associated to the unperturbed energy

Eij = E0 + 2(Ei + Ej ). (13)

The present approach, that is a direct extension of standard
perturbation theory, is called hereafter quasiparticle perturba-
tion theory (QP2T). Using Eq. (3), the second order correction

1Note that here, it is implicitly assumed that H is replaced by
H − λN
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to the ground state energy is equal to:

E
(2)
0 = −1

2

∑
i>j

v2
ij

(
U 2

i V 2
j + U 2

j V 2
i

)2

Ei + Ej

. (14)

This correction properly extends Eq. (4) from the normal to
the superfluid phase. Indeed at the threshold value of g (i.e.,
when � → 0) the 4QP states identify with 2p-2h excitations
while

Ei + Ej → |εi − λ| + |εj − λ| = εi − εj , (15)

and the standard perturbation theory case is recovered.
The result obtained with the QP2T approach at second order

in perturbation (14) are displayed in Fig. 1 with filled circles.
Note that below the BCS threshold, standard perturbation
theory is used. The present approach can be regarded as a
rather academic exercise but it turns out to provide a very
simple way to extend mean-field theory based on quasiparticle
states. In particular, it avoids the threshold problem of the latter
and improves the description of correlation in the intermediate
and strong coupling case.

IV. EFFECT OF THE RESTORATION OF PARTICLE
NUMBER

Similarly to the original quasiparticle theory, the energy
deduced from the QP2T contains a spurious contribution
coming from the fact that the perturbed state does not preserve
the particle number. Indeed, using standard formulas, to second
order in perturbation, the ground state expresses as

|�0〉 = ∣∣�(0)
0

〉 + ∣∣�(1)
0

〉 + ∣∣�(2)
0

〉
. . .

= |�0〉 +
∑
i>j

cij |�i,j 〉 + · · · (16)

where |�(i)
0 〉, i = 0, 1, ... denotes the contribution to the state

at ith order in perturbation and where

cij = −vij

2

(
U 2

i V 2
j + U 2

j V 2
i

)
Ei + Ej

. (17)

Above the BCS threshold, neither |�0〉 nor |�i,j 〉 are eigen-
states of the particle number operator.

The most direct way to remove spurious contributions due
to the mixing of different particle numbers is to introduce the
operator P N

P N = 1

2π

∫ 2π

0
dϕ eiϕ(N̂−N). (18)

that projects onto particle number N .
The most straightforward way to combine projection

with quasiparticle perturbation theory is to directly take the
expectation value

E0 =
〈
�N

0

∣∣H ∣∣�N
0

〉
〈
�N

0

∣∣�N
0

〉 (19)

with |�N
0 〉 = P N |�0〉 and where |�0〉 is truncated at a given

order in perturbation. This approach will be referred to as
the projected quasiparticle perturbation theory (QP3T) in

E
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FIG. 2. (Color online) Illustration of the correlation energy as
a function of the coupling strength for the case of N = 2 particles
and � = 2. The exact result solution (red solid line), PAV result
(green short-dashed line), and the QP3T theory (blue filled circles)
are shown. The original BCS (black long dashed line) is also shown
as a reference.

the following. When only the zero order in perturbation is
retained in Eq. (16), the QP3T identifies with the projection
after variation (PAV) that is commonly used, especially in
the nuclear energy density functional (EDF) approach [35].
Formulas useful to compute the expectation values of one- and
two-body operators with projection are given in Appendix. The
projection is performed numerically using these expressions
and the Fomenko discretization procedure of the gauge-
space integrals [36,37]. Here, 199 discretization points have
been used. Note that the number of points can be reduced
down to five without changing the result. The correlation
energies obtained for N = 2, N = 8, and N = 12 (each time
with � = N ) using the second-order QP3T are shown in
Figs. 2– 4 respectively. In each case, the original BCS, the
PAV, and the exact solution are also shown. The result of
QP3T almost superimposed with the exact solution. Only a
slight difference can be seen around the BCS threshold.

E
/Δ

ε

g/Δε

FIG. 3. (Color online) Same as Fig. 2 for the N = � = 8 case.
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FIG. 4. (Color online) Same as Fig. 2 for the N = � = 12 case.

Besides the energy, other observables can also be estimated.
As an example, the quantity ni(1 − ni) is shown in Fig. 5
as a function of single-particle energies, where ni are the
occupation numbers of single-particle states. This quantity is a
measure of the deviation from the independent particle picture
where it is strictly zero for all states. The use of perturbation
and projection considerably improves the description of one-
body observables especially at intermediate coupling where
the original BCS deviates significantly from the exact solution.
In addition, even if the PAV differs significantly from the exact

n
i(

1
−

n
i)

n
i(

1
−

n
i)

εi/Δε

(a)

(b)

FIG. 5. (Color online) Example of evolution of the quantity
ni(1 − ni) obtained with QP3T (filled blue circles) as a function of
single-particle energy for the N = � = 8 case with g/�ε = 0.4 (a)
and 0.8 (b). In both cases, the exact result (red solid line), the BCS
result (black dashed line), and the PAV result (green open squares)
are shown.

case as it was noted in Ref. [22], the extra mixing with the 4QP
states compensates this drawback of PAV.

In view of this agreement, it seems that the QP3T does
automatically select important many-body states, namely
projected ground state and projected 4QP states, on which the
true eigenstate decomposes. These states are highly nontrivial
multiparticle multihole mixings that can also be described by
direct diagonalization of the Hamiltonian but that are much
more demanding numerically. Indeed, the size of the 4QP
Hilbert space is �(� − 1)/2 while the size of the matrix
to diagonalize the hamiltonian is (�!/[Npair!(� − Npair)!]).
It is important to recall that here no diagonalization is
required since the mixing coefficients are directly given by the
quasiparticle perturbation theory [Eq. (17)]. These features
make the approach rather simple to implement on existing
BCS-HFB codes to provide a much better approximation than
the PAV that is often currently used. In addition, by contrast
to the variation after projection that is rather involved [23,25],
no extra minimization is required.

It should be noted that the way we apply the perturbation
theory is rather unusual. Indeed, here we directly take the
coefficients obtained from a perturbative approach based on
quasiparticle states and use them to express the ground state
in terms of the projected states. Doing so, we clearly break
the self-consistency as in PAV. A more consistent approach
would be to develop a perturbative approach directly with the
projected states. The difficulty in the latter case is that, while
the separation into an unperturbed Hamiltonian and residual
interaction parts was straightforward in the quasiparticle case,
such a separation is not easy for projected states

Contrary to the exact diagonalization, the QP2T and QP3T
can be performed even for large particle number. As an illus-
tration, in Fig. 6, a systematic study of the correlation energy
evolution obtained with some of the approaches presented
above as the number of particle increases up to N = 100 for the
case g/�ε = 0.8. With standard diagonalization techniques,
the exact solution can hardly be obtained for N > 14. Other
approaches based on quasiparticle theories can be applied
without difficulties. Note however, that the QP3T requires
to perform more and more gauge angles integrations (see

E
/(

N
Δ

ε)

Particle Number

FIG. 6. (Color online) Evolution of the correlation energy per
particle as a function of the number of particles for g/�ε = 0.8 for
the BCS (black dashed line), QP2T (green open squares), and QP3T
(blue filled circles). The exact case (solid red line) is also shown up
to N = 14 particles.
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FIG. 7. (Color online) Example of energies of 2QP excited states
obtained with BCS (left), QP3T built on 2QP states (middle), and
exact (right) using N = � = 8 and g = 0.8. The ground state is also
shown. The horizontal dashed line corresponds to the HF energy.
Note that to avoid specific aspects related to degeneracy, the fourth
single-particle level has been shifted to 2.9�ε (instead of 3�ε).

Appendix) as N increases making the calculations more time
consuming with respect to the nonprojected theories such as
BCS or QP2T.

From Fig. 6, we also note that differences between theories
are seen only for rather small particle number N < 30, while
above BCS and QP3T cannot be distinguished. However, as
it has been discussed previously, for N < 30, the QP3T is the
only theory that can provide an excellent reproduction of the
exact result when available.

A. Discussion

Perturbation theory can also be applied to get excited
states. Starting from 2QP, 4QP, ... one can get a correction
to the energies of excited states with or without projection.
An illustration of energies obtained starting from 2QP states
is given in Fig. 7. We see in this figure that both original 2QP
states and the energies obtained with QP3T are still quite far
from the exact results.

Since the present study underlines the relevance of pro-
jected states based on quasiparticle excitation, one possible
way to improve the description of the excited state would be
to directly diagonalize the Hamiltonian in a truncated space of
these projected states.

Besides the description of excitations, such a diagonaliza-
tion could also be anticipated as a possible way to treat the
effect of other degrees of freedom like deformation. Currently,
the generator coordinate method (GCM) [1] is widely used
to account for quantum fluctuations associated to collective
degrees of freedom [35]. Most often, only the lowest-energy
BCS or HFB state is included in the mixing of configurations.
The natural extension would be to include excited states
based on projected QP excitations. This idea has been, for
instance, followed in Ref. [38] where the effect of 2QP states
is investigated. Here we clearly point out that the inclusion of
4QP states is desirable. It should however be kept in mind that
this will further increase the complexity of the calculation.

V. SUMMARY

In this work an extension of the standard many-body theory
to treat the pairing problem is introduced. Including the effect
of 4QP perturbatively to extend usual BCS-HFB removes the
problem of sharp transition from normal to superfluid phase
and significantly improves the description of pairing. Last,
when restoration of particle number is performed within the
perturbative approach, a perfect agreement with the exact
results is found. This finding provides a direct proof of the
importance of 4QP state to extend mean-field theories. In
addition, it is shown that the quasiparticle perturbation theory
can be implemented even for a large particle number without
special difficulties, making the technique rather attractive and
much simpler than other approaches, like full diagonalization,
variation after projection or quantum Monte Carlo techniques.
Last, it is worth mentioning that the present technique can
be directly and rather easily implemented on existing BCS-
HFB codes [39,40] to improve the description of pairing
correlations.

Recently, the use of Gorkov-Green function theory has been
proposed [31] as a possible tool to perform ab initio calculation
for nuclei. This theory provides a general formalism based on
quasiparticle states. The result obtained in the present study
are rather encouraging to pursue in that direction and that
projection might be needed.
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APPENDIX: EXPRESSION OF PROJECTED QUANTITIES

Starting from the standard expression of the quasiparticle
ground state [Eq. (5)], the 4QP states are given by

|�i,j 〉 = (−Vi + Uia
†
i a

†
ī
)(−Vj + Uja

†
j a

†
j̄
)

×
∏

k>0,k �=(i,j )

(Uk + Vka
†
ka

†
k̄
)|−〉. (A1)

For compactness, this expression is written as

|�m〉 =
∏
k>0

(
Um

k + V m
k a

†
ka

†
k̄

)|−〉. (A2)

This notation includes the ground-state case (m = 0). The
state obtained in QP3T can be generically written as |�N

0 〉 =∑
m cmPN |�m〉, and for any operator O that conserves the

particle number, we have〈
�N

0

∣∣O∣∣�N
0

〉 =
∑
m,n

c∗
ncm〈�n|OP N |�m〉, (A3)

where

〈�n|OP N |�m〉 =
∫ 2π

0
dϕ

e−iϕN

2π
〈�n|O|�m(ϕ)〉, (A4)
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and

|�m(ϕ)〉 =
∏
k>0

(
Um

k + V m
k e2iϕa

†
ka

†
k̄

)|−〉. (A5)

Starting from this expression it could be deduced that

〈�n|P N |�m〉 = 1

2π

∫ 2π

0
dϕe−iϕN

∏
k>0

(
Un

k Um
k + V n

k V m
k e2iϕ

)
,

〈�n|a†
i aiP

N |�m〉 = 1

2π

∫ 2π

0
dϕe−iϕNV n

i V m
i e2iϕ

∏
k>0,k �=i

(
Un

k Um
k + V n

k V m
k e2iϕ

)
, (A6)

〈�n|a†
i a

†
ī
aj̄ ajP

N |�m〉 = 1

2π

∫ 2π

0
dϕe−iϕNV n

i Um
i Un

j V m
j e2iϕ

∏
k>0,k �=(i,j )

(
Un

k Um
k + V n

k V m
k e2iϕ

)
,

where the latter expression is valid for i �= j .
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