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New concept for the ground-state band in 20Ne within a microscopic cluster model
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We propose a generalized wave function based on the flexible original THSR (Tohsaki, Horiuchi, Schuck,
Röpke) wave function [A. Tohsaki et al., Phys. Rev. Lett. 87, 192501 (2001)], which is applicable to studies of
general cluster structures in nuclei. The ground-state band in 20Ne is investigated by using this generalized wave
function and the energies obtained agree well with the experimental values. Moreover, it is found that the single
generalized THSR wave functions almost completely coincide with the exact solutions of the α+16O resonating
group method for the ground-state band in 20Ne. For the ground state, for instance, the squared overlap between
them is 99.3%. This indicates that the THSR model can also be extended to study more compact cluster states in
nuclei such as, e.g., the ground-state band in 20Ne.
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I. INTRODUCTION

Clustering, one of the most interesting features of nuclei, is
a very important aspect of many-body systems [1,2]. In light
nuclei, clustering as well as single-particle motion plays a
significant role in understanding the structures of nuclei [3,4].
A very novel cluster state in light nuclei, α condensation,
has attracted increasing interest in recent years [5–13]. This
α-condensation state can be considered as the one where the
center-of-mass motion of each α cluster in nuclei occupies
the same 0S orbit. The proposed THSR wave function is
very suitable for describing this dilute gas-like state, which
indeed leads us to have a new perspective for the nα structure
in light 4n nuclei (see Refs. [14] and [15] and references
therein). In this microscopic framework, the gas-like states
of α particles in 12C [16] and 16O [17,18] near the threshold
energies have been identified as the most possible candidates
for the α-condensation states. Very recently, a new scattering
experiment provided evidence for the existence of the excited
rotational state 2+

2 built on the Hoyle state in 12C [19]. The 2+
2

state of 12C can be described in the THSR model [9], which
is a good candidate for an excited α-condensate state. As for
the nucleus 8Be, the single 0+ THSR wave function agrees
almost completely with the solution superposing 30 Brink type
0+ wave functions [20]. Therefore, the THSR wave function
gives a new picture for 8Be, namely, a very dilute gas-like state

*zhoubo@rcnp.osaka-u.ac.jp
†zren@nju.edu.cn
‡cxu@nju.edu.cn

structure of two α particles rather than a dumbbell structure [6].
The THSR wave function is characterized by a spatial

extension in which clusters make delocalized motions, which
is quite successful in describing the dilute gas-like states in
light nuclei. Besides, considering that the THSR wave function
contains two limiting configurations [5], namely, the shell
model and the pure α gas structure, it is natural to extend this
idea to more general non-gas-like cluster structures in nuclei.
In fact, the more shell-model-like ground states of 12C and 16O
have also been described in the framework of the THSR wave
function [5], which supports this extension. Thus, we propose
a generalized THSR wave function for studying general cluster
structures in nuclei which are more compact. This is expected
to provide a new picture for understanding cluster structures
in nuclei.

The intrinsic structure of the ground-state band in 20Ne
has a transient character, in which the shell model and the
α+16O structure both play an important role [22–26]. In
the early stage, the sd-shell model [27,28], which treated
the 16O as an inert core reproduced the level structure of
the ground-state band in 20Ne. However, it was found that
some correlations were not included in this model. Next,
the α correlations were taken into account, and one of the
authors and Ikeda [29] proposed that the ground-state band
and Kπ = 0− band could be considered as an inversion
doublet heteropolar α+16O configuration. They stated further
that the ground-state band had a transient character from
the shell-model-like structure to the α+16O structure, which
was different from the well-developed dinucleus structure
in the Kπ = 0− band. This important conclusion has been
confirmed by subsequent cluster models, such as the resonating
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group method (RGM) [30] and the Brink cluster model [31].
It is noted that the relative distance between the α cluster
and the 16O cluster is adopted as a variational parameter in
these models, which provides a rigid compact picture in the
α+16O model space for understanding the ground-state band
in 20Ne. Later, in the framework of antisymmetrized molecular
dynamics (AMD) without assuming the existence of clusters,
the calculated results show that the α+16O configuration
constitutes a predominant configuration in the ground-state
band and the more cluster-model-like state changes to the more
shell-model-like state as the spin goes up [32]. Thus, both the
shell model picture and the cluster picture are indispensable
for understanding the ground-state band in 20Ne. In order to
treat the nuclear states in such transient situation in 20Ne, the
adopted model should include both limits, that is, the shell
model states at one end of the microscopic treatment and the
molecular states at the other extreme [22].

The purpose of this work is to study the ground-state band
in 20Ne using a generalized THSR wave function. At first, we
introduce this generalized THSR wave function, as a natural
extension of the original THSR wave function. Then the energy
surfaces corresponding to different spin-projected states in
20Ne are discussed. In order to clarify this wave function
further, we make a comparison between our generalized THSR
model and the Brink cluster model.

The paper is organized as follows. In Sec. II, we in-
troduce our generalized THSR model. The results and our
discussion are given in Sec. III. We provide a summary
in Sec. IV.

II. THE MODEL

A. Generalized THSR wave function for 20Ne

The deformed nα condensed wave function [6] has been
proposed by one of the authors as a natural extension of the
spherical THSR wave function, which can be expressed by a
superposition of Brink’s nα cluster wave functions,

�nα(βx, βy, βz)

=
∫

d3R1 . . . d3Rn exp

{
−

n∑
i=1

(
R2

ix

β2
x

+ R2
iy

β2
y

+ R2
iz

β2
z

)}

×�B(R1, . . . , Rn) (1)

∝ A

[
n∏

i=1

exp

{
−

(
2X2

ix

B2
x

+ 2X2
iy

B2
y

+ 2X2
iz

B2
z

)}
φ(αi)

]
,

(2)

where B2
k = b2 + 2β2

k (k = x, y, z), and X i is the center-of-
mass coordinate of the ith α cluster αi . �B(R1, . . . , Rn) is
the Brink wave function, in which the relative motion of 0S
α particles can be represented by the generator coordinate
Ri . φ(αi) is the intrinsic wave function of an α particle.
The center-of-mass motion of each of the nα particles occu-
pies the same deformed orbit, exp(−2X2

ix/B
2
x − 2X2

iy/B
2
y −

2X2
iz/B

2
z ). From this point of view, this wave function is very

convenient for the description of the nα gas-like structures in

light nuclei. In order to study more general cluster structures
of nuclei in the framework of the THSR model, we make a
quite straightforward extension of the deformed THSR wave
function,

�cluster(βx, βy, βz)
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, (4)

where

B2
ik = 2b2

i + Aiβ
2
ik (k = x, y, z). (5)

In the above equations, X i is the center-of-mass coor-
dinate of cluster Ci . Different clusters Ci have different
variational parameters βi , bi and different mass numbers Ai .
�B

cluster(R1, . . . , Rn) is nothing but the general Brink cluster
model wave function [33].

It should be noted that there also appear two limits in the
generalized THSR wave function. When β → 0 as a limit, the
normalized wave function Eq. (4) coincides with the shell-
model Slater determinant. When β → ∞ as the other limit,
this wave function corresponds to a state of n free clusters. In
addition, in terms of the mathematical form of the generalized
THSR wave function, the cluster subunit is no longer limited
to an α particle. For example, the d + α cluster structure for
6Li can also be treated in the generalized THSR model.

In fact, Eq. (3) can be seen as a particular case of the
generator coordinate method (GCM). The weight function is
adopted as a restricted Gaussian function. After integration
of the generator coordinates, namely, Eq. (4), the physics
meaning of Eq. (3) can be easily understood.

It is interesting to compare this generalized THSR wave
function with the Brink cluster model wave function. The
most important difference between the two wave functions
is that the generalized THSR function is delocalized [20], in
which the center-of-mass motions of clusters are determined
by the parameter β, while the Brink model is localized and the
motions of different clusters are represented by the different
generator coordinates Ri . Thus, the Brink cluster model tends
to treat rigid cluster structures of nuclei, while the generalized
THSR wave function is very suitable for describing loosely
bound or not geometrical cluster structures. The famous Hoyle
state of 12C is a typical example of the latter. The Brink cluster
model fails to describe this state, while the THSR model works
very well [16]. However, if a system displays a linear chain
structure or other rigid structures, the generalized THSR wave
function may not be suitable for describing the system. This
is because the clusters in the nucleus cannot be rearranged in
some geometric fashion restricted by the parameter β.

As the first case, we perform a detailed study of the
ground-state band in 20Ne within this microscopic cluster
model. The generalized THSR wave function for 20Ne can be
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written as

�Ne(βx, βy, βz)

=
∫
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�B
Ne(R1, R2) =

√
4!16!
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×φ(α)φ(16O)

]
, (8)

where r = X1 − X2, R = R1 − R2, XG = (4X1 +
16X2)/20, and RG = (4R1 + 16R2)/20. X1 and X2

represent the center-of-mass coordinates of the α cluster
and 16O cluster, respectively. �B

Ne(R1, R2) is the Brink
cluster model wave function for 20Ne. ψα(R1, r1, . . . , r4) and
ψ16O(R2, r5, . . . , r20) are the harmonic oscillator shell-model
wave functions of the clusters α and 16O located around R1

and R2, respectively. And φ(α) and φ(16O) represent their
intrinsic wave functions. For details, see Ref. [34]. It should
be noted that we apply the same size parameter b in the
α+16O system, for simplicity.

Furthermore, according to Eqs. (3) and (4), it is convenient
to reduce the two parameters β1k and β2k to one parameter βk

by adopting the relations 1/(β1k)2 = 1/(βk)2 and 1/(β2k)2 =
4/(βk)2 (k = x, y, z). Thus, the center-of-mass motion can be
easily eliminated in the equation
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where B2
k = b2 + 2β2

k . One can easily grasp this merit from
Eq. (10). When β → 0, the intrinsic part of Eq. (10) corre-
sponds to the SU(3) shell-model wave function of 20Ne. When
β → ∞, Eq. (10) becomes φ(α)φ(16O), which corresponds to
the state of two free clusters. Therefore, we believe that the
wave function, Eq. (9), can describe the transient character of
the ground-state band in 20Ne.

In order to restore the symmetry of the system, we
need to eliminate the center of total mass and make an

angular momentum projection on the generalized THSR wave
function, Eq. (9). For details, see Refs. [6] and [31].

To simplify the calculation of matrix elements, we trans-
form R1 and R2 into the center-of-mass vector RG and the
relative vector R:

R1 = RG + 4
5 R, (11)

R2 = RG − 1
5 R. (12)

All calculations are performed with restriction to axially
symmetric deformation, that is, βx = βy �= βz. As for the two-
cluster system, we can prove the following relation:〈

�̂J
Ne(βx, βz)

∣∣Ô∣∣�̂J
Ne(βx, βz)

〉
〈
�̂J

Ne(βx, βz)
∣∣�̂J

Ne(βx, βz)
〉

=
〈
�J

Ne(βx, βz)
∣∣Ô∣∣�J

Ne(βx, βz)
〉

〈
�J

Ne(βx, βz)
∣∣�J

Ne(βx, βz)
〉 . (13)

Here, �̂J
Ne(βx, βz) represents the internal spin-projected wave

function of 20Ne. �Ne(βx, βz) can be written as

�Ne(βx, βz) =
∫

d3R exp

{
−
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x

5β2
x

+ 4R2
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y

+ 4R2
z

5β2
z

)}

×�B
Ne(R). (14)

The corresponding projected wave function is (see Ref. [6])

�J
Ne(βx, βz)

= 2J + 1

8π2
× 4π2

∫
d cos θdJ

00(θ )

×
∫
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{
−

(
4R2

x
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5β2
y
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z

5β2
z

)}
R̂y(θ )�B

Ne(R)

(15)

=
(

J + 1

2

) ∫
d cos θdJ

00(θ )

×
∫

d3R exp

{
−

x,y,z∑
k

4

5

(Ry(θ )R)2
k

β2
k

}
�B

Ne(R), (16)

where dJ
00(θ ) is the reduced Wigner d function. R̂y(θ ) is the

rotation operator representing the rotation by the angle θ

around the y axis. Ry(θ ) is the corresponding 3 × 3 rotation
matrix. Because �B

Ne(R) can be written in the form of Eq. (8),
Eq. (16) can be proved by using the relation (Ry(θ )r − R)2 =
(r − R−1

y (θ )R)2. Thus, the final matrix element can be written
as 〈

�̂J
Ne(βx, βz)

∣∣Ô∣∣�̂J
Ne(βx, βz)

〉
=

(
J + 1

2

) ∫
d cos θdJ

00(θ )

×
∫

d3Rd3R′ exp

[
−

x,y,z∑
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4

5
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k + (Ry(θ )R′)2

k

β2
k

]

× 〈
�B

Ne(R)
∣∣Ô∣∣�B

Ne(R′)
〉
. (17)

In addition, for nondiagonal matrix elements, they also can
be easily derived using the wave function, Eq. (16).
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B. Microscopic Hamiltonian for 20Ne

The microscopic Hamiltonian for 20Ne in this work can be
written as

H = T − TG + VN + VC, (18)

where T is the total kinetic energy operator and TG the
center-of-mass kinetic energy operator. The last two terms
represent the effective two-body nuclear interaction and
Coulomb interaction, respectively. These operators are given
by the kinetic energy,

T =
20∑
i=1

−h̄2

2m

(
∂

∂ r i

)2

, (19)

the center-of-mass kinetic energy,

TG = −h̄2

40m

(
∂

∂ XG

)2

, (20)

and the Coulomb potential,

VC =
20∑

i>j

1 − τzi

2

1 − τzj

2

e2

r ij

. (21)

The nuclear potential part is taken as Gaussian form. In
this paper, the Volkov No. 1 Force [35] is adopted, which is
expressed as

VN =
20∑

i>j

{(1 − M) − MPσPτ }ij
2∑

n=1

vne
− r2

ij

a2
n . (22)

C. Hill-Wheeler equation

Here, we give a brief outline of the GCM [36]. First, we
construct the following wave function by superposing wave
functions with good quantum numbers of angular momentum,

�J
k =

∑
β

f J
k (β)�̂J

Ne(β), (23)

where β ≡ (βx, βy, βz). �J
k represents the kth normalized

eigenfunction expanded in the basis of �̂J
Ne(β). In order to

determine the weight function f J
k (β), the following Hill-

Wheeler equation should be solved:∑
β ′

〈
�̂J

Ne(β)
∣∣Ĥ − E

∣∣�̂J
Ne(β ′)

〉
f J

k (β ′) = 0. (24)

We discretize the parameter β by adopting enough mesh
points. Then the solution to the Hill-Wheeler equation is
equivalent to the diagonalization of the Hamiltonian in the
nonorthogonal basis of states �̂J

Ne(β) [37].

III. RESULTS AND DISCUSSION

Without consideration of deformation, there are two param-
eters, b and β, in our wave function, and the minimum of the
energy can be obtained by a full variational calculation with

FIG. 1. Contour map of the energy surface of 20Ne in the two-
parameter space, b and βx = βy = βz.

the two-parameter space. As for the nuclear interaction, the
Volkov No. 1 Force [35] with a Majorana parameter M = 0.6
is adopted. In Fig. 1, we show the contour map of the energy
surface of 20Ne in the two-parameter space. The features of
this map are similar to those of the corresponding maps of
8Be, 12C, and 16O in previous papers [5,6]. The minimum
energy appears at βx = βy = βz = 1.85 fm and b = 1.46 fm,
which can be considered a result of the competition of the size
parameter of α particles and the size parameter of the whole
nucleus. We fix the parameter b = 1.46 fm in our following
calculations.

As we know, when β → +∞, 20Ne can be regarded
as a two-free-cluster structure so that there is almost no
correlation between α and 16O. That is, ENe(b, β → +∞) =
Eα(b) + E16O(b). This simple relation makes it easy to obtain
the minimum energy of a single 16O particle by adopting the
Volkov No. 1 Force with a Majorana parameter M = 0.6. Our
calculations show that the binding energy of a single α particle
takes its minimum value for the size parameter b = 1.37 fm,
that is, Emin

α (b = 1.37) = −27.08 MeV. For the 16O nucleus,
the size parameter b becomes 1.49 fm with respect to the lowest
energy of 16O, namely, Emin

16O (b = 1.49) = −127.84 MeV.
This means that the calculated threshold energy is about
4.7 MeV, which is fully consistent with the experimental value
4.73 MeV. The asymptotic values of b parameters are slightly
different from our adopted value b = 1.46 fm as is deduced
appropriately from Fig. 1 for the more compact configurations
of 20Ne relevant here.

The valley has a saddle point at βx = βy = βz ≈ 11.4 fm
and b ≈ 1.47 fm. The height of the saddle point measured
from the threshold energy is about 2.42 MeV and can be
considered the Coulomb barrier. The state corresponding to the
minimum energy can be considered approximately the ground
state. The calculated result, −159.66 MeV, is in agreement
with the experimental binding energy, −160.64 MeV, which
suggests that the single generalized THSR wave function can
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FIG. 2. Contour map of the energy surface of the deformed state
of 20Ne in the two-parameter space, βx = βy and βz.

describe well the ground state of 20Ne. This can be confirmed
by comparison with the Brink cluster model in the following
calculations.

Figure 2 shows the energy surface of the deformed state of
20Ne in the two-parameter space, βx = βy and βz. The result
indicates that the minimum energy lies on the βx(=βy) = βz

line, which means that the minimum energy obtained, −159.66
MeV, corresponds to the spherical state. It should be pointed
out that this result is obtained without angular momentum
projection.

Next, we show the contour maps of the energy surfaces
corresponding to different spin-projected states in 20Ne in the
two-parameter space, βx = βy and βz. They are calculated
using the generalized THSR wave function without a single
adjustable parameter, with the previously fixed parameter
values. Figure 3 shows the contour map of the energy surface
corresponding to the Jπ = 0+ state of 20Ne after angular
momentum projection in the two-parameter space, βx = βy

and βz. It can be seen that the minimum energy no longer
lies on the βx = βz line but occurs at βx = βy ≈ 0.9 fm and
βz ≈ 2.5 fm in the prolate region of the map. The secondary
minimum energy, −159.74 MeV, appears at βx = βy ≈ 2.1 fm
and βz ≈ 0.0 fm in the oblate region. There is a very narrow
valley with a nearly flat bottom connecting the two minimum
points, which indicates that the energy of the deformed
configuration is slightly lower than that of the spherical
configuration. The minimum energy, −159.85 MeV, indicates
that the energy gain from the angular momentum projection
is only about 0.19 MeV. Figure 4 displays the contour map
of the squared overlap between the 0+ wave function with
βx = βy = 0.9 fm, βz = 2.5 fm and the 0+ wave function with
variable βx(= βy) and βz. It can be seen that the oblate and
prolate regions have very similar wave functions. In particular,
the calculated squared overlap between the normalized wave
function �̂0+

I , corresponding to the state of minimum energy,

FIG. 3. Contour map of the energy surface of the J π = 0+ state
in the two-parameter space, βx = βy and βz.

and �̂0+
II , corresponding to the state of secondary minimum

energy, is about 0.999. This reveals that the two wave functions
with respect to the minimum points are nearly equivalent. This
conclusion is quite consistent with the description of 8Be in
the framework of the THSR wave function [6].

In Fig. 5 the energy surface of the Jπ = 2+ state is
shown. We can see that there appears a maximum point at
βx = βy = βz ≈ 6 fm with an energy of about −151 MeV. In
fact, this energy region corresponds to the Coulomb barrier. As
β decreases, we can also find a valley in the region confined by
βx(βy) + βz − 2 > 0 and βx(βy) + βz − 3.5 < 0. It connects

FIG. 4. Contour map of the squared overlap between the 0+ wave
function with βx = βy = 0.9 fm and βz = 2.5 fm and the 0+ wave
function with variable βx(= βy) and βz. Numbers on the contour lines
are squared overlap values.
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FIG. 5. Contour map of the energy surface of the J π = 2+ state
of 20Ne in the two-parameter space, βx = βy and βz.

the two minimum energy points. One is at βx = βy ≈ 0.0 and
βz ≈ 2.2 fm, with a minimum energy of −158.53 MeV in the
prolate region of the plot. The other is at βx = βy ≈ 1.9 fm and
βz ≈ 0.0, with a secondary minimum energy, −158.44 MeV,
in the oblate region. The two minimum energies are very close
to each other. We can note that the energies do not change
much in the valley, in spite of the fact that they correspond
to completely different shapes. This can also be understood
qualitatively by considering the squared overlap between the
2+ wave function with βx = βy ≈ 0.0 fm, βz ≈ 2.2 fm and
the 2+ wave function with variable βx(= βy) and βz. Figure 6

FIG. 6. Contour map of the squared overlap between the 2+

wave function with βx = βy ≈ 0.0 fm, βz = 2.2 fm and the 2+ wave
function with variable βx(= βy) and βz. Numbers on the contour lines
are squared overlap values.

shows again the similarity of the prolate and oblate states in
the valley.

The contour map of the Jπ = 4+ state is very similar to
Fig. 5. There also appears a maximum energy with respect to
the top of the Coulomb barrier and a valley connecting the two
minimum energies. The prolate and oblate regions correspond
to similar wave functions according to our calculations.

As for the energy surfaces of the Jπ = 6+ and Jπ = 8+
states of 20Ne, their binding energies become deeper as βx

or βz becomes larger. That is, we cannot find a minimum of
the energy in the two-parameter space, βx = βy and βz. This
reflects the character of resonance states. However, one can
obtain the local minimum energies in a small region. For the
8+ state of 20Ne, the two local minimum points both have an
energy of −144.48 MeV. One is at βx = βy ≈ 0.0 fm and βz ≈
0.7 fm, and the other at βx = βy ≈ 0.7 fm and βz ≈ 0.0 fm.
The small β values indicate that the shell-model configuration
prevails in this high-spin state.

As mentioned above, the oblate spin-projected intrinsic
states are very similar to the prolate spin-projected intrinsic
states from the energy contours of different states of the
ground-state band in 20Ne (see Figs. 4 and 6). This character
can be explained by the structure of the spin-projected intrinsic
wave function of 20Ne [6]. Because the prolate and oblate
deformed wave functions are approximately equivalent, we
only superpose prolate deformed wave functions in GCM
calculations. There is also a detailed discussion for 12C in
Ref. [9] about this situation. In order to solve the Hill-Wheeler
equation, we adopt different mesh points of βz by fixing
βx , which can avoid the numerical inaccuracy owing to the
superposition of the similar wave functions and obtain a
converged value. Our adopted mesh size of βz is 0.5 fm.

In Table I, the (local) minimum energies and positions in the
contour plots, the calculated energies of the ground-state band
in 20Ne, the GCM results, and the corresponding experimental
values are listed. It can be seen that the GCM results and
the calculated excited energies are in good agreement with
the observed values, except for the energy of the Jπ = 8+
state. This proves the validity of our generalized THSR wave
function for describing the compact cluster structure of 20Ne.

Moreover, we can note that the parameter βx or βz,
corresponding to the minimum energy or local minimum
energy, becomes smaller as the spin increases from the energy
contour plots, which is more clearly illustrated in Table I.
Considering the meaning of the parameter β, we believe that
the more cluster-model-like structure of 20Ne is changing to a
more shell-model-like structure as the spin J becomes larger.
This is called the antistretching effect (e.g., see Ref. [38]),
which is also discussed in the framework of the AMD [32].
Therefore, we conclude that the states of 20Ne described by
the α +16O configuration gradually lose their collectivity
as the spin increases and terminate in a shell configuration
when Jπ = 8+. In fact, many calculations indicate that the
termination of the ground-state band in 20Ne appears at
Jπ = 8+ [39]. In addition, the dominated shell configuration
of Jπ = 8+ state might explain the larger error mentioned
above. The reproduction of this antistretching effect within
our model is very rewarding and demonstrates the flexibility
of our wave function.
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TABLE I. Minimum energies and corresponding distances between the α cluster and the 16O cluster with respect to different spin-projected
states in the Brink cluster model. The (local) minimum energies and their positions corresponding to the contour maps of energy surfaces of
different spin-projected states, calculated excited energies of the ground-state band in 20Ne, and observed values are listed. For low-lying states
of 20Ne, we list the GCM results obtained by the THSR model and the squared overlaps between our single normalized THSR wave function
corresponding to the minimum energies and the normalized superposed Brink wave function, respectively. The squared overlaps between our
single normalized THSR wave function and the single normalized Brink wave function corresponding to their (local) minimum energies are
also listed. Units of energy are MeV.

State EBrink
Min (R) ETHSR

Min (βx, βz) Excited ETHSR
GCM (excited) Experiment |〈�̂THSR

Min |�̂Brink
GCM〉|2 |〈�̂THSR

Min |�̂Brink
Min 〉|2

0+ −158.42(3.0) −159.85(0.9, 2.5) 0 −160.05(0) −160.64(0) 0.9929 0.9362
2+ −157.19(2.9) −158.53(0.0, 2.2) 1.33 −158.84(1.21) −159.01(1.63) 0.9879 0.9494
4+ −154.40(2.6) −155.50(0.0, 1.8) 4.35 −156.04(4.01) −156.39(4.25) 0.9775 0.9571
6+ −150.18(2.1) −150.80(0.0, 1.2) 9.05 – −151.86(8.78) – 0.9870
8+ −144.30(1.5) −144.48(0.0, 0.7) 15.37 – −148.69(11.95) – 0.9996

In order to further elucidate the generalized THSR wave
function and obtain a deeper understanding of the cluster
structure of 20Ne, we make a comparison with the Brink wave
function. The energy expectation EJ (R) of the projected Brink
wave function, which is a function of the intercluster distance
parameter R, is expressed as

EJ (R) =
〈
�J+

Brink(R)
∣∣Ĥ ∣∣�J+

Brink(R)
〉

〈
�J+

Brink(R)
∣∣�J+

Brink(R)
〉 . (25)

The minimum energies and corresponding distances be-
tween the α cluster and the 16O cluster with respect to different
spin-projected states are calculated in the Brink cluster model.
They are listed in Table I. For example, for the ground state
of 20Ne, when R = 3.0 fm, E0(R) takes its minimum value
at −158.42 MeV. It should be noted that this energy is 1.43
MeV higher than the energy of −159.85 MeV obtained by
our generalized THSR wave function. By adopting Rj =
0.6 × j fm, with j = 1–20, in the Hill-Wheeler equation,
the GCM result −160.05 MeV is obtained. This result is
consistent with the energy obtained by the THSR model in the
GCM. Moreover, we compare our single generalized THSR
wave function with the single Brink wave function and the
superposed Brink wave function. The squared overlaps are
listed in Table I.

For the Jπ = 0+, 2+, 4+ states of 20Ne, it should be noted
that the calculated GCM results within the Brink cluster model
are basically in agreement with ETHSR

GCM (excited) in Table I.
This indicates that the superposed THSR wave function and
the superposed Brink wave function in the GCM are almost
identical. By comparing the minimum energies of the Brink
model and of the THSR model with the GCM energies for
low-lying states of 20Ne, we find that the minimum energies
obtained by the single THSR wave function are much closer
to the GCM energies.

Furthermore, it is found that the squared overlaps
|〈�̂THSR

Min |�̂Brink
GCM〉|2 in Table I are very large. For the ground

state of 20Ne, the squared overlap, 0.9929, is nearly equal
to 1. The large squared overlaps further indicate that our
single generalized THSR wave function �̂THSR

Min is very close
to the corresponding superposed Brink wave function �̂Brink

GCM.
On the other hand, the squared overlaps |〈�̂THSR

Min |�̂Brink
Min 〉|2 are

relatively small. For example, this value is only 0.9362 for the
ground state of 20Ne. This indicates that the single THSR wave
function and single Brink wave function have some differences
in describing low-lying states of the ground-state band in 20Ne.
Therefore, for describing the cluster character of low-lying
states of the ground-state band in 20Ne, the THSR model pro-
vides a more reasonable picture than the Brink cluster model.

For the more shell-model-like 6+ and 8+ states, it is found
that the calculated (local) minimum energies are very close
using the single generalized THSR and the single Brink wave
function. In addition, the large squared overlaps, 0.9870 and
0.9996, further indicate that the single Brink wave function
and the single THSR wave function are almost identical. These
results can be well understood by the fact that the two kinds
of wave function become the same SU(3) shell-model wave
function at their shell limits (β → 0 and R → 0).

On the other hand, this comparison further proves that the
more compact cluster structures of 20Ne can be described
well in the framework of the THSR model. In fact, we
have described some non-gas-like structures in nuclei within
the THSR model in the previous work. For instance, the
normalized THSR state of 12C gives the largest squared
overlap, 0.93, with the ground state obtained by solving the
Hill-Wheeler equation [20]. Considering that the ground state
of 12C contains no gas-like state but a more shell-model-like
state with a large 3α correlation, the result indicates that it is
very promising for treating non-gas-like cluster states in nuclei
within the THSR model. Now, from the more cluster-model-
like structure of the 0+ state to the more shell-model-like
structure of 6+, the generalized THSR wave functions describe
well these states of 20Ne.

IV. SUMMARY

In this work, we have introduced a generalized THSR
wave function for describing general cluster states in nuclei,
which inherits the merits of the original THSR wave function
characterized by a large spatial extension. As the first step,
the ground-state band in 20Ne is investigated within the
microscopic cluster model.

First, the energies of the ground-state band in 20Ne have
been reproduced well with the generalized THSR wave func-
tion. Moreover, the antistretching effect of the ground-state
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band is clearly shown, which provides a deeper insight into
the transformation from the clustering to the shell-model-like
states of the ground-state band in 20Ne.

Furthermore, we make a comparison between our single
generalized THSR wave function and the Brink wave function
for the ground-state band in 20Ne. It is found that our single
generalized THSR wave function can reproduce accurately
the low-lying states described by the GCM with the Brink
wave function. We conclude that the THSR model provides
a new picture for understanding the low-lying states of the
ground-state band in 20Ne. On the other hand, the successful
description of the more compact cluster structure of 20Ne
provides strong support for our extension from the nα gas-like
states to the general cluster states in nuclei.

It is worth mentioning that the other excited 0+ states
and important observables of 20Ne such as the α-decay
width can also be calculated in this generalized model. And
the investigation of the 20Ne is just the first step toward a

generalized THSR wave function. More cluster structures in
nuclei will be investigated in this framework. In addition, the
negative-parity states being nontrivial, we will consider this
problem and try to propose a way to deal with it using the
spirit of the THSR model. These studies are in progress.
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Lett. 87, 192501 (2001).
[6] Y. Funaki, H. Horiuchi, A. Tohsaki, P. Schuck, and G. Röpke,
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T. Yamada, Rom. Rep. Phys. 59, 675 (2007).
[12] Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, and
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