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Background: Theoretical calculations of the four-body scattering above the four-body breakup threshold are
technically very difficult owing to complicated singularities in the momentum space or boundary conditions in
the coordinate space.
Purpose: We aim at calculating the neutron-3H scattering observables above the four-nucleon breakup threshold.
Methods: We employ Alt, Grassberger, and Sandhas (AGS) integral equations for the four-nucleon transition
operators and solve them in the momentum-space framework using the complex-energy method. We significantly
improve its accuracy and practical applicability by introducing the numerical integration method with the special
weights.
Results: Using realistic nuclear interaction models we obtain fully converged results for the neutron-3H scattering.
Elastic differential cross section and neutron analyzing power as well as the total cross section are calculated at
14.1, 18.0, and 22.1 MeV neutron energy.
Conclusions: Realistic four-nucleon scattering calculations above the four-nucleon breakup threshold are
feasible. There is quite good agreement between the theoretical predictions and experimental data for the
neutron-3H scattering in the considered energy regime.
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The four-nucleon reactions is an ideal but also highly
challenging field to test few-nucleon interaction models.
The problem of elastic nucleon-trinucleon scattering below
the inelastic threshold has already been solved with high
accuracy using several ab initio methods with realistic nu-
clear potentials. These methods include the hyperspherical
harmonics (HH) expansion [1–3], the Faddeev-Yakubovsky
(FY) equations [4] for the wave-function components in the
coordinate space [5,6], and the Alt, Grassberger, and Sandhas
(AGS) equations [7,8] for the transition operators in the
momentum space [9–11]. A recent benchmark [12] reported
a good agreement between the HH, FY, and AGS techniques
for the neutron-3H (n-3H) and proton-3He (p-3He) scattering.
Furthermore, deuteron-deuteron (d-d) collisions, including the
transfer reactions to p-3H and n-3He final states, have been
calculated using the resonating-group method (RGM) [13] and
the AGS framework [14,15]. However, also these calculations
were limited to energies below the three-cluster breakup
threshold. At higher energies, especially above the four-body
breakup threshold, the asymptotic boundary conditions in
the coordinate space become nontrivial owing to open two-,
three-, and four-cluster channels. In the momentum-space
framework one is faced with a very complicated structure of
singularities in the kernel of integral equations. Formally, these
difficulties can be avoided by rotation to complex coordinates
[16] or continuation to complex energy [17,18] that lead to
bound-state-like boundary conditions and nonsingular kernels.
However, technical complications may arise in practical
calculations. Indeed, the applications to the four-nucleon
scattering so far have been very limited [19,20] and none
of them uses realistic interactions. The no-core shell model
RGM [21], although using realistic potentials, includes in
the model space only the ground state of the three-nucleon
system, which is insufficient. In Ref. [22] this shortcoming
was partially corrected by adjusting the predictions to the
experimental data.

The aim of the present Rapid Communication is to
overcome the above limitations by performing realistic well-
converged four-nucleon scattering calculations above the
four-body breakup threshold. We use the complex energy
method [17] but introduce important technical improvements.
Although in the AGS framework employed by us the Coulomb
force can be included via the screening and renormalization
method [23,24], the present numerical results are restricted to
the Coulomb-free n-3H case.

We treat the nucleons as identical particles in the isospin
formalism and therefore use the AGS equations for the
symmetrized four-particle transition operators Uβα as derived
in Ref. [9]; that is,

U11 = −(G0 t G0)−1P34 − P34U1G0 t G0 U11

+U2G0 t G0 U21, (1a)

U21 = (G0 t G0)−1(1 − P34) + (1 − P34)U1G0 t G0 U11,

(1b)

U12 = (G0 t G0)−1 − P34U1G0 t G0 U12 + U2G0 t G0 U22,

(1c)

U22 = (1 − P34)U1G0 t G0 U12. (1d)

Here, α = 1 corresponds to the 3 + 1 partition (12,3)4,
whereas α = 2 corresponds to the 2 + 2 partition (12)(34);
there are no other distinct two-cluster partitions in the system
of four identical particles.

The equation

G0 = (Z − H0)−1 (2)

represents the free resolvent with the complex energy param-
eter Z = E + iε and the free Hamiltonian H0,

t = v + vG0t (3)
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is the pair (12) transition matrix derived from the potential v,
and

Uα = PαG−1
0 + Pαt G0 Uα (4)

are the symmetrized 3 + 1 or 2 + 2 subsystem transition op-
erators. The basis states are antisymmetric under exchange of
two particles in the subsystem (12) for the 3 + 1 partition and
in (12) and (34) for the 2 + 2 partition. The full antisymmetry
of the four-nucleon system is ensured by the permutation
operators Pab of particles a and b with P1 = P12 P23 + P13 P23

and P2 = P13 P24.
The scattering amplitudes for two-cluster reactions at

available energy E = εα + p2
α/2μα = εβ + p2

β/2μβ are ob-
tained as the on-shell matrix elements 〈pβ |Tβα|pα〉 =
Sβα〈φβ |Uβα|φα〉 in the limit ε → +0. Here |φα〉 is the Faddeev
component of the asymptotic two-cluster state in the channel
α, characterized by the bound-state energy εα < 0, the relative
momentum pα , and the reduced mass μα . Thus, depending on
the isospin, ε1 is the ground-state energy of 3He or 3H, and ε2

is twice the deuteron energy εd . Sβα are the symmetrization
factors [9], for example, S11 = 3. The amplitudes for breakup
reactions are given by the integrals involving Uβα|φα〉 [25].

We solve the AGS equations (1) in the momentum-
space partial-wave framework. The states of the total an-
gular momentum J with the projection M are defined
as |kx ky kz[lz({ly[(lxSx)jxsy]Sy}Jysz)Sz]JM〉 for the 3 + 1
configuration and |kx ky kz(lz{(lxSx)jx[ly(sysz)Sy]jy}Sz)JM〉
for the 2 + 2. Here kx , ky , and kz are the four-particle Jacobi
momenta in the convention of Ref. [25]; lx , ly , and lz are the
associated orbital angular momenta; jx and jy are the total
angular momenta of pairs (12) and (34); Jy is the total angular
momentum of the (123) subsystem; sy and sz are the spins
of nucleons 3 and 4; and Sx , Sy , and Sz are channel spins of
two-, three-, and four-particle systems, respectively. A similar
coupling scheme is used for the isospin. In the following we
abbreviate all discrete quantum numbers by ν. The reduced
masses associated with Jacobi momenta kx and ky in the
partition α are denoted by μαx and μαy , respectively.

An explicit form of integral equations is obtained by
inserting the respective completeness relations

1 =
∑

ν

∫ ∞

0
|kxkykzν〉αk2

xdkx k2
ydky k2

z dkz α〈kxkykzν| (5)

between all operators in Eqs. (1). The integrals are discretized
using Gaussian quadrature rules [26] turning Eqs. (1) into a
system of linear equations as described in Ref. [9]. However, in
the limit ε → +0 needed for the calculation of the observables
the kernel of the AGS equations contains integrable singulari-
ties. At E + iε − εα − k2

z /2μα → 0 the subsystem transition
operator in the bound state channel has the pole

G0UαG0 → Pα|φα〉Sαα〈φα|Pα

E + iε − εα − k2
z /2μα

. (6)

Furthermore, at E + iε − εd − k2
y/2μαy − k2

z /2μα → 0 the
two-nucleon transition matrix in the channel with the deuteron
quantum numbers for the pair (12) has the pole

t → v|φd〉〈φd |v
E + iε − εd − k2

y/2μαy − k2
z /2μα

, (7)

with |φd〉 being the pair (12) deuteron wave function. Finally,
the free resolvent (2) obviously becomes singular at E + iε −
k2
x/2μαx − k2

y/2μαy − k2
z /2μα → 0.

At energies below the three-cluster threshold only (6)
singularities are present that in our previous calculations [9]
were treated reliably by the subtraction technique. However,
above the four-body breakup threshold all three kinds of
singularities are present. Their interplay with permutation
operators and basis transformations leads to a very complicated
singularity structure of the AGS equations. As proposed
in Ref. [17], this difficulty can be avoided by performing
calculations for a set of finite ε > 0 values where the kernel
contains no singularities and then extrapolating the results to
the ε → +0 limit. However, this extrapolation is precise only
with not-too-large ε values. However, for small ε the kernel
of the AGS equations, although formally being nonsingular,
may exhibit a quasisingular behavior, thereby requiring dense
grids for the numerical integration. This is no problem in
simple model calculations with rank-1 separable potential and
very few channels [19] where one can use a large number of
grid points. However, in practical calculations with realistic
potentials and a large number of partial waves necessary for
the convergence one has to keep the number of integration
grid points possibly small and therefore a more sophisticated
integration method is needed.

We take over from Refs. [17,19] the idea of the complex
energy method and the ε → +0 extrapolation procedure
(analytic continuation via continued fraction) but we introduce
an important technical improvement when calculating Uβα

at finite ε. We use the method of special weights for
numerical integrations involving any of the above-mentioned
quasisingularities; that is,

∫ b

a

f (x)

xn
0 + iy0 − xn

dx ≈
N∑

j=1

f (xj )wj (n, x0, y0, a, b). (8)

The quasisingular factor (xn
0 + iy0 − xn)−1 is sepa-

rated and absorbed into the special integration weights
wj (n, x0, y0, a, b). The set of N grid points {xj } where the
remaining smooth function f (x) has to be evaluated is chosen
the same as for the standard Gaussian quadrature. However,
while the standard weights are real [26], the special ones
wj (n, x0, y0, a, b) are complex. They are chosen such that for a
set of N test functions fj (x) the result (8) is exact. A convenient
and reliable choice of {fj (x)} are the N spline functions
{Sj (x)} referring to the grid {xj }; their construction and
properties are described in Refs. [26–28]. The corresponding
special weights are

wj (n, x0, y0, a, b) =
∫ b

a

Sj (x)

xn
0 + iy0 − xn

dx, (9)

where the integration can be performed either analytically or
numerically using a sufficiently dense grid. This choice of
special weights guarantees accurate results for quasisingular
integrals (8) with any f (x) that can be accurately approximated
by the spline functions {Sj (x)}.

In the integrals over the momentum variables one has n = 2,
a = 0, and b → ∞. For example, when solving the Lippmann-
Schwinger equation (3) the integration variable in Eq. (8) is the
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momentum kx with x2
0 = 2μαx(E − k2

y/2μαy − k2
z /2μα) and

y0 = 2μαxε. Alternatively, the quasisingularity can be isolated
in a narrower interval 0 < a < b < ∞ and treated by special
weights only there.

Other numerical techniques for solving the four-nucleon
AGS equations are taken over from Ref. [9]. They include Padé
summation [29] of Neumann series for the transition operators
Uα and Uβα using the algorithm of Ref. [30] and the treatment
of permutation operators (basis transformations) using the
spline interpolation. The specific form of the permutation
operators [9] leads to a second kind of quasisingular integrals
(8) with n = 1, a = −1, b = 1, and the integration variable
x = k̂′

y · k̂y or k̂′
z · k̂z being the cosine of the angle between

the respective initial and final momenta.
We note that the above integration method is not sufficient in

the vanishing ε limit because for n = 1 and y0 = 0 the result
of the integral (8) contains the contribution f (x0) ln[(x0 +
1)/(x0 − 1)] with logarithmic singularities at x0 = ±1. At
finite small ε the result of (8) may exhibit a quasisingular
behavior. However, because the logarithmic quasisingularity
is considerably weaker than the pole quasisingularity, at not
too small ε it is sufficient to use the standard integration.

We start by applying the complex energy method with
special integration weights to the n-3H scattering below the
three-cluster threshold where our previous results [9] obtained
at real energies using subtraction technique are available for
comparison. In the test calculations at 3.5 and 6.0 MeV neutron
energy we find a very good agreement between the two
methods, better than 0.05% for all relevant phase shifts and
observables. Five to ten ε values ranging from 0.2 to 2.0 MeV
were considered, while the number of grid points with 20 to 25
points for each Jacobi momentum is not increased as compared
to the real-energy calculations [9].

Next we test the numerical reliability of our technique
above the four-nucleon breakup threshold. We use a realistic
dynamics, namely, the high-precision inside-nonlocal outside-
Yukawa (INOY04) two-nucleon potential by Doleschall
[5,31] that reproduces experimental binding energies of 3H
(8.48 MeV) and 3He (7.72 MeV) without an irreducible
three-nucleon force. We consider a large number of four-
nucleon partial waves sufficient for the convergence, that
is, lx, ly, lz, jx, jy, Jy � 4 and J � 5. Including more partial
waves yields only entirely insignificant changes. There are
too many numerical parameters (numbers of points for
various integration grids) to demonstrate the stability of our
calculations with respect to each of them separately. We found
that 10 grid points are sufficient for all angular integrations but
30 to 40 grid points are needed for the discretization of Jacobi
momenta. The ε → +0 extrapolation yields stable results only
if sufficiently small ε are considered and at each of them
the respective calculations are numerically well converged.
We therefore study in Fig. 1 the stability of the ε → +0
results obtained via extrapolation using different ε sets ranging
from εmin to εmax with the step of 0.2 MeV. We show the
differential cross section dσ/d	 and neutron analyzing power
Ay for elastic n-3H scattering at En = 22.1 MeV neutron
energy. We find a very good agreement between the results
obtained with [εmin, εmax] = [1.0,2.0], [1.2,2.0], [1.4,2.0], and
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FIG. 1. (Color online) Differential cross section and neutron
analyzing power for elastic n-3H scattering at 22.1 MeV neutron
energy as functions of c.m. scattering angle. Results obtained using
different sets of ε values ranging from εmin to εmax with the step
of 0.2 MeV are compared; they are indistinguishable. The dotted
curves refer to the ε = 1.4 MeV calculations without extrapolation
that have no physical meaning but show the importance of the
extrapolation.

[1.2,1.8] MeV, confirming the reliability of our calculations.
In addition, we show in Fig. 1 the predictions referring to
ε = 1.4 MeV without extrapolation that do not have physical
meaning. The difference between ε → +0 and ε = 1.4 MeV
results demonstrates the importance of the extrapolation.
Furthermore, in Table I we collect the corresponding values
for selected phase shifts δ and inelasticities η; that is, we
parametrize the elastic S matrix as s = ηe2iδ . As already can be
expected from Fig. 1, the stability of the results with respect to
changes in [εmin, εmax] is very good. The variations are slightly
larger in the 1S0 state, where also the difference between the
finite ε and ε → +0 results is most sizable. Nevertheless, from

TABLE I. Elastic phase shifts (in degrees) and inelasticities in
selected partial waves for n-3H scattering at 22.1 MeV neutron energy.
Results for INOY04 potential obtained using different sets of ε values
ranging from εmin to εmax (in MeV) are compared. In the bottom
row the predictions with ε = 1.4 MeV without extrapolation are
given.

[εmin, εmax] δ(1S0) η(1S0) δ(3P0) η(3P0) δ(3P2) η(3P2)

[1.0, 2.0] 62.63 0.990 43.03 0.959 65.27 0.950
[1.2, 2.0] 62.60 0.991 43.04 0.959 65.29 0.951
[1.4, 2.0] 62.67 0.991 43.03 0.958 65.27 0.950
[1.2, 1.8] 62.65 0.992 43.03 0.959 65.28 0.950
1.4 73.37 0.916 44.77 0.840 67.38 0.933
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FIG. 2. (Color online) Differential cross section for elastic
n-3H scattering at 14.1, 18.0, and 22.1 MeV neutron energy. Results
obtained with INOY04 (solid curves) and CD Bonn (dashed-dotted
curves) potentials are compared with the experimental data from
Refs. [22,33,34].

Fig. 1 and Table I one can conclude that with a proper ε choice
as few as four different ε values are sufficient to obtain the
physical ε → +0 results with good accuracy.

For curiosity, inJ = 0 states we performed the calculations
keeping the same grids but with standard integration weights.
We found that they fail completely at ε values from Table I,
with the errors of the ε → +0 extrapolation being up to 10%
for phase shifts and up to 25% for inelasticity parameters.
However, at large ε > 4 MeV the two integration methods
agree well but the ε → +0 extrapolation has at least one order
of magnitude larger inaccuracies than those in Table I.

After establishing the reliability of our calculations we
proceed to the comparison with the experimental data. In
addition to the INOY04 potential we present results derived
from the CD Bonn potential [32] that underbinds the 3H
nucleus by 0.48 MeV. In Fig. 2 we show the differential cross
section for elastic neutron-3H scattering at 14.1, 18.0, and
22.1 MeV neutron energy. Except for the minimum around
115◦, the predictions are insensitive to the choice of the
potential. At En = 14.1 MeV the new data set by Frenje
et al. [22] is described very well. Other existing data at this
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FIG. 3. (Color online) Neutron analyzing power for elastic n-3H
scattering. INOY04 and CD Bonn predictions at En = 22.1 MeV are
compared with the data from Ref. [34]. INOY04 results at 14.1 and
18.0 MeV are also shown.

energy are consistent with Ref. [22] but have larger error bars;
we show only the data by Debertin et al. [33]. At 18.0 MeV
the data sets by Debertin et al. [33] and Seagrave et al. [34]
are inconsistent with each other around the minimum while
the theoretical predictions lie in the middle. The results at
En = 22.1 MeV are compared with the data taken at 21 and
23 MeV by Seagrave et al. [34]. The predictions lie between the
two data sets except for the minimum region. However, given
the agreement between Ref. [22,33] data and disagreement
between the Ref. [33,34] data, one may question the reliability
of the data by Seagrave et al. in the minimum region. Thus,
new measurements are needed to resolve this discrepancy.

In Fig. 3 we present the neutron analyzing power for
elastic n-3H scattering at En = 22.1 MeV. To study the energy
dependence we also show INOY04 predictions at En = 14.1
and 18.0 MeV. We observe that the sensitivity to the nuclear
force model and energy is considerably weaker compared
to the regime below the three-cluster threshold [9,10]. Most
remarkably, in contrast to low energies where the famous
p-3He Ay-puzzle exists [1,10,35], the peak of Ay around
120◦ is described very well but there is a discrepancy in the
minimum region. This is somehow similar to the three-nucleon
system where the nucleon-deuteron Ay puzzle existing at low
energies disappears as the energy increases [36].

In this Rapid Communication we do not calculate explicitly
the breakup amplitudes. However, the total n-3H cross section

TABLE II. n-3H elastic σe, breakup σb, and total σt cross
sections (in mb) at selected neutron energies (in MeV).

INOY04 CD Bonn Experiment

En σe σb σt σe σb σt σt Ref.

14.1 928 19 947 913 28 941 978 ± 70 [37]
18.0 697 41 738 689 48 737 750 ± 40 [37]
22.1 536 61 597 524 70 594 620 ± 24 [38]
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σt = σe + σb with the elastic σe and three- and four-cluster
breakup σb contributions is calculated using the optical
theorem. The results at three considered energies are collected
in Table II. The σt predictions are slightly lower than the
experimental data from Refs. [37,38], but in most cases they
agree within error bars. The breakup cross section σb is most
sensitive to the potential model, probably owing to differences
in 3H binding energy and breakup threshold positions.

In summary, we performed fully converged neutron-3H
scattering calculations with realistic potentials above the
four-nucleon breakup threshold. The symmetrized AGS four-
particle equations were solved in the momentum-space frame-
work. We greatly improved the accuracy and the efficiency

of the complex energy method by using numerical integration
technique with special weights for all quasisingularities of
the pole type. The calculated elastic scattering observables
show little sensitivity to the interaction model. The overall
agreement with the experimental data for the elastic differential
cross section and neutron analyzing power as well as for the
total cross section is quite good, considerably better than in
the low-energy n-3H and p-3He scattering. Extension of the
method to other reactions in the four-nucleon system is in
progress.

The authors thank R. Lazauskas for valuable discussions
and J. A. Frenje for providing the data.
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