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Calculating error bars for neutrino mixing parameters
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One goal of contemporary particle physics is to determine the mixing angles and mass-squared differences
that constitute the phenomenological constants that describe neutrino oscillations. Of great interest are not only
the best-fit values of these constants but also their errors. Some of the neutrino oscillation data is statistically
poor and cannot be treated by normal (Gaussian) statistics. To extract confidence intervals when the statistics
are not normal, one should not utilize the value for �χ2 versus confidence level taken from normal statistics.
Instead, we propose that one should use the normalized likelihood function as a probability distribution; the
relationship between the correct �χ 2 and a given confidence level can be computed by integrating over the
likelihood function. This allows for a definition of confidence level independent of the functional form of the χ2

function; it is particularly useful for cases in which the minimum of the χ2 function is near a boundary. We point
out that the question of what is the probability that a parameter is not zero is more precisely worded as what is
the maximum confidence level at which the value of zero is not included. We present two pedagogic examples
and find that the proposed method yields confidence intervals that can differ significantly from those obtained
by using the value of �χ 2 from normal statistics. For example, we find that for the T2K experiment the value of
�χ 2 corresponding to a confidence level of 90% is 3.57 rather than the normal statistics value of 2.71.
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Neutrino oscillation is a unique, experimentally observed
phenomenon that goes beyond the standard model of the
electroweak interaction. Assuming the observations can be
understood within the context of three neutrino flavors, a
coherent picture of the global data is sought in terms of
two mass-squared differences, three mixing angles, and one
CP phase. For an individual experiment, the experimentalist
assesses the values of measured parameters (and their asso-
ciated errors) through a detailed Monte Carlo simulation of
the experiment. For one who wishes to assess the oscillation
parameters from the global neutrino oscillation data set, this
procedure is not feasible. Instead, one develops a model of
each experiment and compares the model results to the data
through a choice of a particular statistic, often expressed as a
χ2 function. For a sufficiently large data set, normal (Gaussian)
statistics can be assumed, and the χ2 function is defined as
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where {aj } is a set of parameters, the mixing angles and
mass-squared differences, to be determined; {ck} is a set
of systematic errors; n

exp
i are the experimental data points;

nth
i ({aj }, {ck}) are the theoretical predictions of the data; σi are

the statistical errors for the data points; cth
k are the best estimates

of the systematic errors; and σk the errors for the systematics.
The systematic error parameters are usually treated as nuisance
parameters and the χ2({aj }) is minimized with respect to these
parameters, often using the pull method [1], for each set of the
parameters {aj }. The best-fit parameters are then the values of
the aj which minimize χ2({aj }).

Neutrino oscillations require that we must also deal with
small statistical samples. In particular, the recent T2K results

[2] report a total of six observed neutrino events, binned by
energy into sets containing zero, one, or two counts each.
Despite this paucity, the data is a significant indicator that θ13

is nonzero. The Super-Kamiokande (Super-K) atmospheric
data afford another example. Though they provide relatively
stringent bounds upon the mixing angle θ23 and the “atmo-
spheric” mass-squared difference, the data also impact the
determination of θ13. The Super-K experiment provides an
upper bound for the angle and shows a slight preference for
negative values of θ13 [3,4]. The sensitivity of the data to θ13

can be traced to sub-GeV neutrinos with very long baselines [5]
and the MSW resonances that occur for the normal hierarchy
in the 3 to 7 GeV range [4]. The statistical significance of the
data in these two regions is low, and the resulting χ2 is not well
represented by a quadratic, so that the assumption of Gaussian
statistics is tenuous.

For small sample sizes, it is standard usage to employ a χ2

function defined in terms of Poisson statistics,
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where bi is a theoretical estimate of background events. The
best-fit parameters remain the values of the aj at the minimum
value of χ2({aj }). In addition to being valid for small sample
sizes, this χ2 allows for the treatment of the situation where it is
not possible to cleanly separate the signal from the background.
Background estimates are usually assessed through Monte
Carlo simulations of the experimental detection and then
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inserted into Eq. (2). For large sample sizes, the Poisson χ2

limits to the normal statistic χ2, thus allowing its use for data
where some bins have good statistics but some have poor
statistics, as is the case for atmospheric data.

Herein, we address the question as to how one should extract
the errors on these parameters at a given confidence level. A
common practice is to use the value of �χ2 =: χ2 − χ2

min
that corresponds to the desired confidence level as found from
normal statistics, and then define the allowed region for the
parameter a as lying within the interval [ao − δ1, ao + δ2]
where χ2(ao ± δ1,2) = χ2

min + �χ2 with ao corresponding to
the best fit. For example, in a review on θ13 phenomenology [6],
the authors quote the 90% CL for sin2 θ13 computed by several
groups. As this mixing angle is small and the parametrization
of the mixing angle is strictly positive, it is near zero, the
boundary of the parameter space. By observation, it is apparent
that the χ2 for this parameter is manifestly not a quadratic and
thus does not correspond to normal statistics. The authors
state that their quoted 90% confidence levels on sin2 θ13 is
found using the value �χ2 = 2.71, but for the reasons cited
above, caution must be employed in using this value. Indeed,
the authors of Ref. [6] admonish us that “the results on θ13 . . .

should be taken with some grain of salt, and in particular
the numbers given for various confidence levels . . . have to
be considered only as approximate, and should always be
understood in terms of the �χ2 value.”

We propose a method for extracting allowed regions for
a single parameter at a given confidence level that does not
depend on the use of normal statistics. Instead, we take a
Bayesian approach and interpret the normalized likelihood
function with a flat prior probability distribution function (pdf)
as a posterior pdf. The likelihood functionL is defined in terms
of the χ2 function by

χ2({ai}) =: −2 ln L({ai}). (3)

For a single parameter a, normal statistics give χ2 = (a −
ao)2/σ 2 and L = exp[−(a − ao)2/2 σ 2], where σ is the one-
standard-deviation error for a. For a compact parameter space,
as with the mixing angles, one can assuredly normalize L;
for the mass-squared differences, the likelihood function falls
off rapidly enough so that normalization is possible for these
parameters as well. We will hereafter work with a normalized
likelihood function, L.

The concept of marginalization is intricately connected to
the calculation of allowed regions and error bars. We begin
with a quick review of marginalization. Generally, the χ2

function and the maximum likelihood function are functions
of n parameters, {ai}. Here these are the two mass-squared
differences and the three mixing angles. Suppose we wish to
extract information about one particular parameter, say a1, in
light of the knowledge of the remaining n − 1 parameters.
Marginalization tells us how to do so:

L(a1) =
∫

da2 da3 · · · dan L({ai}). (4)

This follows simply because with the choice of a constant prior
pdf the normalized likelihood function is a pdf; hence, L(a1)
is also a pdf.

Dropping the subscript 1 for simplicity, we note that the
probability P that the parameter a lies between amin and
amax is

P(amin, amax) =
∫ amax

amin

L(a) da. (5)

There exists an ambiguity in what we propose. If we
make a nonlinear change in variables, such as θ → sin2 2 θ ,
and use a constant prior pdf for both, the results obtained
are not independent [8] of which variable we use. In the
limit of large statistics, this dependence disappears as normal
statistics then become valid. In many cases, the work done
by the experimentalists will resolve this ambiguity. They
will have used a more sophisticated methodology to extract
allowed regions and error bars, often the Feldman-Cousins [9]
approach. To do this they will have chosen a variable with
which to work and will have provided results in terms of
that variable. In constructing a model for the global analysis,
we must closely reproduce the results of the experimentalists.
To do this, we must choose the same variable as they have
used and use a constant prior pdf for this variable so that we
are making a meaningful comparison of our results to their
results.

We choose two pedagogic examples to demonstrate this
procedure. For Example 1, we consider the extraction of θ13

with −π/2 � θ13 � π/2 from the global analysis in Ref. [3].
(Note that this analysis does not contain the recent data from
Super-K III [10], T2K [2], MINOS neutrino disappearance
[11], anti-neutrino dissappearance [12] or neutrino appearance
[13], Double Chooz [14], or Daya Bay [15] experiments and
is used here purely for illustrative purposes.) In Fig. 1, we
plot �χ2 versus θ13 and assume the prior is flat for θ13; note
that �χ2 is clearly not a quadratic function. In Example 2,
we consider the extraction sin2 2 θ13 from an analysis [7] of
the recent T2K data [2]; we assume the prior to be flat for
sin2 2 θ13. The T2K results are dependent on the hierarchy and
the sign of θ13; we show the results for normal hierarchy and
positive θ13. In Fig. 2, we show �χ2 versus sin2 2 θ13. Note
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FIG. 1. (Color online) �χ 2 versus the mixing angle θ13 as taken
from the global analysis given in Ref. [3].
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FIG. 2. (Color online) �χ 2 versus sin2 2θ13 for the T2K first data
release [2] as taken from the analysis in Ref. [7]. The curve depicted
is calculated for positive θ13 and normal hierarchy.

that not only is �χ2 not quadratic, but the minimum is near
the lower bound of zero for sin2 2 θ13.

A simple application of Eq. (5) would be to ask what is the
probability calculated from Fig. 1 that θ13 is less than zero.
The result is 80%. Similarly for Fig. 2 we can find that there
is a 90% probability that sin2 2 θ13 � 0.31.

To define a confidence level for the parameter a, we choose
a value for �χ2, find the two points ao ± δ1,2 that correspond
to the chosen �χ2, and integrate the likelihood function L(a)
from ao − δ1 to ao + δ2. The integral yields the confidence
level associated with the particular value of �χ2. If you desire
a particular confidence level, pick an initial guess for �χ2,
such as the value from normal statistics, calculate the actual
confidence level for this value and then repeat the process
until you find the appropriate �χ2 that produces the desired
confidence level. The process is not computationally difficult
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FIG. 3. (Color online) The error bars as a function of confidence
level for the �χ 2 from Ref. [3] as depicted in Fig. 1. The solid straight
(blue) horizontal line is the minimum value of θ13, the dashed (red)
line is the upper end of the upper error bar, while the dot-dash (green)
curve is the lower end of the lower error bar.
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FIG. 4. (Color online) The error bars as a function of confidence
level for the �χ 2 for T2K [2] as depicted in Fig. 2. The curves are
the same as in Fig. 3.

nor computationally intensive. Note that the concept of a
standard deviation applies only to normal statistics, while
confidence level is universal.

For our two examples, we plot in Figs. 3 and 4 the error
bars on θ13 and sin2 2 θ13, respectively, as they vary with the
confidence level. Notice the errors are asymmetric in both
cases. In Fig. 4, we see that the lower error bar for sin2 2 θ13

extends to zero near 98% and then remains there as the
confidence level increases. This demonstrates the point that,
if the best fit parameter is near a boundary of the parameter
space, the confidence level will not be well approximated by
the normal statistic, as �χ2 is not quadratic.

In Figs. 5 and 6, we examine the relationship between �χ2

and the confidence level for our two examples, comparing our
results with those from normal statistics. In both figures, the
(red) dashed curves utilize the normalized likelihood function,
while the (blue) solid curves employ normal statistics. In
Table I, we present the same information for some commonly
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FIG. 5. (Color online) The relationship of �χ 2 to the confidence
level. The solid (blue) curve is for normal statistics and the dashed
(red) curve is calculated for the �χ 2 from the global analysis in
Ref. [3] as depicted in Fig. 1.
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FIG. 6. (Color online) The relationship of �χ 2 to the confidence
level. The solid (blue) curve is for normal statistics and the dashed
(red) curve is calculated for the �χ 2 for the T2K experiment [2] in
Ref. [7] as depicted in Fig. 2.

used confidence levels. We see that at low confidence levels
there is a large difference between either example and the
normal statistics result. For example, from Table I we see that
for Example 1 the 68% confidence level corresponds to a �χ2

that is a factor of 1.7 larger than the normal statistics value of
1.00, and for Example 2 the �χ2 is a factor of 1.3 larger than
the normal statistics. For Example 1, we can understand why
the correct �χ2 is larger than the normal statistics values up
to the 99% confidence level. This is because the �χ2 curve
in Fig. 1 is more pointed than a quadratic, and it thus takes
a higher value of �χ2 to get a given percentage below that
value. Also for Example 1, the correct and the normal statistics
value are nearly equal at a confidence level of 99%, but this
is accidental as the two confidence level curves intersect at a
single point in this region.

The question that remains to be answered is “What is the
probability that θ13 is or is not zero?” The correct answer
to this question is that the probability that θ13 = 0 is zero; the
probability that it is not zero is one. Notice that θ13 can be taken
to lie between −π/2 and +π/2, and zero is a single point out of
the continuum. Thus the question is an ill-posed one. The more
meaningful question is “What is the maximum confidence
level at which zero is not an allowed value?” Consider Example
1: for normal statistics, we find �χ2(0) = 2.0 at θ13 = 0 so
that we might claim that the mixing angle is nonzero at a
confidence level of 84%. Using the likelihood function for
Example 1, we find θ13 is nonzero at the 72% confidence level,
knowing that we are here using the language somewhat loosely.

TABLE I. The relationship of confidence level to �χ2 for some
commonly used confidence levels. Three examples are given: (1)
normal statistics, (2) the �χ 2 for θ13 taken from a global analysis [3]
and shown in Fig. 1, and (3) the �χ 2 for sin2 2θ13 taken from Ref. [7]
for the recent T2K data [2] and shown in Fig. 2.

Confidence �χ 2

level (%) Normal Fig. 1 Fig. 2
statistics θ13 sin2 2 θ13

68.27 1.00 1.70 1.30
90.00 2.71 3.00 3.57
95.00 3.84 3.95 5.06
95.42 4.00 4.09 5.24
99.00 6.63 6.65 8.05
99.73 9.00 8.90 9.42

For Example 2, the likelihood function excludes θ13 = 0 as an
allowed value at the 98.8% confidence level. The �χ2 value
at θ13 = 0 of 7.97 would give, using normal statistics, 99.5%.
Why do we find this overestimation? From Fig. 2 we see that
below the minimum �χ2 rises quite rapidly while above the
minimum �χ2 rises slowly. This combination will always
yield an overestimation of the confidence level extracted from
a single point on the lower, rapidly rising curve.

In summary, we propose that confidence level and error bars
be calculated based on the understanding that the normalized
likelihood function is a probability distribution function for
whatever statistic is chosen to do the analysis. The confidence
level is then given by an integral over the normalized likelihood
function. We find that this alters the error bars we assign to
parameters, and that in the case of the minimum being near
to an end point of the independent variable, such as in the
case of sin2 2 θ13, the change that this procedure makes can be
particularly significant. Further, we note that the question of
what is the probability that θ13 is not zero is more carefully
worded as “What is the maximum confidence level at which
the allowed region for θ13 does not include the value zero?”
Using this definition, some published confidence levels for
nonzero θ13 based on the normal statistics relationship of �χ2

to confidence level are found to be overestimations.
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