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Fluctuations in hadronizing quark gluon plasma
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The dynamical development of the cooling and hadronizing quark gluon plasma (QGP) is studied in a simple
model assuming critical fluctuations in the QGP to hadronic matter and a first-order transition in a small finite
system. We consider an earlier determined free-energy density curve in the neighborhood of the critical point,
with two local minima corresponding to the equilibrium hadronic and QGP configurations. In this approach the
divergence at e = 0 eliminates fluctuations with negative or zero energy. The barrier between the equilibrium
states is obtained from an estimated value of the surface tension between the two phases. We obtain a characteristic
behavior for the skewness and the kurtosis of energy density fluctuations, which can be studied via a beam energy
scan program.
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In central heavy-ion collisions fluctuations may occur due
to critical phenomena arising from a phase transition in
the equation of state (EoS). Fluctuations arising from the
initial asymmetry are smaller in head-on reactions. In the
neighborhood of the critical point the shear viscosity of quark
gluon plasma (QGP) is becoming small [1], which facilitates
the appearance of fluctuations.

Molecular dynamics and fluid dynamics simulations of
heavy-ion collisions suggest that collective flow asymmetries
can be measured [2], both if the global asymmetry or random
flow arising from the initial state transverse momentum
fluctuations or longitudinal center of mass rapidity, yCM,
fluctuations are causing it. These alternative sources may
also lead to specific statistical characteristics as discussed in
Ref. [3]. These phenomena contribute to a spatial spread of
the matter and energy density variations are present even if
we do not have a phase transition in our EoS.

Here, on the other hand, we study random fluctuations of
thermodynamical origin caused by the phase transition based
on the considerations described in Ref. [4]. Recently the field is
under intensive research, and several studies of the phase tran-
sition have addressed the non-Gaussian fluctuations [5]. We
focus on the reactions where rapid hadronization and freeze-
out (FO) happen simultaneously, as hadronization in chemical
equilibrium in phase mixture would take too long time [6].

In high-energy heavy-ion reactions around 30 GeV/nucleon
or above [7] when QGP is formed, we have low mass quarks
(5–10 MeV) and massless gluons in large numbers and the
conserved baryon charge has a minor effect. On the hadronic
side mainly mesons and baryon-antibaryon pairs are formed.
The observable signatures of the phase transition are formed
when the plasma expands, hadronizes, and freezes out. At this
stage the system may be in the vicinity of the critical point so
critical fluctuations may appear. In a finite volume this would
show up as energy density fluctuation, which would then lead
to charged hadron number fluctuation (and much less in net
baryon charge fluctuation).

In the present simple model we assume two coexisting
phases in a finite system near a first-order phase transition.

We study the abundance of the energy density distribution
of the two phases in the mixed phase domain in terms of the
volume ratio.

Following Ref. [4] and the ideas of the Landau-Ginsburg
theory for critical phenomena we briefly sketch the way to
describe critical fluctuations. In case of QGP to hadronic
matter (HM) transition the essential difference is that in phase
equilibrium the energy density of the HM phase is much
lower than that of the QGP phase. As a consequence the
usual fourth-order polynomial to describe the free energy of
the system is not realistic as it would lead to considerable
population of negative energy density states, which would be
unphysical. Thus the fourth-order polynomial was replaced by
a Laurent series.

Using the simple bag model EoS the equilibrium value of
the energy density in the low-temperature, low-energy-density
phase (HM) denoted by eh, and the equilibrium value of the
energy-density in the high-temperature, high-energy-density,
QGP, phase denoted by eq can be calculated as

eh(T ) = π2T 4

10(h̄c)3
, eq(T ) = π2

(h̄c)3

(
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c

)
. (1)

To study the fluctuations we find the free energy density, f (e),
for arbitrary values of e, and not just for the energy densities
eq and eh. For these equilibrium points

f [eq(T )] = −pq(T ) = − π2

90(h̄c)3

(
37T 4 − 34T 4

c

)
, (2)

f [eh(T )] = −ph(T ) = − π2

30(h̄c)3
T 4. (3)

Following the Landau theory we approximate now the free
energy density as a polynomial in the neighborhood of an e0

energy density (e0 ∈ [eh, eq]), where it has a local maximum.
In order to obtain the required divergence at e = 0, a slightly
modified functional form is assumed:

f (e) = f1+K1

e
+K2(e−e0)+K3(e−e0)2+K4(e−e0)3. (4)
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The constants, f1, K1, K2, K3, K4 can be determined from
thermodynamic considerations as done in Ref. [4]:

K1 = σ

ξ0

1

A0A1
, K2 = K1

e2
0

, (5)

K3 = −K1
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where

A0 = (eq − e0)(e0 − eh)
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In Eq. (5) σ represents the surface tension of a hadronic bubble
and ξ0 is the characteristic size of a hadronic droplet. Once
the Ki values are expressed as function of e, e0, eq, eh, ξ0, σ ,
the unknown f1 and e0 parameters are obtained at any
temperature from Eqs. (2) and (3). Following our previous
work [4], we have used the Tc = 169 MeV, ξ0 = 3 fm and
σ = 0.05 GeV/fm2 values in all our calculations. For temper-
atures in the vicinity of the critical temperature the free-energy-
density curve as a function of the energy density shows two
local minima at the energy densities, eh(T ) and eq(T ). For
T = Tc the two minima have the same free energy density,
while for T < Tc the hadronic, f (eh), and for T > Tc the
QGP, f (eq), free energy is lower.

Once the free energy curve is known, one can estimate the
probability density of finding the system in a state with energy
density e: P (e) ∝ exp[−βF (e)], where F (e) = �f (e), with �

the volume of the created QGP. In Fig. 1 we plot at the critical
temperature the characteristic P (e)/P (eq) curves, considering
different volumes for the QGP (� = 10 fm3, 50 fm3, and
500 fm3 values). Also, in Fig. 2 we show the P (e)/P (eq)
curves for � = 50 fm3 and different temperatures.

It is also important to mention that different thermody-
namical parameters (especially intensives and extensive ones)
do not have to show the same critical fluctuation properties,
so we have to study the fluctuations of several parameters.
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FIG. 1. The relative probability P (e)/P (eq ) of finding a state of a
given energy density e for T = Tc, in a system of volume � = 10 fm3

(dashed), � = 50 fm3 (full line), and � = 500 fm3 (dot-dashed).
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FIG. 2. The relative probability of finding a state of a given
energy density e for the T = 0.95Tc (dashed), T = Tc (continuous),
and T = 1.05Tc (dot-dashed) temperatures. The volume of QGP is
� = 50 fm3.

Furthermore, the statistical physics estimates assume a single
thermal source at or near the critical point, while in heavy-
ion reactions we have the problem of spatial fluctuations,
which arise from a dynamically expanding fluid flow even
in the least fluctuating configuration and without any phase
transition in the EoS [3]. Assuming central collisions only,
to avoid the effects from azimuthal flow asymmetries, we
can have additional sources of random fluctuations from
particle emission from projectile and target residues (spectator
evaporation) [2].

The dynamically developing flow pattern leads to a spatial
distribution of all thermodynamical quantities, while the
system expands rapidly. Finally the supercooled QGP can
hadronize rapidly and almost simultaneously it freezes out.
This final stage of the reaction is best described by a
nonequilibrium model. To complement the fluctuations arising
exclusively from the flow dynamics [3], in this Brief Report we
study only the fluctuations arising from the phase transition.

In a theoretical approach we can assume a spatial distri-
bution of a thermodynamical quantity, x, usually an order
parameter, like the specific energy density. For the variable x

the averages and various order moments distributions can be
written as 〈xn〉 = ∫

xnP (x)dx, and

M (n) = 〈(x − 〈x〉)n〉 =
∫

(x − 〈x〉)nP (x)dx, (8)

where P (x) is the spatial distribution weighted [e.g., by the
baryon charge density in the center of mass frame (CF)]. The
spatial variance, the skewness, and the kurtosis can be obtained
from these moments:

�x = 〈(x − 〈x〉)2〉 = M (2) , (9)

S = 〈(x − 〈x〉)3〉
(�x)3/2

= M (3)

(M (2))3/2
, (10)

K = 〈(x − 〈x〉)4〉
(�x)2

− 3 = M (4)

(M (2))2
− 3 . (11)

By using these averages, first we can calculate specific
extensives, which are governed by strict conservation laws.
The total baryon charge, energy, and momentum conservations
are governed by the continuity equation and by the relativistic
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Euler equation.

Nμ,μ = 0, T μν,ν = 0, (12)

and as a consequence, the total momentum in the CF should
remain zero during the development, while the average specific
energy per net nucleon number

〈εCF〉 ≡ T 00/N0 = const. (13)

should remain constant in CF.
The total net baryon number, Ntot, is exactly conserved

in the reaction. At the same time the average baryon charge
density is decreasing and it may have significant spatial
and/or event by event (EbE) fluctuation. This leads to similar
fluctuation in the particle number densities or in the EbE
charged particle numbers. This last quantity is the most
frequently studied observable.

We focus now on the skewness and kurtosis of the specific
energy density and consequently the charged particle densities
according to Eqs. (10) and (11). We determine these quantities
as a function of the system’s temperature and also as a function
of the volume abundance (rh) of the hadronic matter. We
assume that in a rapid transition, where critical fluctuations
dominate and the two phases are not separated these two phases
are in thermal equilibrium. The temperature decreases rapidly
starting from QGP where T > Tc until the hadronization
completes at T < Tc. As the phases are not separated the
simplest estimate for any temperature T , is that the volume
abundance of the hadronic matter is

rh = P (eh)

P (eq) + P (eh)
, (14)

where eh and eq are the energy densities of the pure phases
defined in Eq. (1), and the probability densities, P (e), are
defined previously. This relation makes a one to one corre-
spondence between the volume abundance and the equilibrium
temperature in a rapidly expanding and cooling system during
the process of a phase transition.

The skewness (Fig. 3) is first negative (indicating a longer
tail on the lower-energy side), then at 80% HM volume
abundance (rh = 0.8) it turns into positive (indicating a longer

FIG. 3. (Color online) Skewness as a function of the volume
abundance of the hadronic matter (denoted as rh, where 1 represents
complete hadronization). The temperature scale is also indicated
for clarity, additional tick marks (red ones) represent increments of
0.5 MeV in T . Results for � = 500 fm3.

FIG. 4. (Color online) Kurtosis as a function of the volume
abundance of the hadronic matter (denoted as rh, where 1 represents
complete hadronization). The temperature scale is also indicated
for clarity, additional tick marks (red ones) represent increments of
0.5 MeV in T . Results for � = 500 fm3.

tail on the high-energy side). The hadronization can be
parametrized both as a function of the volume abundance
of the growing hadronic phase or the decreasing equilibrium
temperature of the system showing critical fluctuations.

In Fig. 4, we can see that the kurtosis is positive at first,
then turns to be negative (the distribution becomes wider) in
the phase transition domain, while it becomes positive again
as the phase transition completes. The minimum of kurtosis
is at 80% HM volume abundance. Notice that the kurtosis
is increasing much sharper on the hadronic side, which is a
clear consequence of the energy difference between the two
phases. This asymmetry appears as a result of the Laurent
series expansion, and it would not show up with the usual
fourth-order polynomial approximation.

This phase transition dynamics as a function of the HM
volume abundance is not directly observable. Only the final
so-called FO stage is observable where the particle numbers
and their momentum distributions do not change any more. To
determine this time or HM volume abundance one would need
a complex dynamical model, where the different stages of the
whole reaction are all described accurately and are matched [8]
to each other. It is estimated that this FO stage may be in the
domain of the phase transition [9].

In Ref. [10] a mixed particle method is introduced, which
could separate the fluctuations arising from local critical
fluctuations. The mixed events are actually eliminating two-
particle correlations, and only the single-particle distributions
remains. The comparison of STAR data with model predictions
analyzed with this method indicate a sign change of skewness
in the RHIC Beam Energy Scan program.

As a conclusion we state that in this Brief Report we
reiterated earlier results on critical fluctuations [4] in the phase
transition between quark gluon plasma and hadronic matter.
This model is specific because of the large difference of the
energy density of the two phases, where eq � eh. Here this
work is extended to the evaluation of frequently used statistical
parameters like the skewness and kurtosis of typical parameters
like charged particle multiplicities.

068201-3



BRIEF REPORTS PHYSICAL REVIEW C 85, 068201 (2012)

We study the dynamical change of these typical parameters
during the hadronization process, where the development is
very characteristic and informative for the phase transition
we study. There are similar studies in a microscopic quark
molecular dynamics model [11] and in phenomenological
hadronization model with supercooling [12], following the
idea of rapid simultaneous hadronization and FO. In such
processes it is not excluded that fluctuations from the initial
stages of the transition dominate.

In experiments one can measure these parameters (together
with all other measurable quantities) at the FO space-time
domain (or at the FO hypersurface). The recent RHIC Beam
Energy Scan program scans the same statistical parameters

at a series of different beam energies. If the FO would
happen at all energies in the pure hadronic matter the signs
of critical fluctuations would not be observable. However, in
rapid transition the FO may happen in the critical fluctuation
domain (with negative kurtosis) and in the beam energy
domain the fluctuations may be dominated by the prehadronic
QGP phase. This would be indicated by a change in the sign
of skewness. Reference [10] suggests that this may be seen in
the measurements.
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