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We present the results of participant-spectator matter at the energy of vanishing flow for neutron-rich systems.
Our study reveals similar behavior of the participant-spectator for neutron-rich systems as had been reported for
the stable systems and also points towards nearly mass independent behavior of the participant-spectator matter
for neutron-rich systems at the energy of vanishing flow. We also study the thermalization reached in the reactions
of neutron-rich systems in terms of anisotropy ratio. A nearly mass independent results are also obtained for the
anisotropy ratio.
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Collective flow has been a boom since it was found to
be very sensitive towards various reaction parameters [1,2].
At the same time, it also helped all the way to constrain
experimental uncertainties and theoretical degrees of freedom.
At low incident energies, the dominance of the mean field
leads to attractive (negative) collective transverse flow which
turns positive at higher incident energies due to the dominance
of nucleon-nucleon scattering. While going from the low to
high incident energies, collective flow, therefore, vanishes at a
particular incident energy labeled as the energy of vanishing
flow (EVF) [3]. The EVF has been reported to scale with
the total mass of the colliding pair [4,5]. Unfortunately,
various model ingredients, such as the different equations of
state (EOS), momentum dependence of the EOS, as well as
the nature of the binary collisions, are, therefore, found to
affect the energy of vanishing flow, thus leading to different
predictions. At the same time, the balancing act of the mean
field and nucleon-nucleon scattering at the energy of vanishing
flow should also be reflected in other quantities.

Recently, one of us and collaborators analyzed the
participant-spectator matter at the energy of vanishing flow
and, very interestingly, found that the normalized participant
matter (or spectator matter) at the energy of vanishing flow
was the same for all colliding pairs [6]. This was not surprising
since the above counterbalancing will be directly reflected in
participant-spectator matter. Further investigations found it to
be insensitive toward different equations of state as well as the
momentum dependence of the EOS and, therefore, advocated
participant-spectator matter as a barometer for studying the
EVF and justified the role of the mean field and nucleon-
nucleon scattering at the energy of vanishing flow [6]. The
above study was performed for the experimentally measured
systems which are stable in nature. On the other hand, recent
interest in the study of flow has shifted towards the neutron or
proton rich nuclei. Whether it is fusion, cluster radioactivity, or
heavy-ion collisions at intermediate energies, one is interested
for the matter far from the line of stability. Extensive study has
been carried out to pin down the isospin effects via collective
flow. In view of these recent developments, one is interested
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to see whether the above participant-spectator matter picture
is valid for neutron-rich colliding nuclei or not. Therefore, the
aim of the present paper is to analyze the participant-spectator
matter and thermalization for neutron-rich colliding nuclei at
their respective energies of vanishing flow and to see whether
the addition of neutron content alters the above reported trends
or not. Since this study needs proper implementation of the
isospin dynamics, we performed this study with the isospin-
dependent quantum molecular dynamics (IQMD) model [7].

In IQMD model, baryons are represented by Gaussian-
shaped density distributions [7]
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Here t4 = 4C with C = 32 MeV, Zi and Zj denote the
charges of the ith and j th baryon, and T3i and T3j are their
respective T3 components (i.e., 1/2 for protons and −1/2 for
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neutrons). For the density dependence, standard Skyrme-type
parametrization is employed.

For the present analysis, we simulated the reactions
of Ca + Ca, Ni + Ni, Zr + Zr, Sn + Sn, and Xe + Xe
series having neutron-proton ratios (N/Z) ∼ 1.0, 1.6,
and 2.0. We define a quantity, Isofac [= N/Z − 1], which
represents the increase in the neutron content with respect
to symmetric systems. For symmetric systems (having
equal numbers of protons and neutrons) Isofac = 0 and it
increases with the increase in the neutron content of the
colliding system. In particular, we simulated the reactions
of 40Ca + 40Ca, 52Ca + 52Ca, 60Ca + 60Ca; 56Ni + 56Ni,
72Ni + 72Ni, 84Ni + 84Ni; 81Zr + 81Zr, 104Zr + 104Zr,
120Zr + 120Zr; 100Sn + 100Sn, 129Sn + 129Sn, 150Sn + 150Sn;
and 110Xe + 110Xe, 140Xe + 140Xe, 162Xe + 162Xe at an impact
parameter b/bmax = 0.2–0.4 using a soft EOS along with
the standard isospin- and energy-dependent cross section
reduced by 20%, i.e., σ = 0.8σ free

nn at several incident energies
between 60 and 105 MeV/nucleon. The collective flow and
EVF was then calculated using the procedure reported in
Refs. [5,8]. The corresponding energies of vanishing flow for
the above colliding pairs are, respectively, 105, 85, 73; 98,
82, 72; 86, 74, 67; 82, 72, 64; and 76, 68, 61 MeV/nucleon.
As noted, in agreement with the previous studies, the EVF
decreases for larger neutron content [9]. This decrease
was found to be due to the mass effects as well as isospin
effects.

Since the energy of vanishing flow represents the coun-
terbalancing of the attractive mean field potential and
repulsive nucleon-nucleon scattering, one expects that this
counterbalancing should also be seen in the participant and

spectator matter as predicted in Ref. [6]. In the present study,
participant-spectator matter is defined in terms of the nucleonic
concept. All nucleons having experienced at least one collision
are counted as participant matter scaled to the total mass of the
reacting nuclei. The remaining matter is labeled as spectator
matter. Note that here only those collisions are considered that
are cleared by the Pauli principle. Alternatively, as suggested
in Ref. [6], one can analyze the participant-spectator matter
in terms of various rapidity cuts. As shown in Ref. [6],
both the above definitions give same results. The latter
quantity can also be deducted experimentally and hence
our predictions can also be verified. These definitions give
us the possibility to analyze the reaction in terms of the
participant-spectator fireball model. This concept gives similar
results as has been demonstrated in the fireball model of Gosset
et al. [10].

In Fig. 1, we display the time evolution of spectator matter
and participant matter. The upper panels represent the results
of spectator and participant matter for Isofac = 0, whereas the
left and right lower panels represent results of participant
matter for Isofac = 0.6 and 1.0, respectively. Lines correspond
to different systems. Solid, dashed, dotted, dash-dotted, and
short-dotted lines represent the reactions of Ca + Ca, Ni + Ni,
Zr + Zr, Sn + Sn, and Xe + Xe, respectively. It is trivial to
note that the entire matter is spectator at the beginning but it
turns participant with the passage of time. We also find that
for lighter systems like Ca + Ca and Ni + Ni, the transition
from the spectator to participant matter is swift and sudden
whereas for the heavier colliding nuclei, the transition is slow
and gradual. This happens because of the fact that the EVF
for lighter reactions is higher compared to heavy nuclei. We
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FIG. 1. (Color online) The time evolution of (a) spectator matter and (b), (c), (d) participant matter for the colliding pairs having
Isofac = 0, 0.0, 0.6, and 1.0. Lines are explained in the text.
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FIG. 2. (Color online) The normalized participant matter as a
function of Isofac. Symbols are explained in the text. Here analysis is
made at corresponding energies of vanishing flow.

also see a similar behavior for all N/Z ratios. This indicates
that participant-spectator behavior is similar for neutron-rich
systems as for systems lying on the stability line (N/Z = 1).

In Fig. 2, we display the participant matter as a function
of Isofac. Squares, circles, triangles, diamonds, and pentagons
represent the reactions of Ca + Ca, Ni + Ni, Zr + Zr, Sn + Sn,
and Xe + Xe, respectively. We find that for all the systems,
the participant matter is almost independent of the neutron

〈

〈

FIG. 3. The system size dependence of the normalized participant
matter obtained at the final stage for different Isofac. All reactions
were performed at their corresponding EVF. Lines represent a linear
fit (∝A).

content. As a result, normalized spectator matter will also be
independent of neutron content.

In Fig. 3, we display the system size dependence of the
participant matter at the energy of vanishing flow. Symbols
represent participant matter. Upper, middle, and lower panels
represent the results for Isofac = 0, 0.6, and 1.0, respectively.
We see that participant matter (alternatively, the spectator
matter) follows a linear behavior ∝A, the system mass. The
slope is almost zero that makes the behavior nearly mass
independent. A nearly mass independent behavior is obeyed
by the participant (and spectator matter) for all the N/Z ratios.
From the above analysis, it is clear that no effect of neutron
content is visible on the participant-spectator matter.

It has been known that participant-spectator matter also acts
as an indicator for thermalization. For the deeper understand-
ing, we analyze the thermalization with different definitions.
In Fig. 4, we display the time evolution of the anisotropy ratio
〈Ra〉 (upper panel) and the relative momentum 〈KR〉 (lower
panel) for different system masses having Isofac (N/Z) =
0 (1.0). The 〈Ra〉 is defined as [11]

〈Ra〉 =
√
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√
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This anisotropy ratio is an indicator of the global equi-
librium of the system. This represents the equilibrium of the
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FIG. 4. (Color online) The time evolution of the anisotropy ratio
〈Ra〉 (upper panel) and relative momentum 〈KR〉 (lower panel) for
various systems having Isofac = 0. Lines have the same meaning as
in Fig. 1. Analysis is made at the corresponding EVF. Shaded portion
represents the high density phase of the reaction (corresponding to
ρ/ρ0 > 1.0.)
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FIG. 5. The system size dependence of the anisotropy ratio 〈Ra〉
for various Isofac. All results correspond to the EVF and analysis is
made at final stages.

whole system and does not depend on the local positions. The
full global equilibrium averaged over a large number of events
will correspond to 〈Ra〉 = 1. The second quantity, the relative
momentum 〈KR〉 of two colliding Fermi spheres, is defined
as [11]

〈KR〉 = 〈| �PP (�r, t) − �PT (�r, t)|〉, (6)

where

�Pi(�r, t) =
∑A

j=1
�Pj (t)ρj (�r, t)

ρj (�r, t) , i = 1, 2. (7)

Here �Pj and ρj are the momentum and density of the j th
particle and i stands for either a projectile or target. As noted,

this quantity measures deviation from a single Fermi sphere
and hence represents local equilibrium. It is worth mentioning
that such a concept of local equilibrium is commonly used in
the hydrodynamical model. Obviously, with the passage of the
time, density in a central sphere will decrease due to lesser and
lesser nucleons and, as a result, 〈KR〉 will also decrease. On
the other hand, no such density dependence exists for 〈Ra〉.
The anisotropy ratio 〈Ra〉 will saturate after the finishing of
the reaction.

From Fig. 4(a) (upper panel), we see that anisotropy ratio
increases as the reaction proceeds and finally saturates after
the high density phase is over. We also note an insignificant
influence of the system size on the anisotropy ratio indicating
equilibration of the system. From Fig. 4(b) (lower panel) we
see that the relative momentum decreases as the reaction
proceeds. Smaller values of 〈KR〉 at the end of the reaction
indicates better local thermalization of the matter. We also see
from the figure that the 〈Ra〉 ratio saturates as soon as the high
density phase is over that signifies that the nucleon-nucleon
collisions happening after the high density phase do not change
the momentum space significantly. This figure indicates how
global and local equilibrium are reached in various reactions
at the energy of vanishing flow.

In Fig. 5, we display the system size dependence of the
anisotropy ratio for systems having Isofac = 0, 0.6, and 1.0.
From the figure, we see that anisotropy ratio follows a linear
behavior ∝A, the system size. The values of various slopes are
almost zero indicating a mass independent nature.

In summary, we studied the participant-spectator matter at
the energy of vanishing flow for neutron-rich systems. The
study revealed a similar behavior of the participant-spectator
for neutron-rich systems as was reported for stable systems
and points towards a nearly mass independent behavior of
participant-spectator matter of neutron-rich systems at the
energy of vanishing flow. Similar mass independent behavior
is also found for the anisotropy ratio.
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