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Experimental photoabsorption cross sections for the nuclei 92,94,96,98,100Mo, 88Sr, 90Zr, and 139La are used as an
input for calculations of (γ, n), (γ, p), and (γ, α), as well as (n, γ ), (p, γ ), and (α, γ ) cross sections and reaction
rates at energies and temperatures relevant for nucleosynthesis network models and transmutation projects. The
calculations are performed with the statistical-model code TALYS. The results are compared with those obtained
by using different analytic standard parametrizations of γ -ray strength functions implemented in TALYS and with
an energy-damped double-Lorentzian model. The radiative capture reaction cross sections are enhanced by the
pygmy resonances in 88Sr, 90Zr, and 139La.
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I. INTRODUCTION

The vast majority of nuclei heavier than iron are synthesized
via either the slow (s) or rapid (r) process of neutron
capture. There are however 35 naturally occurring nuclei
located on the neutron-deficient side of the valley of stability,
including the nuclei 92Mo, 94Mo, and 138La [1]. This location
excludes the possibility of a production through neutron
capture mechanisms. It has been proposed that these nuclei,
known as p nuclei, are formed via the p process. The
nature of the p process is not yet fully understood, nor is
the actual site for the p process clearly identified [1]. The
presently favored scenario describes the p process primarily
as a sequential photodissociation process of stable nuclei,
which occurs when the expanding shock front of a core
collapse supernova transverses the neon oxygen shell burning
regions of the presupernova star [2]. The pre existing s process
abundance distribution in these layers is shifted by (γ, n)
processes to the neutron deficient side. With increasing neutron
threshold (γ, n) reactions become less likely and the reaction
flow is dominated by (γ, α) reactions, shifting the abundance
distribution towards lower masses while liberating α particles.
It has been demonstrated that for closed shell nuclei the
(γ, α) flux is replaced by a (γ, p) dominated reaction flow
towards the line of stability, since the α threshold at closed
shell even-even nuclei becomes so large that the proton decay
emerges as the favored mechanism [3]. Figure 1 shows the
typical reaction path for the p process as calculated in the
framework of a parameterized shock expansion model [3].
In the mass range below the N = 50 closed shell nuclei the
photodissociation flux pattern is supplemented with neutron
and charged particle induced reactions and β+ decay, as can be
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clearly seen in the figure. Analysis of meteoric samples provide
quantitative data for the abundance of p process nuclei. Such
abundance observations exhibit within a factor of 3 agreement
with the predictions from model simulations, such as described
above, except for the very light p nuclei 92Mo, 94Mo, and
138La (amongst others), which are found to be significantly
overabundant compared to model predictions [1].

Modeling p nuclei abundances (as well as all other isotopic
abundances resulting from nucleosynthesis processes) requires
the detailed knowledge of thousands of nuclear reactions
associated with the p process path. Since experimental data
regarding pertinent nuclear reactions in energy regions of
relevance to nuclear astrophysics is limited, data must often
be obtained from global parameters. While there have been a
number of experimental studies with photon beams at facilities
such as the Dalinac at the TU Darmstadt [4] or the ELBE
accelerator at the Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) [5], most of the experimental data rely on inverse ra-
diative capture studies at energies between 3 MeV and 12 MeV,
which were performed at ATOMKI, Debrecen Hungary, PTB
Braunschweig Germany, Demokritos Lab, Athens Greece, and
the NSL at the University of Notre Dame, USA (e.g., [6,7]).
These studies have the advantage that all reaction and decay
channels in the compound region of the excited nucleus can
be studied in comparison to Hauser Feshbach (HF) statistical
model simulations. This is critical since most of the p process
model simulations rely on reaction rates derived from the
statistical model approach. These studies indicated systematic
deviations in the quality of the HF predictions, which point to
systematic deviations associated with the γ channel.

There are many necessary ingredients for a HF calculation,
including knowledge of the nuclear level densities, particle
optical potentials and γ -ray strength functions, which char-
acterize the emission and absorption of photons. Because
network calculations, performed to simulate astrophysical
processes, require a large reaction database, the use of global
descriptions for quantities such as level density and giant
dipole resonance (GDR) parameters is paramount. Since the
p process is largely a photodissociation mechanism, detailed
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FIG. 1. Typical reaction path for the p process during the first second of a shock expansion front passing through the O/Ne layers. Taken
from Rapp et al. [3].

knowledge of the γ -ray strength function, or the related
quantity the photoabsorption cross section, is also crucial,
especially in the region of the neutron threshold. Presently
employed HF predictions have been obtained by describing
the photoabsorption cross section as either a single or two

Lorentzian curves (to account for nuclear deformation), which
are then smoothly extrapolated to below the neutron threshold.
An approach such as this however may miss extra strength
caused by a resonance structure near the neutron threshold, as,
e.g., reported in Ref. [8].
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An improved knowledge of photoabsorption cross sections
is also required for future nuclear technologies. The measure-
ment and modeling of neutron capture and inelastic neutron
scattering cross sections is currently one of the primary ways to
study suitable reactions for transmutating long-lived nuclides,
produced in nuclear-fuel cycles, into short-lived nuclides.
In this context, new facilities at neutron sources have been
developed, such as the γ -calorimeter DANCE at the Los
Alamos Neutron Science Center [9], n_TOF at CERN [10],
GELINA at IRMM [11], and nELBE at HZDR [12]. The
reactions of interest populate excited states in an energy range
of high level density. The de-excitation of states by γ -ray
emission is considered to be statistical. It is determined by
the level density as a function of excitation energy and by
γ -ray strength functions, or the related photoabsorption cross
sections. The precise knowledge of these quantities is therefore
a necessary ingredient for the reliable determination of reaction
cross sections via the measurement of γ rays. In this context
it is hoped that improved nuclear cross section estimates,
based on realistic γ -ray strength functions, can be trans-
lated into new developments for nuclear waste transmutation
programs.

Recently, new (γ, γ ′) cross section measurements were
performed using the bremsstrahlung facility at ELBE [13] for
the nuclei 92,94,96,98,100Mo [14,15], 88Sr [16], 90Zr [17], and
139La [18]. The measurements probed the photoabsorption
cross section from an energy of approximately 4.5–6 MeV
up to the neutron threshold. It is the aim of the present paper
to use the HF model to calculate photoinduced and radiative
capture reactions using these new γ -ray strength function data.
Cross sections and reaction rates currently used for astro-
physical and transmutation purposes, from for instance the
RIPL-2 [19] database, rely on phenomenological Lorentzian
extrapolations. The purpose of this study is twofold, firstly
to analyze the effect of using experimental strength functions
(in opposed to extrapolations), and secondly to evaluate the
impact of the pygmy resonances on cross section and reaction
rate calculations. This will provide an opportunity to test the
accuracy of the existing strength function models.

Our paper is organized as follows. In Sec. II we describe the
method for calculating the reaction cross sections of interest,
with particular emphasis on existing photoabsorption models
and the implementation of the experimental photoabsorption
cross section data. For selected nuclei only, the results of
the calculated reaction cross sections and reaction rates are
presented in Secs. III and IV, respectively. (See supplemen-
tal material for additional cross section and reaction rate
results, which also contains comparisons with the popular
NON-SMOKER reaction rates [20].) A detailed discussion of

the results is provided in Sec. V. Finally, we conclude in
Sec. VI.

II. CROSS SECTION CALCULATIONS

A. Statistical model

Calculations were performed using the computer code
TALYS [21], which is a standard nuclear reaction code that
can calculate reaction cross sections with the statistical HF
model [22]. Statistical reaction theory is based on the concept
of the compound nucleus, which decays according to the laws
of statistics after having lost almost all information about its
formation. The only exceptions are the energy, the angular
momentum, and the parity, which are strictly conserved. For a
given combination of the conserved quantities, the probability
of a specific reaction is the product of the probability for
formation of the compound nucleus in the entrance channel
and the probability for its decay into the exit channel. The
respective probabilities are expressed in terms of the trans-
mission coefficients Tj (E, J, π ; Eμ

i , J
μ

i , π
μ

i ; Ej , Jj , πj ; eij ),
where E, J, π denote the excitation energy, angular momen-
tum, and parity of the compound nucleus. Here, j denotes the
emitted particle with excitation energy, angular momentum,
and parity given by Ej , Jj , and πj respectively. Only for
composite ejectiles, like the α particle, does one need Ej ; it is
assumed that it remains in its ground state. The residual nucleus
is represented by i, with excitation energy, angular momentum,
and parity given by E

μ

i , Jμ

i , and π
μ

j . Excited states are denoted
by μ. The kinetic energy of the emitted particle is eij . Energy
conservation implies E = E

μ

i + Ej + eij , where the ground
state energies are assumed to be included. Conservation of
angular momentum involves several combinations of J

μ

i , Jj ,
and l coupling to J , where l is the angular momentum of the
partial wave. Accordingly, the transmission coefficient is a sum
of terms that correspond to the various couplings of the angular
momenta. Only terms that obey conservation of parity [i.e.,
π = π

μ

i πj (−1)l] are allowed. The same holds for the inverse
absorption reaction. In this case i labels the target nucleus and
μ its excited states. In the astrophysical context, one is mainly
interested in the total cross section for reactions i(j, o)m,
where projectile j hits nucleus i, and ejectile o is emitted
leaving residual nucleus m. Usually one is not interested in
the specific excitation energy, parity, or angular momentum of
either the ejectile or the residue. Hence, all exit channels that
comply with the conservation laws contribute to the formation
of the ejectile and the residual nucleus. The corresponding
cross section for absorbing the particle j by the nucleus i in
excited state μ, emitting particle m and leaving residue o is

σ [iμ(j, o)m, eij ] = π

k2
ij

(
2J

μ

i + 1
)
(2Jj + 1)

×
∑
J,π

(2J + 1)
Tj

(
E, J, π ; Eμ

i , J
μ

i , π
μ

i ; Ej , Jj , πj ; eij

)
To(E, J, π ; Eo, Jo, πo)

Ttot(E, J, π )
, (1)

To(E, J, π ; Eo, Jo, πo) =
∑

ν

To

(
E, J, π ; Eν

m, J ν
m, πν

m; Eo, Jo, πo; emo

)
. (2)
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The wave number of the projectile is given by kij . For
photo reactions (j = γ ), kij coincides with the wave
number of the photon. In the case of a massive projectile,
kij = √

2μij eij /h̄
2 where μij is the reduced mass of projectile

and target. The sum ν runs over all excited states of the
residue. The cross section (1) has the simple structure of the
statistical reaction model. The first line is the probability
for compound nucleus formation. The second line is the
probability for compound nucleus decay into the exit channel
of interest. It is the ratio of the transmission coefficient for
this channel divided by the total transmission coefficient
Ttot(E, J, π ), which is the sum of the transmission coefficients
of all channels into which the compound nucleus can decay.

Laboratory experiments measure the cross section of the
projectile hitting the target in the ground state μ = 0 (i.e.,
σ [i0(j, o)m, eij ]). In the stellar environment the reactions take
place in a hot plasma, where excited target states are thermally
populated. The cross section for this is given by

σ ∗[i(j, o)m, eij ]

= 1∑
μ

(
2J

μ

I + 1
)

exp
(−E

μ

i /kT
)

×
∑

μ

{(
2J

μ

I + 1
)

exp
(−E

μ

i /kT
)
σ [iμ(j, o)m, eij ]

}
.

(3)

The stellar reaction rate 〈σv〉 in the plasma is given by folding
the cross section with the thermal flux of projectiles impinging
the target, which, for massive particles, is

〈σv〉 =
2

μij

∫ ∞
0 eijσ

∗[i(j, o)m, eij ] exp(−eij /kT )deij∫ ∞
0 e

1/2
ij exp(−eij /kT )deij

. (4)

In the case of photoreactions it is

〈σv〉 = c
∫ ∞

0 e
1/2
γ σ ∗[i(γ, o)m, eγ ] exp(−eγ /kT )deγ∫ ∞

0 e
1/2
γ exp(−eγ /kT )deγ

. (5)

The transmission coefficients for the particle channels are
obtained from the S matrix for elastic scattering, which is
calculated for an appropriate optical model potential. The
choice of the optical potential is one source of uncertainty. An
additional source of uncertainty comes from the level density,
which is introduced because the summation in Eq. (2) over the
final states of the residue typically involves a huge number of
terms. In order to carry out the sum, above some excitation
energy Emax

m one replaces it with an integral over the level
density ρ(Em, Jm, πm)

To(E, J, π ; Eo, Jo, πo)

=
Eν

m<Emax
m∑

ν

T ν
o

(
E, J, π ; Eν

m, J ν
m, πν

m; Eo, Jo, πo; emo

)

+
∑

Jm,πm

∫ E−E0
m

Emax
m

To(E, J, π ; Em, Jm, πm; Eo, Jo, πo; emo)

× ρ(Em, Jm, πm)dEm. (6)

Addressing the uncertainties arising from the optical potential
and level density models is beyond the scope of this paper,

which is primarily focused on the uncertainties associated with
the γ -transmission coefficients.

B. γ -strength models

The angular momentum of the photon is given by its mul-
tipolarity Jγ . Here we consider only the dipole radiation since
higher multipoles play an insignificant role for thermonuclear
rates in astrophysics. Electric dipole radiation (E1) dominates.
The E1 photon has negative parity. Its transmission coefficient
is expressed in terms of the strength function fE1(Eγ ),

Tγ (E, 1,−; Eγ , 1,−) ≡ TE1(Eγ ) = 2πfE1(Eγ )E3
γ . (7)

The magnetic dipole radiation (M1) is usually much weaker.
The M1 photon and has positive parity. In terms of the strength
function fM1(Eγ ), the M1 transmission coefficient is given by

Tγ (E, 1,+; Eγ , 1,+) ≡ TM1(Eγ ) = 2πfM1(Eγ )E3
γ . (8)

Because there is a limited amount of experimental data
available for the M1 GDR, there are no systematic parameters
to describe it, unlike the situation for E1. For our calculations
we have made use of the option in TALYS to describe the M1
resonance in terms of Eq. (10), discussed below.

The cross section for dipole radiation absorption is

σγ (Eγ ) = 3(πh̄c)2Eγ [fE1(Eγ ) + fM1(Eγ )], (9)

where Eγ is the incident γ -ray energy. It is the sum of
the E1 and M1 γ -ray strength functions and transmission
functions that are obtained from experimental photoabsorption
cross section data. Only the measurement of the absorption of
polarized gamma radiation can provide the individual E1 and
M1 components.

The right side of expression (7) is assumed to depend only
on Eγ , whereas the left depends on E as well. This is the Brink-
Axel hypothesis, which assumes that the ground state GDR can
be built on each excited state. Traditionally, the E1 strength
functions have been described by the single Lorentzian (SLO)
form of Brink-Axel [23],

fE1(Eγ ) = σGDR	GDR

3(πh̄c)2

Eγ 	GDR(
E2

γ − E2
GDR

)2 + E2
γ 	2

GDR

, (10)

where 	GDR is the width and EGDR the energy of the giant
dipole resonance (GDR), and σGDR stands for the cross section
at EGDR. The E1 GDR parameters are obtained from the
RIPL-2 database [19]. In the case of M1, EM1,GDR = 41A−1/3

and 	M1,GDR = 4 MeV. By evaluating the function fM1,GDR =
1.58A0.47, one obtains the M1 strength function at 7 MeV.
Applying Eq. (10) at 7 MeV yields σM1,GDR, and so the M1
GDR can be fully described at all energies by Eq. (10).

A second description of the E1 GDR is the generalized
Lorentzian (GLO) form of Kopecky-Uhl [24]. This approach
takes the excitation energy E of the compound nucleus into
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account,

fE1(Eγ ) = σGDR	GDR

3(πh̄c)2

(
Eγ 	(Eγ )(

E2
γ − E2

GDR

)2 + E2
γ 	(Eγ )2

+ 0.7	GDR4π2T 2

E5
GDR

)
,

(11)

	(Eγ ) = 	GDR
E2

γ + 4π2T 2

E2
GDR

.

The quantity T in Eq. (11) is the nuclear temperature at the
final state reached after emission or absorption of the photon.
If the back-shifted Fermi gas model (BSFG) is used it is given
by Ref. [24]

T =
√

E − 


a
, (12)

where E is the energy of the final state, a is the Fermi gas
level density parameter, and 
 is the pairing correction. The
GLO was devised for (n, γ ) reactions with thermal neutron
capture. In this case E = En + Sn − Eγ where Sn represents
the neutron separation energy and En is the neutron incident
energy.

The SLO and GLO models do not explicitly take into
account the splitting of the GDR by deformation. Triaxial
deformation is built into the treatment of Ref. [25]. According
to this model the E1 strength function is parametrized as a
sum of three Lorentz curves, of spreading width 	k , each
corresponding to a nuclear E1 dipole vibration along one of
the three principal axes. The resonance energies and widths of
the nuclear GDR are characterized in terms of the deformation
parameters β and γ . The GDR centroid energies are obtained
from symmetry energy and surface stiffness, which in turn
have been determined from a fit to finite range droplet model
nuclear masses [26] with R = r0A

1/3, r0 = 1.16 fm, J =
32.7 MeV, and Q = 29.2 MeV. Within this framework the E1
strength function is given by

fE1(Eγ ) = σGDR	GDR

3(πh̄c)2

1.02

3

3∑
k=1

Eγ 	k(Ek)(
E2

k − E2
γ

)2 + E2
γ 	k(Ek)2

,

	k(Ek) = 1.99 MeV

(
Ek

10 MeV

)δ

,

(13)

Ek = EG

exp
(√

5/4πβcos
(
γ − 2

3kπ
)) ,

EG = h̄c

[
8J t

R2m∗

(
1 + u − 1 + ψ + 3u

1 + ψ + u

)−1
]1/2

,

where the values of δ and ψ are 1.6 and 0.0768 respectively,
and t = A2/(4NZ), while u = (1 − ψ)μ and μ = 3J r0/(QR).
The effective mass m∗ = 0.7m, where m refers to the mass
of the proton. The parameters σGDR and 	GDR are the cross
section and width of a spherical nucleus with the same mass.
We refer to this E1 strength function model as the triple
Lorentzian (TLO).

In addition to these three E1 strength function models, there
is also the model of Ref. [27], which assumes axial symmetry.

We refer to this model as the double Lorentzian (DLO), and
note that it is used in the HF computer code NON-SMOKER [28].
The GDR is composed of two Lorentzian dipole vibrations
(k = 1, 2) along, and perpendicular to, the axis of rotational
symmetry. Taking into account the neutron-proton exchange
term χ = 0.2 [29], fE1(Eγ ) is given by

fE1(Eγ ) = σGDR	GDR

3(πh̄c)2

1.2

3

2∑
k=1

k

× Eγ 	G,k(EG,k)(
E2

γ − E2
G,k

)2 + E2
γ 	G,k(EG,k)2

,

	G,k(EG,k) =
√

Eγ

EG,k

(0.185EG,k + 0.57k|Gk−1|EG,kξ2),

EG,1 + 2EG,2 = 3EG, EG,2/EG,1 = 0.911η + 0.089,

(14)

where EG is given by Eq. (13), which was suggested by
Ref. [30]. Equation (14) is appropriate for deformed nuclei.
The static deformation parameter β0 has been obtained from
the hydrodynamic droplet model of Ref. [31], which includes
shell structure and is based on the shell correction term. The
quantity ξ2 is the root-mean-square value of ξ = β − β0,
which is the deviation of the deformation parameter β from its
static value. The parameter η(β0) is the ratio of the diameter
of the nuclear symmetry axis to the perpendicular diameter
as given by the hydrodynamic model, while G0 and G1 are
given respectively by

G0 = D

β0

( −1

1 + D
+ 0.08

1 + 0.08D

)
,

(15)

G1 = −D

β0

( −1

1 − D
+ 0.08

1 − 0.08D

)
,

and D is a dimensionless parameter containing the static
deformation, equal to D = (4π/5)−1/2 β0. For deformed
nuclei, EG is interpreted as the average peak energy of the two
Lorentzians and is found from Eq. (13) using the parameters
t = 1, u = μ, r0 = 1.18, J = 36.8 MeV, and Q = 17 MeV.
In the event that the nucleus is spherical, the sum over k in
Eq. (14) disappears yielding EG,k = EG and 	G,k = 	G. The
width in this case is given by

	G(EG) = αEδ
G + 2.35

√
5

8π
EGβ2, (16)

in which β2 is the root mean square of β. The dimensionless
parameters α and δ are obtained from least-square fits to
experimental GDR widths for nuclei where not only the
widths, but also EG and β2 are all experimentally known.
The root-mean-square values β2 and ξ2 are calculated for a
harmonic oscillator with the stiffness C2 and mass coefficient
D2, which are given by

C2 = −∂2B

∂β2

∣∣∣∣
β0

, D2 = D2irrote
(2.24−0.195Eshell),

(17)

D2irrot = 3AmR2

8π
,
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where B is the binding energy and Eshell the shell correction
energy as calculated in the hydrodynamic droplet model of
Ref. [31].

C. Experimental photoabsorption cross section

Experimental (γ, γ ′) cross sections were taken over an en-
ergy range of Emin

(γ,γ ′) = 4.5–6 MeV up to the neutron separation
energy, Emax

(γ,γ ′) = Sn [14–18]. For the nuclei 94–100Mo photon-
scattering data below 4 MeV also exists [32–36]. However,
the extraction of a continuous strength function from these
data is problematic because only a few discrete transitions
exist. Therefore, we apply the approach described below.
Radiative strength functions in the γ -ray energy range up to
about 8 MeV have also been derived from measuring particle-
γ coincidences following inelastic scattering of 3He from
even-mass Mo targets and following (3He,αγ ) reactions on
odd-mass Mo isotopes [37], which are at variance to the (γ, γ ′)
results of Refs. [14,15]. In contrast to the direct measurement
of the γ -absorption cross section in Refs. [14,15], however,
the strength functions of Ref. [37] are derived in an indirect
way. These reactions do not deliver an absolute scale for the
electromagnetic strength, therefore the required information is
taken from (n, γ ) data. Studying the (n, γ ) reaction on 96Mo,
Ref. [38] came to the conclusion that the data of Ref. [37]

can be well accounted for with the GLO strength function
model (except for the apparent up-bend at low energy, which
according to Ref. [39] is not of large importance for the nuclei
considered here).

The selection of the nuclei for the present study was
motivated by the strong pygmy dipole strength in 88Sr, 90Zr,
and 139La, and the particular astrophysical relevance of the p

process nuclei 92,94Mo, as outlined in the Introduction. In addi-
tion, the Mo chain constitutes a sequence of isotopes ranging
from spherical to deformed shapes. The (γ, γ ′) absorption
cross sections from Refs. [14–18] cover an energy region
Emin

(γ,γ ′) < Eγ � Sn, with Emin
(γ,γ ′) = 4 MeV. They smoothly

connect with the absorption cross sections from Ref. [40],
which allows us to derive the experimental dipole strength
functions shown in Figs. 2 and 3. Below Emin

(γ,γ ′) there are data
on transitions to discrete levels, which are also included in
Figs. 2 and 3. However, we consider these values as irrelevant
for the following reason: In the energy range 0 < Eγ < Emin

(γ,γ ′)
the strength function is only used to calculate the γ emission
after particle capture. It describes transitions between dense
compound levels and is expected to vary smoothly as a
function of energy. The photoabsorption, on the other hand,
reaches few discrete levels, which only appear above about
2 MeV. Obviously, the transition strength to these discrete
levels must be different from the average transition strength
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FIG. 2. (Color online) l = 1 strength functions for 92,94,96,98Mo (a)–(d) as a function of energy E ≡ Eγ . Thick red curves refer to strength
functions calculated using the GLO model, green dotted curves to strength functions from the SLO model and pink dotted curves are from
NON-SMOKER, calculated with the DLO. The black points are experimental data, with error bars shown. Solid black curves refer to the TLO
calculations, and provide an estimate of the strength function in the energy region of 0 to 4.5 MeV. Thin red curves represent the M1 strength
function. Red points illustrate the strength function for discrete states in the compound nucleus. For E < 4 MeV, in panels (a) and (d) the red
points are from Ref. [36], in panel (b) they are from Ref. [33] and in panel (c) they are from Ref. [34]. Where applicable, above 4 MeV red
points are from Ref. [14]. The ones in panel (d) are additionally from Ref. [15]. For 4.5 � E � Sn black data points are from Refs. [14] [in
panels (a)–(c)] and [15] [in panel (d)]. For all panels, black data points in the region Sn � E are from Ref. [40] with corrections described in
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FIG. 3. (Color online) Same as Fig. 2, but for 100Mo (a) (4 � E � Sn data from [15]), 139La (b) (5.5 � E � Sn data from Ref. [18]), 88Sr
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between compound levels. Therefore we have to use a model
to describe the strength function for Eγ < Emin

(γ,γ ′). We have
chosen to use the TLO, which reproduces the experimental
strength functions reasonably well for Eγ > Emin (cf. Figs. 2
and 3).

In summary input photoabsorption cross sections for each
nucleus were produced in the following manner.

(i) For the Mo isotopes in the low-energy region 0 � Eγ �
Emin

(γ,γ ′) the strength function was estimated according to
the TLO parametrization proposed in Ref. [25] and set
out in Eq. (13). Deformation parameters were taken
from Ref. [36]. For the nuclei 88Sr, 90Zr, and 139La,
zero deformation was assumed. As such, the TLO low-
energy strength function for these isotopes coincides
with a single Lorentzian.

(ii) In the energy region Emin
(γ,γ ′) � Eγ � Sn, the (γ, γ ′)

experimental data were taken from Refs. [14–18].
(iii) For the region Sn < Eγ < EGDR + 
 (where 
 =

8 MeV has been arbitrarily selected), (γ, n) data
for 88Sr, 90Zr, 92−100Mo, and 139La were taken from
Refs. [41–44], respectively. These data are tabulated in
the EXFOR data base [40]. Later measurements [45]
suggested that the data in Refs. [41,43,44] should
be scaled by a factor of 0.85. This recommendation
was confirmed in recent photoactivation experiments
on 92−100Mo [5] and 144Sm [46]. In these stud-
ies, 92Mo(γ, n) and 144Sm(γ, x) reaction yields (x =
n, p, α) were also compared with the predictions of
TALYS. In accordance with these recommendations, a

normalization factor of 0.85 has been applied to the
EXFOR data points for all of the nuclei in this study,
except for 90Zr, where the data is taken from Ref. [45].

The combination of the three photoabsorption cross section
sources listed above (two experimental and one theoretical)
define our photoabsorption input, and is henceforth referred to
as the experimental photoabsorption cross section (EPACS).

From a conceptual standpoint one should remark that
EPACS is a realistic strength function for γ -induced reactions
where Eγ � Emin

(γ,γ ′). Its use in (particle,γ ) reactions relies on
the assumption that the strength function does not depend
on the energy of the compound nucleus, being the same as
for the ground state. The SLO, DLO, and TLO represent
parametrizations of the (γ, n) cross sections, and the same
remarks as for the EPACS apply. The GLO is constructed for
(n, γ ) reactions. It includes a modification of the transition
strength caused by excitations of the nucleus, which is based
on the Fermi liquid theory for a finite temperature. This is the
temperature correction term in GLO, which may be considered
as an estimate for the possible deviations from the Brink-Axel
hypothesis. The temperature correction becomes negligible
when the value of Eγ is comparable with Sn − 
.

D. Input data

To facilitate the comparison between the SLO and GLO
strength functions, Eqs. (10) and (11), and those based on
the new (γ, γ ′) data, we have modified the subroutine in the
computer code TALYS (Version 1.2) [21] that calculates the
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γ -ray strength as a function of energy. Our modification
derives the γ -ray strength function using Eq. (9) and

TE1(Eγ ) + TM1(Eγ ) = 2π [fE1(Eγ ) + fM1(Eγ )]E3
γ , (18)

where σγ is the experimental photoabsorption cross section
and Eγ is the incident γ -ray energy. Clearly, this is an ap-
propriate way to determine the γ transmission for (γ ,particle)
reactions. Using it in (particle,γ ) reactions implicitly assumes
that the Brink-Axel hypothesis is applicable.

The input data containing the experimentally obtained
photoabsorption cross sections has been energy binned so as
to be consistent with, and thus preserve, the inherent energy
grid used for calculations throughout TALYS. Where TALYS

required the photoabsorption cross section at energies that did
not correspond to a data point, a cubic spline interpolation
was performed on the data set to obtain it. Through Eqs. (9)
and (18), the strength function and transmission coefficient
were calculated.

In the following sections we discuss the reaction cross
sections and reaction rates calculated using TALYS. We have
performed these calculations using the SLO, GLO, and our
EPACS γ -strength functions, as well as the DLO γ -strength
function, Eq. (14). Level densities play a sensitive role in the
cross section calculations. However because we are motivated
by the impact of the γ -ray strength function, we perform
all calculations using the TALYS option for the constant
temperature (CT) model [47], which corresponds to the default
level density option. The width fluctuation correction factor
calculation was performed by means of the model [48–50].
The experimental data employed in the next section are for
unpolarized reactions (E1 + M1) only. Consequently when
using the data in conjunction with a TALYS calculation, care
must be taken not to include the M1 contribution twice: once
implicitly from the measurement itself and once from the
TALYS calculation. To prevent this double inclusion, TALYS

calculations were performed with the contribution scaled to
zero. To reiterate, M1 was scaled to zero in Eq. (9) only
when a calculation was being performed with the unpolarized
photoabsorption data as input. For calculations not involving
the experimental data, M1 was obtained as outlined in Sec. II B.
All other required inputs [such as the optical model potential
(OMP) parameters, etc.] were provided by the default options
in TALYS.

III. REACTION CROSS SECTIONS

A. l = 1 strength functions

The measured and theoretically determined primary pho-
toabsorption cross sections, expressed in terms of the l = 1
strength function, are exhibited in Figs. 2 and 3 as a function
of γ -ray energy over an energy range of 0–14 MeV (i.e., below
the peak of the GDR).

The black symbols refer to the data points from
Refs. [14–18] below the neutron threshold, and from Ref. [40]
above, the latter renormalized as described in Sec. II D. Pink
curves are the DLO E1 strength functions. Black curves on the
Mo isotope plots refer to the TLO E1 strength function, given

by Eq. (13). Because no deformation was assumed for the
nuclei 88Sr, 90Zr, and 139La, black curves on the Sr, Zr, and La
isotope plots represent the TLO E1 strength calculations for
a single Lorentzian. Error bars for experimental data points
are shown on the plots. Typically for energies greater than
7–8 MeV error bars appear very small, owing to the logarithmic
scale and partially changing the appearance of the symbols
from solid circles to squares. Red points illustrate the strength
function at very low energies, in the region where the incident
photon populates discrete states. In this region none of the
strength function models are appropriate. Red points are not
used as input in the calculations.

The EPACS for each nucleus is a composite of the three
regions, illustrated for clarity in Figs. 2 and 3. In region
I (0 � Eγ � Emin

(γ,γ ′)) the EPACS is constructed from the
TLO parametrization. As discussed above, for the Sr, Zr,
and La isotopes no deformation is considered and so the
TLO is in these cases coincides with a single Lorentzian. In
region II (Emin

(γ,γ ′) � Eγ � Sn) the EPACS is composed of the
experimental data from Refs. [14–18]. Lastly in region III
(Sn < Eγ < EGDR + 
, 
 = 8 MeV) the EPACS is made up
of data available in the EXFOR database [40], scaled where
appropriate by a factor of 0.85 (see Sec. II D). The EPACS are
compared to the E1 strength generated by TALYS, where the
thick red and the green curves represent the GLO model [24]
and the SLO model [23] respectively. Thin red lines depict the
M1 strength, which is smaller than the E1 strength in all of the
examples.

Because the GDR parameters used in connection with the
SLO and GLO models in TALYS are identical with those in
RIPL-2 [19] and correspond to the data in EXFOR [40], the
above-mentioned correction factor of 0.85 has been applied
to σGDR in the data files enclosed in TALYS for 92–100Mo,
88Sr, and 139La. This ensures that rescaled data are compared
consistently with rescaled calculations. For the 90Zr case, the
σGDR remained unscaled as explained in Sec. II C.

The region of the GDR is in general well described by
both GLO, SLO, and DLO models for all of the nuclei. In
the example of 92Mo, the GLO and SLO models slightly
underestimate the amplitude of the GDR. This is because the
black data points in this region include a contribution from
the (γ, np) reaction [43]. The TLO parametrization reproduces
the position and amplitude of the GDR in all cases. In all
but one case (92Mo) the TLO parametrization predicts a low-
energy E1 strength function, which is smaller than that given by
both the GLO and SLO models. For this particular example at
energies greater than 9 MeV the TLO parametrization agrees
much better with the calculations of DLO. In all cases for
energies less than about 4 MeV, the DLO results are the
smallest, whereas above 12 MeV, they tend to be larger than
the other models. Differences between the models and the
measured data tend to diminish with increasing energy. To
reiterate, the TLO expression has been adopted in the very low
Eγ region of the EPACS where experimental data, if available,
is only for discrete states. In the majority of cases, the TLO
values are within a factor of two of those predicted by the
SLO model. The exception is for the triaxial nucleus 100Mo,
where the nuclear deformation has a strong impact on the
photoresponse function.
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Figures 2 and 3 demonstrate that whereas the γ -ray strength
function models agree in general with the measured data, there
are deviations with respect to the SLO, GLO, DLO, and TLO
models at the low-energy tail of the GDR for all of the nuclei.
The form of this deviation is an extra strength or a structure
in the strength function in the energy range of 6–12 MeV.
The cause of the structure in the Mo isotopes remains an
open question [51]. The character of the strength function is
quite different in the case of 139La, plotted in Fig. 3(b). For
E = 6.5 MeV (Sn = 8.78 MeV) there is approximately a factor
of 3–4 increase in the measured strength function, compared
to the GLO, SLO, and DLO models. Enhancement of the
photoabsorption strength in this region has been interpreted as
a pygmy dipole resonance [18]. A similar interpretation has
been put forward for strength function enhancement observed
in the systems 88Sr and 90Zr, plotted in Figs. 3(c) and 3(d)
[16,17]. In the case of 90Zr there is an enhancement of a factor
1.4–1.7, compared to GLO and SLO models, at an energy of
9.5 MeV (Sn = 11.97 MeV).

B. A(γ ,particle) reaction cross sections

To investigate the sensitivity of statistical model cross
section calculations on the strength function and possible GDR
low-energy tail strength enhancements, reaction cross section
calculations were performed. For each nucleus, the (γ, n),
(γ, p), and (γ, α) reaction cross sections were calculated
using the EPACS (details explained above). The results

were compared to identical calculations performed using
photoabsorption cross sections given by the GLO, SLO, and
DLO models. Shown in Figs. 4 and 5 are the calculated
(γ, n) and (γ, p) and reaction cross sections for the nuclei
92Mo, 100Mo, 90Zr, and 139La. Red curves again refer to the
GLO model, green dashed curves to the SLO model, pink
dotted curves to the DLO model, and blue dotted curves to
the EPACS results (cf. supplemental material for additional
nuclei [20]).

Inspection of Fig. 4 shows that strength fluctuations in
the absorption cross sections between the neutron-separation
energy and about 2 MeV below the GDR peak, visible in
the EPACS strength functions plotted in Figs. 2 and 3, show
up as fluctuations in the reaction cross section. Of course,
fluctuations at energies less than the neutron threshold energy
do not influence the calculated (γ, n) cross sections [i.e.,
there is no enhancement in the 90Zr(γ, n) or 139La(γ, n)
cross sections as a result of enhancement below Sn (e.g., at
9.5 MeV or 6.5 MeV)]. A disagreement of a factor of 2–3
is observed between the GLO, SLO, and DLO models near
the threshold for 100Mo and 139La, whereas for 92Mo and
90Zr the curves agree fairly well. Again, with the exception
of 92Mo, towards the peak of the GDR the differences between
the models becomes small, reflecting the convergence of the
various strength function models in this region.

In most of the (γ, n) cases, the EPACS reaction cross
sections are located between the DLO and GLO models. An
exception to this is 90Zr(γ, n) [see Fig. 4(c)]. For 92Mo(γ, n),
the EPACS reaction cross section is larger than the other model
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FIG. 4. (Color online) Calculated (γ, n) reaction cross sections for the nuclei 92Mo (a), 100Mo (b), 90Zr (c), 139La (d). Red curves represent
reaction cross sections calculated using the GLO model, green dotted curves were calculated using the SLO model, pink dotted curves are from
the DLO model, and the blue dashed curves were calculated using our EPACS data (see text for details).
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FIG. 5. (Color online) Same as Fig. 4 but for the (γ, p) reaction with target nuclei 92Mo (a), 100Mo (b), 90Zr (c), 139La (d).

predictions (maximum deviation from SLO calculation is a
factor of ∼1.4, located at an energy of 16.8 MeV) because the
EPACS included a contribution from the (γ, np) reaction [43].
For 90Zr on the other hand, EPACS cross section predictions
are smaller than those from SLO, GLO, and DLO (maximum
deviation is a factor of ∼0.6, at an energy of 13.0 MeV)
because these three strength function models overestimate
in this energy region compared to the EPACS data (see
Fig. 3).

For the (γ, p) reactions where the proton threshold is lower
than the neutron threshold (i.e., for the isotopes 92,94Mo, 90Zr,
and 139La), a lower energy region of the strength function is
probed. Figure 5 shows that for the (γ, p) reactions there is
a reasonably good agreement between the EPACS reaction
cross sections and the SLO, GLO, and DLO ones. In most
cases the EPACS (γ, p) cross sections follow the other model
cross sections very closely, within a factor of 1.5 or better
[e.g., 96–100Mo(γ, p) (cf. supplemental material [20]) and
139La(γ, p)].

A similar agreement exists for the (γ, α) reaction cross
sections (cf. supplemental material [20]). As with the (γ, n)
calculations, the reaction cross sections calculated from the
EPACS lie between the reaction cross sections yielded by the
GLO and SLO models. In the case of 92Mo, the factor of 2
enhancement (compared to GLO) in the EPACS at an energy
of 11.5 MeV, leads to roughly a factor 2 increase (compared
to GLO) in the reaction cross section.

Summarizing this discussion, differences between the γ -
strength function models are clearly reflected in the calculated
cross sections. The EPACS input generally yields results
similar to the traditional SLO and GLO model calculations

above the particle thresholds. Where there are differences in
the reaction cross section, for instance 92Mo(γ, particle)B
and 139La(γ, particle)B, it is a reflection of deviations of the
EPACS with regard to the SLO and GLO models at energies
above the particle thresholds.

C. B(particle,γ )A cross sections

Calculations of (n, γ ), (p, γ ), and (α, γ ) reaction cross
sections have been performed in order to test the impact of
the EPACS on radiative capture cross sections. Results of the
(n, γ ) calculations using EPACS and leading to the product
nuclei 92,100Mo, 90Zr, and 139La, are shown in Fig. 6 compared
to identical calculations performed with the GLO, SLO, and
DLO models (cf. supplemental material for additional nuclei
[20]).

When the incident neutron energy is low, the average
radiative capture width is only from the s wave. Following
the prescription of Ref. [52], it is the default setting in TALYS

to normalize the γ -ray transmission coefficients to the average
radiative capture width at the neutron threshold. In the spirit
of investigating the sensitivity of the calculations to strength
function model, this default was modified so that the γ -strength
function was not scaled, and as such came directly from GDR
parameters.

Figure 6 shows that in all cases, the cross section predictions
are sensitive to the strength function model choice, with the
SLO model producing cross sections between a factor of ∼2.0
and ∼3.5 larger than GLO ones. In virtually all cases, at
energies less than 1–2 MeV, both the EPACS and the DLO
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FIG. 6. (Color online) Calculated (n, γ ) reaction cross sections for the final state nuclei 92Mo (a), 99Mo (b), 90Zr (c), and 139La (d). Red
curves represent reaction cross sections calculated using the GLO model, green dotted curves were calculated using the SLO model, pink
dotted lines were obtained with the DLO model, and the blue dashed curves were calculated using our EPACS data (see text for details).

reaction cross sections are between these values, being higher
than the GLO ones and lower than the SLO ones. However at
energies above 3 MeV, the EPACS predictions for the reactions
91Mo(n, γ ), 99Mo(n, γ ), and 138La(n, γ ) are larger than both
SLO and GLO models, corresponding to the fact that for these
nuclei the EPACS strength function is larger than the model
predictions. This is confirmed by the DLO calculation for
91Mo(n, γ ), which is also larger than the SLO and GLO cross
sections, in accordance with the larger DLO E1 strength for
92Mo. More specifically, the EPACS La and Zr cross section
enhancement comes from the distribution of the extra neutron
subthreshold strength. For La, the maximum enhancement
is approximately a factor of 1.3 and 2.0, compared to SLO
and GLO respectively. The γ -ray strength function is not
responsible for the structure feature at about 1–1.5 MeV
however, this is generated by the lowest excited state in the
(n, n′) channel.

In Fig. 7 reaction cross sections calculated with the GLO,
SLO and DLO models, and the EPACS input are plotted
against experimental data from [53,54] for the reactions
95Mo(n, γ )96Mo [Fig. 7(b)] and 97Mo(n, γ )98Mo [Fig. 7(a)].
To evaluate the influence of the level density we compare
calculations using the γ -strength models combined with
the CT level density [Figs. 7(a) and 7(b)], with identical
calculations using the BSFG level density model [Figs. 7(c)
and 7(d)].

Compared to the CT, the BSFG cross sections are increased
globally by a factor of ∼1.2–2.0. Changes in the relative
positions of the models reflect the differences in the energy
dependence of the level densities, which are folded with the

strength functions. Using the CT level density the experimental
95Mo(n, γ )96Mo and 97Mo(n, γ )98Mo data are described very
well by the SLO model and reasonably well by the EPACS,
being within a factor of 1.7 in the former, and 1.5 in the
latter. The GLO cross sections however are a factor of 2.5
lower than the experimental data when combined with CT.
For the BSFG level density calculations, EPACS provides the
closest description of the data for both 95Mo(n, γ )96Mo and
97Mo(n, γ )98Mo, while SLO overshoots the data and GLO,
though still lower, is closer to the data for both reactions than
it was for the CT calculations. For both reactions, the DLO
predictions appear to agree well with the data.

The general tendency of SLO and GLO predictions shown
here is similar to the one found in the calculations of Ref. [24],
where SLO and GLO calculations were compared with various
experimental (n, γ ) cross sections. Their HF calculations used
the BSFG level density and another level density model
(KRK), suggested in Ref. [55]. For the four nuclei considered
by Ref. [24], the GLO combined with the BSFG came the
closest to the data, whereas they found SLO to be high.
For the KRK model, they found the data to be between the
predictions of SLO and GLO, as in Figs. 7(c) and 7(d). Using
the level density model of Ref. [56], Ref. [39] also found
that the GLO model was the most suitable for describing
experimental 98Mo(n, γ ) data. Though these results appear to
be at variance with those presented here, they in fact highlight
that other uncertainties in aspects of the HF calculation,
such as level densities and width fluctuation corrections, can
make it problematic to evaluate which of the considered
strength function models provides the best description of
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FIG. 7. (Color online) Upper plots: Comparison of the experimental [53] (red dots) [54] (black dots) and calculated 97Mo(n, γ )98Mo
reaction cross section using (left) CT, and (right) BSFG level density models. Red curves represent reaction cross sections calculated using
GLO model, green curves were calculated using SLO model, pink curves were calculated with DLO model, and blue curves are calculated
from EPACS data. Lower plots: Same as the upper plots, but for 95Mo(n, γ )96Mo.

experimental (n, γ ) cross sections. Comparing Figs. 7(a)
and 7(b) with Figs. 7(c) and 7(d) serves as an illustration of the
impact of level density model uncertainties on the calculations
considered here.

Radiative proton capture reactions on the nuclei 91,99Nb,
89Y, and 138Ba are plotted in Fig. 8, (cf. supplemental material
for additional nuclei [20]). These results show similarity to
the (n, γ ) reactions, discussed above, in that SLO tends to
predict higher, and GLO lower cross sections. In general, both
the EPACS and the DLO yield results which are very close to
those of SLO, with differences not exceeding typically a factor
of 1.5, whereas compared to GLO, the deviations can be as
much as a factor of 3. Also shown on Fig. 8, where relevant,
is the opening of the neutron exit channel. This is responsible
for the drop in the 138Ba(p, γ ) cross section [Fig. 8(d)] visible
at 2.6 MeV.

In Fig. 9 we compare (p, γ ) calculations using CT and
BSFG level densities [Figs. 9(a) and 9(b) respectively] com-
bined with SLO, GLO, DLO, and EPACS strength functions,
with experimental data taken from Ref. [57]. For clarity,
Figs. 9(c) and 9(d) show zoomed regions (over an energy
region of 1 MeV) of Figs. 9(a) and 9(b).

The overall shape of the data is described well by all of
the models, as well as EPACS, for both the BSFG and the CT
models. Consistent with the (n, γ ) cross sections, the GLO
is lower than the SLO. Using the BSFG level density instead
of the CT, shifts the GLO closer to the data [cf. Fig. 9(b)].
Up to an energy of 3.7 MeV, agreement between EPACS and

the experimental data is excellent in both cases. Above this
energy the agreement is not as good, however deviations do
not exceed a factor of 2.8 for the CT case and a factor of 3.8
for the BSFG, both occurring at an energy of approximately
4.4 MeV.

The (α, γ ) reaction cross sections (cf. supplemental mate-
rial [20]) again demonstrate that SLO predictions are larger
than GLO ones. In most cases EPACS results are between
the two models. EPACS yields cross sections marginally
larger than SLO for the reactions 88Zr(α, γ ) and 86Sr(α, γ ),
in keeping with the fact that 92Mo and 90Zr have some extra
strength in their respective photoabsorption cross sections
compared to the SLO and GLO models. The presence of the
low-energy resonance in 139La strength function leads to a
135Cs(α, γ ) rate which is ∼1.2–2.0 greater than the SLO rate,
and ∼1.5–3.5 greater than the GLO rate.

In summary we remark that GLO calculations are in
all cases low compared to SLO, DLO, and EPACS. The
comparison with experimental (n, γ ) and (p, γ ) cross sections
in this paper and in Refs. [38,58–60] seems to suggest
that either EPACS or GLO, combined with the BSFG level
density provides the best description of the experimental
data. Enhancement features in the strength function [and
consequently, if at an energy above particle threshold, in the
(γ, n) cross section] are washed out due to the γ cascade.
However, enhancement in the strength function (e.g., 92Mo
and 139La) does lead to a general enhancement in the various
cross sections.
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FIG. 8. (Color online) Same as Fig. 6 but for the (p, γ ) reaction with final state nuclei 92Mo (a), 100Mo (b), 90Zr (c), and 139La (d).

IV. STELLAR REACTION RATES

A. A(γ ,particle)B

Stellar photodissociation reaction rates are calculated in
TALYS from the expression

λ∗
(γ,a)(T ) =

∑
μ(2Jμ + 1)λμ

(γ,a)(T ) exp
(−E

μ
x /kBT

)
∑

μ(2Jμ + 1) exp
(−E

μ
x /kBT

) , (19)

where Jμ represents the levels of the target nucleus, μ labels
the thermally populated state, and E

μ
x stands for the excitation

energy of that state. Photodissociation rates λ
μ

(γ,a)(T ) for
individual states are found from the integral of a Planck
black-body spectrum n(Eγ , T ) (which describes the energy
distribution of the stellar γ rays) and the photodissociation
cross section

λ
μ

(γ,a)(T ) =
∫ ∞

0
c nγ (E, T )σμ

(γ,a)(E)dE. (20)

To understand the potential impact of our EPACS on nuclear
astrophysics, stellar (γ, n), (γ, p) and (γ, α) reaction rates
were calculated by means of TALYS. The results were compared
with identical calculations performed using the SLO, GLO,
and DLO models. Results for the (γ, n) reaction rates for
92,100Mo, 90Zr, and 139La are plotted on the left axis of Fig. 10.
Plotted on the right axis are the ratios of the reaction rates
to the SLO results. The choice of the SLO model as the
base is somewhat arbitrary, but is useful because it allows the
smaller variations between the models, which are not visible
on a log scale, to become apparent. Inspection of Fig. 10
immediately shows that between the SLO and GLO results,
the (γ, n) reaction rate is sensitive to within a factor of at most

3 to the choice of strength function model. This sensitivity
does not show a strong dependence on temperature, remaining
more or less constant. Our EPACS yield (γ, n) reaction rates
which either fall between the limits delineated by the GLO
and SLO [cf. Fig. 10(b)], or else are enhanced compared to the
GLO and SLO predictions [cf. Figs. 10(a), 10(c), and 10(d)].
The enhancement appears to be minor however, a factor of
∼1.1–1.3. (It is stressed that the reaction rate calculations
include cross sections with contributions arising from excited
states of the target nucleus.)

Displayed in Fig. 11 are the (γ, p) reactions, where once
again the ratio of the reaction rates to the SLO reaction rate
are shown as thin dot-dashed lines and are plotted on the right
axis. The sensitivity of the (γ, p) reactions to the choice of
strength model appears to show some temperature dependence
for nuclei where the proton separation energy is lower than
the neutron separation energy (i.e., 92Mo, 90Zr, and 139La),
presumably because the cross sections for these reaction rates
have probed a lower region of the photoabsorption cross
section. In all cases however SLO predicts larger rates than
GLO, by up to a factor of 2. SLO also predicts larger rates
than DLO, but the enhancement tends to be very small. As
for the (n, γ ) calculations, the EPACS results are enhanced
compared to SLO and GLO for the nuclei 92Mo, 90Zr, and
139La, though enhancement is relatively minor.

B. B(particle,γ )A

Similar reaction rate calculations have been performed
using TALYS for the reactions (n, γ ), (p, γ ), and (α, γ ).
Displayed in Fig. 12 are the (n, γ ) reaction rates for 91,99Mo,
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89Zr, and 138La. As was the case for the (γ, n) reactions, these
rates also show about a factor 3 sensitivity to the strength
function model, a factor which does not differ significantly
with temperature. For all but 99Mo(n, γ ) [Fig. 12(c)] the

EPACS predict results that are enhanced compared to the
SLO and GLO models. The enhancement is about 7–10%
compared to SLO, and 100–150% when compared to GLO
results. For the reaction 91Mo(n, γ ), the enhancement reflects
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FIG. 10. (Color online) Left axis: Calculated (γ, n) reaction rates plotted on a logarithmic scale as a function of temperature for the target
nuclei 92Mo (a), 100Mo (b), 90Zr (c), and 139La (d). Right axis: Reaction rates normalized to SLO, linear scale. Note that 1 corresponds to the
same point on both axes.
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FIG. 11. (Color online) Same as Fig. 10 but for the (γ, p) reaction with target nuclei 92Mo (a), 100Mo (b), 90Zr (c), and 139La (d).

the underprediction of the peak of the γ strength by both the
GLO and SLO models [cf. Fig. 2(a)]. DLO also shows an
enhancement compared to SLO and GLO due to the same
reason. For 138La(n, γ ), and 89Zr(n, γ ), the EPACS enhance-
ment is due to the extra strength present in the respective
experimental strength functions (cf. supplemental material for
additional nuclei [20] and details of optical models [61–64]).

As with the γ -induced reactions, it is apparent that the
choice of strength function model, SLO or GLO, produces a
difference of up to 3 in the (particle,γ ) reaction rate, with SLO
again predicting the higher values. For the (p, γ ) rates, EPACS
predicts some enhancement compared to SLO (no more than
5%) for 91Nb, 89Y and 138Ba. These reactions correspond
to the nuclei 92Mo, 90Zr, and 139La, and were also found to
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FIG. 12. (Color online) Calculated (n, γ ) reaction rates plotted on a logarithmic scale as a function of temperature for the final state nuclei
92Mo (a), 100Mo (b), 90Zr (c), and 139La (d).
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be enhanced compared to the SLO and GLO models for the
(n, γ ) reactions. The EPACS enhancement compared to the
SLO and GLO predictions becomes stronger with increasing
temperature. This is a consequence of the charged-particle
reaction temperature dependence, which comes about due
to the Coulomb barrier. Because of this effect, low-energy
strength enhancement, present for instance in 139La [Fig. 3(b)],
plays a greater role at higher temperatures.

V. DISCUSSION

A major difference between the EPACS strength func-
tion and other models is the appearance of resonance-like
structures, like the one at 6.5 MeV in 139La [cf. Fig. 3(b)].
Considering (γ ,particle) reactions, such structures will only
have consequences if they are located above the particle
emission threshold. The (γ, n) cross section for 98Mo is an
example (cf. supplemental material [20]).

The impact of a resonance-like enhancement of strength be-
low the neutron threshold observed in the (γ, γ

′
) experiments

is noticed in the (particle,γ ) channels as follows. The primary
γ -rays are emitted with a probability that is approximately
given by the black-body spectrum n(Eγ , T ) multiplied by the
dipole strength function, where T is the temperature of the
compound nucleus. The total cross section is the integral over
this distribution. The maximum of the black-body spectrum
lies at 2.8 T and its full width at half maximum is 6.3 T ,
where T is given by Eq. (12). For (n, γ ) reactions with thermal
neutrons, the temperature is about 0.4 MeV and the strength
function is folded with a distribution that has a maximum at
Sn − 1.1 MeV and a width of 2.5 MeV. With increasing neutron
energy the maximum of the black-body spectrum Emax moves
to higher energy and its width 
 increases, i.e.,

Emax = E + Sn − 2.8T (E + Sn),


 = 6.1T (E + Sn), (21)

T (E + Sn) ≈
√

(E + Sn)8/100.

Hence, most of the possible resonances in the strength function
will be washed out and not show up as a bump in the cross
section. If they appear on top of a smooth strength function,
such as SLO, they will somewhat increase the cross section
over a wide region. Only very strong resonances may generate
a shallow bump centered at E = Eres − Sn + 2.8T , where Eres

is the energy of the resonance in the strength function. For the
charged-particle reactions, the situation is analogous.

The pygmy resonance in the strength function of 139La
causes an increase of the (n, γ ) reaction cross section by a
factor of 1.3 to 2.0, relative to the SLO and GLO models,
respectively. However the peak structure seen in the EPACS
strength function is actually washed out in the (particle,γ )
cross sections. For the case of 92Mo, the low SLO and GLO
strength functions compared to the EPACS (and DLO) in the
energy region between 8–13 MeV result in an enhancement
of the EPACS (and DLO) (γ, n), (γ, p), (γ, α), and inverse
reaction cross sections. For other cases, such as (γ, n) reactions
on 96Mo and 98Mo, we find no significant difference between
EPACS, SLO, and GLO that may be attributed to structures in
the strength function below the neutron threshold, plotted in

Figs. 2 and 3. This is not surprising because the low-energy
EPACS points fluctuate around SLO and GLO values. The
above holds true also for the charged-particle induced reaction
cross sections. Although they are strongly suppressed by the
Coulomb wall, the ratios between the EPACS, SLO, and
GLO are similar to those of the neutron-capture reactions. In
particular, resonances in the γ -strength function are washed
out. As a new feature, the relatively low γ -emission probability
(as compared to the one for neutrons) generates irregularities
in the cross section, which are caused by the neutron emission.

For the stellar reaction rates, the ratios between EPACS and
the other models are nearly constant. This can be understood
from the relatively small change of the mean impact energy
of the neutrons, which ranges between 100 and 300 keV over
the temperature range 2–6 GK. Within this energy range the
ratios of the (n, γ ) cross sections do not change much (cf.
Fig. 12 and supplemental material [20]). Although the cross
section in the (p, γ ) and (α, γ ) channels changes strongly
over the energy range, the ratio between the models is also
approximately constant. As a consequence, the ratio between
the models in the stellar reaction rates is also roughly constant.

Addressing the rate changes attributable to the strength
function variations, Ref. [3] found that variations in the
(n, γ ) and (p, γ ) rates had almost no effect on the p nuclei
abundances. Comparing just the reaction rates calculated with
the TALYS code (Figs. 10–12) we find that SLO produces
reaction rates 3 times greater than GLO, and that EPACS
predicts rates enhanced by a minor amount compared to SLO.
It is therefore unlikely that the reaction rates calculated from
our EPACS would significantly impact the abundances of
the p nuclei, even owing to presence of low-energy strength
enhancement. More critical to the p nuclei abundances are the
(γ, p) reactions, and the reaction 92Mo(γ, p)91Nb has been
identified as key importance [3]. For the (γ, p) channel we
find agreement between the reaction rates calculated with SLO,
GLO, and EPACS to be within a factor of 1.5 for 92Mo, 2 for
100Mo, 1.3 for 90Zr, and 2.5 for 139La, where we also remark
that EPACS is enhanced compared to both SLO and GLO.
However it seems unlikely that there would be a significant p

process impact from these values.

VI. CONCLUSION

By combining new (γ, γ ′) cross section data with existing
(γ, n) cross sections and a three-Lorentzian parametrization,
total input photoabsorption cross sections (called EPACS)
have been produced for the isotopes 92,94,96,98,100Mo, 88Sr,
90Zr, and 139La. Using these EPACS inputs we have analyzed
the reactions A(γ, n), A(γ, p), and A(γ, α), as well as the
inverse reactions. This has allowed us to directly investigate the
impact of features of observed γ -ray strength functions. This
is particularly relevant for the isotopes 90Zr and 139La, which
show an especially pronounced strength function enhancement
with respect to the often used GLO [24], SLO [23], and
DLO [27] parametrizations of the strength function.

The calculations not only probed the sensitivity of cross
sections and reaction rates to the γ -strength function, but also
tested the accuracy of the currently used SLO, GLO, and
DLO models. In particular, the impact of the enhancement
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of the γ -ray strength functions in the region of the pygmy
dipole resonance on (γ ,particle) and (particle,γ ) cross sections
and reaction rates has been evaluated. Besides the nuclear
reaction rates in a temperature range relevant for stellar
nucleosynthesis, we have presented strength functions with
the aim to deliver a more precise data basis for calculations
of cross sections of transmutation-relevant reactions, such as
neutron capture.

The A(γ ,particle) cross sections directly reflect the strength
functions, including possible resonance structures above the
reaction threshold. In the case of the A(γ, p) and A(γ, α)
stellar reaction rates, absorption is restricted to the relatively
narrow energy window set by the thermal distribution of the
photon bath and the penetration probability of the Coulomb
wall. Resonances within this window will dramatically change
the rate. For A(γ, n) reactions resonances at the threshold also
drastically change the rate. The resonance around 6.5 MeV
observed in 139La does not seem to meet these conditions.
The calculated rates reflect the overall smooth trends of the
various strength functions studied. In most cases GLO strength
functions are lower, DLO and SLO ones larger, than the EPACS
values. The resulting variations of the reaction cross sections
and the stellar rates are within a factor of 2–3. In the case of
the capture reactions, A(particle,γ ), the large energy spread
of the γ cascades wash out possible resonance structures in
the strength function. However, pronounced enhancements of
the strength as found for 139La do lead to a modest increase

of the (n, γ ) cross section. The variations of the calculated
reaction cross sections and rates caused by the different
strength function models were found to be comparable with
differences in level density models and fluctuation corrections
used in statistical model calculations. The comparison of
experimental cross sections for 95Mo(n, γ ), 97Mo(n, γ ), and
93Nb(p, γ ) with the calculated ones reveals the following:
EPACS strength functions combined with the BSFG level
density model produces cross sections that compare well with
experimental ones. GLO and BSFG, which is a commonly
used combination, also produce results that compare well with
experiment, particularly in view of the additional examples
given in Ref. [24]. Combining GLO with the CT model,
however, seems to give cross sections that are too low. This
may be a more general result. The combination of SLO and
the CT works well for the nuclei in this study. However the
combination of SLO and the BSFG gives cross sections that are
too large, a result that is consistent with additional examples
from literature (cf. Ref. [24]).
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A. Palumbo, J. Görres, H. Y. Lee, W. Rapp, M. Wiescher,
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