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Inner crust of neutron stars with mass-fitted Skyrme functionals
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The equation of state and composition of the inner crust of neutron stars at zero temperature are calculated,
using the T = 0 version of the temperature-dependent extended Thomas-Fermi plus Strutinsky integral method,
for each of a family of three functionals based on Skyrme-type forces BSk19, BSk20, and BSk21, which are
characterized by different degrees of symmetry-energy stiffness, and also for the SLy4 functional. We also
solve the Tolman-Oppenheimer-Volkoff equations to calculate the distribution of mass within the inner crust.
Qualitatively similar results are found for all four functionals, and in particular the number of protons per
Wigner-Seitz cell is in all cases equal to 40 throughout the inner crust.
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I. INTRODUCTION

We recall that three distinct regions can be recognized in a
neutron star: a locally homogeneous core and two concentric
shells characterized by different inhomogeneous phases [1,2].
The outermost of the shells, the “outer crust,” consists of
an electrically neutral lattice of nuclei and electrons. At the
surface of the star only nuclei that are stable under natural
terrestrial conditions are found (in fact, under the assumption
of “cold catalyzed matter,” i.e., nuclear and β equilibrium
at temperature T = 0, only 56Fe will be found), but on
moving toward the interior the increasing density leads to
the appearance of nuclei that are more and more neutron
rich, until at a mean local density n̄ of around 2.5 ×10−4

nucleons fm−3 (4.2 × 1011 g cm−3) neutron drip sets in. This
marks the transition to the “inner crust,” an inhomogeneous
assembly of neutron-proton clusters and unbound neutrons,
neutralized by an essentially uniform electron gas. By the point
where the mean density has risen to about two thirds of the

density n0 of symmetric (homogeneous) nuclear matter (SNM)
at equilibrium, the inhomogeneities have been smoothed out
and we enter the core of the star. The homogeneous medium of
which the core is comprised is known as “neutron-star matter”
(N*M), and it is made up primarily of neutrons, with a small
admixture of protons neutralized by electrons (and muons at
densities above n̄ � 0.12 fm−3). Closer to the center, other
particles such as hyperons might appear.

In this paper we continue our calculations of the different
regions of neutron stars with a family of three Skyrme-
type functionals, BSk19, BSk20, and BSk21, that we have
constructed specifically to provide a unified approach not
only to the structure of the different regions of neutron stars
but also to other phenomena associated with the birth and
death of neutron stars, e.g., core-collapse supernovae, the
r-process of nucleosynthesis in the neutrino-driven wind, and
nucleosynthesis via the decompression of neutron-star matter
[3]. These three functionals are all based on effective forces
with the generalized Skyrme form
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where rrrij = rrri − rrrj , rrr = (rrri + rrrj )/2, pppij = −ih̄(∇∇∇ i − ∇∇∇j )/2
(the relative momentum), Pσ is the two-body spin-exchange
operator, and n(rrr) = nn(rrr) + np(rrr) is the total local density,
nn(rrr) and np(rrr) being the neutron and proton densities,
respectively. The t4 and t5 terms here are unconventional,
being density-dependent generalizations of the t1 and t2 terms,
respectively.

The parameters of this form of force were determined
primarily by fitting measured nuclear masses, which were

calculated with the Hartree-Fock-Bogoliubov (HFB) method.
For this it was necessary to supplement the Skyrme forces
with a microscopic contact pairing force, phenomenological
Wigner terms and correction terms for the spurious collective
energy. However, in fitting the mass data we simultaneously
constrained the Skyrme force to fit the zero-temperature
equation of state (EOS) of homogeneous neutron matter
(NeuM), as determined by many-body calculations with
realistic two- and three-nucleon forces; the strength of the
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FIG. 1. (Color online) Neutron-matter equations of state (internal
energy per nucleon e as a function of density n) for forces BSk19–
BSk21 and SLy4 at subnuclear densities and zero temperature.

pairing force at each point in the nucleus in question was
likewise calculated analytically so as to reproduce the 1S0

pairing gaps of homogeneous nuclear matter of the appropriate
density and charge asymmetry [4]. Actually, several realistic
calculations of the EOS of NeuM have been made, and while
they all agree very closely at nuclear and subnuclear densities,
at the much higher densities that can be encountered toward
the center of neutron stars they differ greatly in the stiffness,
i.e., the density dependence, of the symmetry energy that they
predict, and there are very few data, either observational or
experimental, to discriminate among the different possibilities.
It is in this way that we arrived at the three different functionals
of this paper: BSk19 corresponds to the softest EOS of NeuM
known to us, BSk21 corresponds to the stiffest, while BSk20
has intermediate symmetry stiffness, as seen in Fig. 1 of
Ref. [3]. On the other hand, Fig. 1 of the present paper shows
that in NeuM the three functionals are very close to each other
at the subnuclear densities relevant to neutron-star crusts. For
a further discussion of this point see Ref. [3], where it will be
seen in particular that a value of 30 MeV was imposed on the
symmetry coefficient J for all three functionals. It will also be
seen there that the values of the density-symmetry coefficient
L, which measures the stiffness of the symmetry energy at the
equilibrium density n0, are all very similar.

Furthermore, we imposed on these functionals the supple-
mentary constraints of (i) eliminating all unphysical instabil-
ities in nuclear matter for all densities up to the maximum
found in neutron stars (these functionals being also stable
at the finite temperatures encountered in supernova cores
[5]), (ii) obtaining a qualitatively realistic distribution of the
potential energy among the four spin-isospin channels in
nuclear matter, and (iii) ensuring that the isovector effective
mass is smaller than the isoscalar effective mass, as indicated
by both experiment and many-body calculations.

The introduction of the unconventional terms in t4 and t5
allowed us to satisfy all these constraints and at the same
time fit the 2149 measured masses of nuclei with N and
Z � 8 given in the 2003 AME (Atomic Mass Evaluation) [6]
with an rms deviation as low as 0.58 MeV for all three
models, i.e., for all three options for the high-density variation

of the symmetry energy. For all three of these functionals,
complete mass tables (labeled HFB-19, HFB-20, and HFB-21,
respectively) were constructed, going from one drip line to the
other. The reliability of the predictions that these models make
for experimentally inaccessible neutron-rich nuclei is all the
greater for the constraints to neutron matter imposed on their
underlying forces, and it was thus particularly appropriate
to use these mass models in our earlier study of the outer
crust of neutron stars [7]. For the homogeneous core, the
T = 0 equations of state of N*M for our forces BSk19, BSk20,
and BSk21 have already been published in the original paper
presenting these forces [3]. This leaves just the inner crust to
be dealt with, and our main concern in this paper is to calculate
for this region the EOS and the composition as a function of
density with each of our three functionals.

We shall also perform inner-crust calculations with the
functional SLy4 [8], since like our own functionals it is
designed for finite-nucleus HFB calculations and is intended
for neutron-star studies, being subject to a neutron-matter
constraint. However, it has the conventional Skyrme form and
thus, having fewer parameters, is far less flexible than our
own functionals. Thus SLy4 was fitted to only six nuclear
masses; moreover, three of these nuclei had N = Z (even),
and since no Wigner term was included in the model the
symmetry energy must inevitably be too large. (In particular,
the symmetry coefficient J for this functional is 32 MeV, while
we have found that the optimal value for the conventional
form of Skyrme functional when all the mass data are fitted
without any neutron-matter or other constraint is 28 MeV [9].)
The excessive symmetry energy might explain why the rms
deviation from the mass data is quite large, 5.1 MeV [10]; note
that only even-even nuclei were considered in that calculation.

Given that all four functionals were fitted to masses with the
HFB method, it might seem appropriate to use this method for
the inner-crust calculations as well. Now the latter calculations
have been generally performed within the framework of
the spherical Wigner-Seitz (WS) approximation, as in the
pioneering HF calculations of Negele and Vautherin [11], in
order to avoid computer times grossly in excess of those for
isolated-nucleus calculations. But an inevitable consequence
of the WS approximation is the introduction of shell effects
in the spectrum of unbound neutron states, which dominate
the properties of the inner crust. Such shell effects are to a
large extent spurious, since in reality the unbound neutron
states form a quasicontinuum. This difficulty is analyzed in
detail in Refs. [12,13], the latter reference showing that the
error thereby introduced in the energy per nucleon cannot
easily be reduced below 50 keV, which is incompatible with a
reliable calculation of the composition of the inner crust; for
a very recent discussion of the problem see Grill et al. [14].
In the last few years three-dimensional calculations have been
carried out by several groups [15–17]. However, not only does
this sort of calculation require computer times that are quite
impractical for extensive astrophysical calculations but the use
of a cubic box with periodic boundary conditions can still lead
to spurious neutron shell effects (see, for example, Sec. C.2 in
Ref. [17]).

In view of these problems it is not surprising that a more
popular approach to the calculation of the inner crust has
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been to use the much simpler compressible liquid-drop model
(CLDM); a typical such calculation is that of Ref. [18].
Within each Wigner-Seitz cell this method makes a clear
separation of nuclear matter into two distinct homogeneous
phases, the densities of which are free parameters of the
model. The bulk properties of the two phases are calculated
microscopically using the adopted functional, as are the
surface properties (preferably including curvature corrections)
of the interface between them. A more realistic treatment of
spatial inhomogeneities is to employ semiclassical methods
such as the Thomas-Fermi (TF) approximation, as for instance
in Ref. [19]. However, both the CLDM and TF methods are
otherwise purely macroscopic, and in particular they have no
quantum shell corrections at all.

The so-called temperature-dependent extended Thomas-
Fermi plus Strutinsky integral (TETFSI) method of Onsi
et al. [20], which we adopt here, is a computationally very
fast approximation to the full finite-temperature HF method.
This method was originally developed for calculating the EOS
of the dense matter found in supernova cores [21]. But in this
work we will be using just the zero-temperature limit. The
TETFSI method, like the TF method, allows for a continuous
variation of the density of nuclear matter within each WS
cell, without any artificial separation into two distinct phases.
However, it is expected to provide a much better description of
nuclear clusters than the TF method because the semiclassical
expressions for the kinetic-energy and spin current densities
include density-gradient terms up to the fourth order. Most
importantly, proton shell corrections are added perturbatively,
but we avoid the difficulty of spuriously large values for the
neutron shell corrections noted above by not calculating them
at all; in any case they are known to be much smaller than the
proton shell corrections [13,22,23].

Our method is described in detail in Ref. [20], but we
summarize it here in Sec. II. The results for the zero-
temperature composition and EOS of the inner crust are
presented in Sec. III, along with an examination of the extent
to which continuity holds at the interface with the outer crust.
This section also discusses the transition between the inner
crust and the liquid core. In Sec. IV we examine the solutions
to the Tolman-Oppenheimer-Volkoff (TOV) equations [24,25]
in order to determine the distribution of mass within the inner
crust. Our conclusions are summarized in Sec. V.

II. TETFSI MODEL OF THE INNER CRUST

To summarize the main features of the TETFSI method
[20], we note first that it models the inhomogeneous medium
by spherical WS cells, with the spherically symmetric neutron
and proton density distributions being parametrized according
to

nq(r) = nBq + n�qfq(r), (2)

in which, with q = n or p, nBq is a constant background term,
while

fq(r) = 1

1 + exp
{(Cq−R

r−R

)2 − 1
}

exp
( r−Cq

aq

) . (3)

In this “damped” form of the usual simple Fermi profile all
density derivatives vanish at the surface of the cell, thereby
ensuring a smooth matching of the nucleonic distributions
between adjacent cells and satisfying certain necessary condi-
tions discussed below. It is particularly to be noted that with this
parametrization of the density there is no arbitrary separation
into liquid and gaseous phases within the WS cell. However,
if this were what is energetically favored in reality, it would
automatically be taken into account through the small values
of the diffusenesses aq that would emerge.

In order to determine the composition and the EOS of
the inner crust one should in principle minimize at constant
pressure the Gibbs free energy g per nucleon with respect to
all the parameters of the WS cell. This is the procedure that
we adopted in Ref. [7] for the outer crust, but for the inner
crust the computation would be extremely heavy. Instead, we
minimize rather the total Helmholtz free energy f per nucleon
at constant mean density n̄ with respect to the same parameters,
showing in Appendix A that the error thereby introduced
is quite negligible. Since the present work is limited to
T = 0 it is the internal energy per nucleon, e, that is minimized
(f = e − T s, where s is the entropy per nucleon).

To enumerate the minimizing parameters of the WS cell, we
note first that the cell radius R will be determined, for the given
n̄, by the total number A of nucleons in the cell. Then with the
number of protons, Z, and the number of neutrons, N , in the
cell specified (Z + N = A), only three of the four remaining
cell parameters appearing in Eqs. (2) and (3) for each charge
type of nucleon will be independent. Thus, including Z and N ,
there will be eight parameters with respect to which the energy
e must be minimized. Identifying the different contributions
to e, we write

e = enuc + ee + ec − Ye Qn,β, (4)

and now discuss briefly each term.
The nuclear term is

enuc = 4π

A

∫
cell

r2EETF
Sky (r)dr + e

p

sh, (5)

where EETF
Sky (r) is the extended Thomas-Fermi (ETF) approx-

imation to the energy density ESky(r) given by Eq. (A3) of
Ref. [26] for the generalized Skyrme force (1). (The formalism
of Ref. [20] is limited to conventional Skyrme forces.) All
terms in ESky are functions of the number densities nq(r), the
kinetic-energy densities τq(r), and the spin-current densities
JJJ q(r). The ETF method approximates these last two densities
as functions of the number densities nq(r) and their first
four derivatives. However, as far as the total ETF energy is
concerned, it is shown in Appendix A of Brack et al. [27]
that the third- and fourth-order derivatives of the density
can be eliminated by partial integration over the region of
interaction, provided certain boundary conditions are satisfied
on the bounding surface of this region. In the finite-nucleus
case of Ref. [27] the bounding surface can be taken to lie at
infinity, in which case the necessary boundary conditions are
trivially easy to satisfy. In the present case the bounding surface
is the surface of the WS cell, and, given the fact that in general
the density does not vanish on this surface, the necessary
conditions are that the first three derivatives of the density
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must vanish there. These conditions are satisfied automatically
for the distribution (3), and it is in this “integrated” form
that we have implemented the ETF method. Note that for all
four functionals, i.e., BSk19–BSk21 and SLy4, we omit the
spin-current terms in J 2, since this is the way these functionals
were fitted (see Ref. [5] for a discussion of the implications of
these terms for spin and isospin stability).

With the ETF approximations for τq(r) and JJJ q(r) being
semiclassical all shell effects in ESky(r) are lost. The second
term on the right-hand side of Eq. (5) represents our attempt to
restore the proton shell corrections perturbatively using the
Strutinsky integral (SI) method, as described in Ref. [20].
As explained in Sec. I, we do not calculate neutron shell
corrections in the inner crust; for a fuller discussion of this
point see Sec. I of Ref. [20], where we conclude that, because
of the problems with neutrons, the ETFSI method is better
adapted to a WS approach than is the HFB (or HF-BCS)
method. On the other hand, we do not include pairing at the
present stage of our calculations. This should have very little
impact on the EOS, but it might have implications for the
composition.

The term ee on the right-hand side of Eq. (4) denotes the
kinetic energy per nucleon of the electrons. In dense, cold neu-
tron star crust, electron-charge screening effects are negligible
and the electron density ne = n̄p is essentially uniform [28,29].
The energy ee can thus be calculated straightforwardly by
expressions given in Sec. 24 of Cox and Giuli [30], as in
Ref. [20].

The third term on the right-hand side of Eq. (4) denotes the
total Coulomb energy per nucleon. It is calculated according
to Eq. (3.4) of Ref. [20], except that there are the following
changes to the exchange part. (a) The proton exchange energy
is set equal to zero for the three BSk functionals; this is a
device that we have successfully adopted in all our recent
models, beginning with BSk15 [31], and it can be interpreted
as compensating for neglected effects such as Coulomb
correlations, charge-symmetry breaking of the nuclear forces,
and vacuum polarization. (b) The electron exchange energy,
which has the nonrelativistic form in Eq. (3.4) of Ref. [20], is
multiplied by a factor of −1/2, as appropriate for extremely
relativistic particles [32].

The last term on the right-hand side of Eq. (4), in which
Qn,β is the β-decay energy of the neutron (0.782 MeV)
and Ye = Z/A, takes account of the neutron-proton mass
difference (where we drop a constant term Mnc

2).
Minimization of e with respect to the eight available

parameters is performed by means of the CERN routine
MINUIT. Actually, we found it necessary to exclude the shell
correction term e

p

sh from this minimization, and then to add it
later to what is really just the optimal ETF part of the energy.
Otherwise, the minimization routine will tend to seek large
negative values of the shell corrections, in violation of the
essentially perturbative character of the SI method. In practice,
we performed the minimization for different fixed values of Z,
thereby reducing the number of free variational parameters to
seven. However, even with this reduced number of parameters
MINUIT occasionally failed to find a correctly converged
minimum. This problem could often, but not always, be
avoided by adjusting the initial values for the parameters.

When this procedure failed, solutions could always be found,
provided we are not too close to the interface with the core, by
a slight shift in the value of n̄; for this reason our grid of values
of n̄ is irregular. However, above a certain value of n̄ we were
unable to find any solutions at all when MINUIT minimizes with
respect to seven variables. We attribute the failure of our code
to find well-defined minima before true homogeneity has been
reached to the energy minimum being very flat, with the result
that MINUIT is unable to pick out one configuration among a
very wide range of possibilities. We found, however, that we
could still find well-defined minima in this region by reducing
the number of free variables in MINUIT to three, n�n, n�p, and
N , and minimizing for a large number of fixed values of the
other five parameters; clearly, for a given level of accuracy
this procedure will require much more computation time than
when MINUIT minimizes on seven variables.

It should be noted that at all densities the number of
neutrons, N , in the WS cell is taken as one of the minimizing
variables in MINUIT and hence is treated as a continuous
variable, rather than being discretized to integral values. Even
though the total number of neutrons in the crustal layer is, of
course, integral, the notion of a fractional number of neutrons
per WS cell corresponds, in fact, to the physical reality, since
the neutrons are delocalized.

Normally, we would expect positive values of the constants
n�n and n�p to emerge from the minimization, the cluster then
representing a “droplet.” However, there have been indications
[1,2] that toward the interface with the core the clusters may
take several other forms. Most of these “pasta” configurations,
such as slabs, tubes, and rods, cannot be handled by our code,
which is restricted to spherical shapes, but another of these
possibilities, spherical bubbles, could in principle emerge from
the minimization with our code, since they correspond simply
to negative values of n�q . We return to this possibility in
Sec. III C.

The pressure P corresponding to any given value of n̄

is calculated by evaluating a simple analytic expression,
as described in Appendix B. This is more reliable and
computationally much faster than the numerical differentiation
of e used in Ref. [20].

III. COMPOSITION AND EQUATION OF STATE
OF THE INNER CRUST

A. Generalities

Following the methods described in the previous section,
for each of our three functionals and SLy4 we minimized the
internal energy per nucleon, e, at temperature T = 0 for more
than a hundred different densities n̄ between the drip point
and 0.1 fm−3. At this upper limit our density distributions
have become effectively homogeneous, as will be discussed in
more detail in Sec. III C.

For all values of n̄ up to 0.06 fm−3 the optimal value of the
number of protons, Z, per Wigner-Seitz cell was found to be
40, for all four functionals. However, at higher densities, as
homogeneity is approached, the minimized energy becomes
increasingly insensitive to Z. The preference for Z = 40
in the case of these four functionals is somewhat fortuitous,
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FIG. 2. Variation of ETFSI energy e per nucleon as a function
of Z for functional BSk19 with N optimized for each value of Z;
the dotted curve represents the ETF approximation. Upper panel:
n̄ = 2.63 × 10−4 nucleons fm−3 (drip density); lower panel: n̄ = 0.06
nucleons fm−3.

given that for some of our older functionals different values
were found. For example, with the functional BSk14 used in
Ref. [20] it was found that Z could take any of the values, 20,
40 and 50, according to the density. It is remarkable that these
familiar finite-nucleus magic proton numbers should persist
in the highly neutron-rich environment beyond the drip line,
especially in view of the presence of electrons, which will have
the effect of significantly reducing Coulomb effects.

For the specific case of functional BSk19, reference to Fig. 2
shows both the role of shell effects and the overall trends
imposed by the ETF part of the calculation. For both of the
extreme densities shown here the ETF minimum lies close to
Z = 40, and the shell effects simply reinforce this preference.
However, the energy difference per nucleon, 
e, between Z =
40 and Z = 50 is very small: about 10 keV at the drip density
and 5 keV at n̄ = 0.06 fm−3 (and note the different energy
scales of the two panels). It is easy to see how with even an
only very slightly different functional a quite different T = 0
composition could be found, as a result of changes in either
the shell effects or the macroscopic ETF part of the energy (or
both).

Since the functionals BSk19, BSk20, and BSk21 give better
and wider data fits than all our earlier functionals, and have
a better theoretical base as well, we believe our prediction of
Z = 40 at all densities in the inner crust to be more credible
than our earlier predictions, but the need for caution is evident.
For example, taking pairing into account might well shift the
favored value of Z away from 40. In any case, in a real neutron
star a fairly wide range of values of Z can be expected at any
point in the inner crust because of the finite temperature.

The optimal values of A are plotted as a function of the
density in Fig. 3; similarly, Figs. 4 and 5 show the variation of
e and the pressure P , respectively; these two figures show the
densities n̄N∗M

trans of transition between the inner crust and the
core, as calculated in Sec. III C.

No essential differences will be perceived among any of
these four functionals, as far as the inner crust is concerned,

FIG. 3. (Color online) Optimal value of nucleon number A as a
function of density n̄ at zero temperature in the inner crust; the proton
number Z everywhere takes an optimal value of 40 for all four forces.

although BSk21 is seen in Fig. 5 to have a somewhat softer
EOS (in contrast to a much stiffer EOS at high density).
These features can be related to the behavior of the respective
functionals in homogeneous NeuM at inner-crust densities (see
Fig. 1). Since SLy4 gives a much worse mass fit than do any
of the BSk functionals, one might have expected that it would
represent less well the presence of inhomogeneities and of
protons, and thus give significantly different results in the
inner crust, but this turns out not to be the case. Furthermore,
the higher value of the symmetry coefficient J in the case of
SLy4 (32 MeV, as opposed to 30 MeV in the case of all the
BSk functionals) does not seem to have much impact.

B. Continuity with the outer crust

Our inner-crust code, as used here, is in principle applicable
to the outer crust, with the background densities nBq vanishing
automatically on minimizing the energy per nucleon, and it is
thus meaningful to compare this code with the code we used for
the outer-crust calculation of Ref. [7]. In Table I we make this
comparison at the drip-point density n̄drip (as determined by

FIG. 4. (Color online) Internal energy e per nucleon at zero
temperature as a function of density n̄ in the inner crust. The solid
symbols represent the transition densities nN∗M

trans (see Sec. III C).
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TABLE I. Comparison of inner-crust and outer-crust codes at the drip point; results for the latter code are in parentheses. e is the internal
energy per nucleon, and P is the pressure.

Force n̄drip (fm−3) Z N e (MeV) P (MeV fm−3)

BSk19 2.63464 × 10−4 40 (38) 96 (88) −1.79426 (−1.87464) 5.072 × 10−4 (4.938 × 10−4)
BSk20 2.62873 × 10−4 40 (38) 95 (88) −1.79451 (−1.87305) 5.064 × 10−4 (4.923 × 10−4)
BSK21 2.57541 × 10−4 40 (38) 94 (86) −1.81718 (−1.90057) 4.984 × 10−4 (4.894 × 10−4)
SLy4 2.45897 × 10−4 40 (38) 93 (82) −1.78801 (−1.95898) 4.744 × 10−4 (4.807 × 10−4)

the code for the outer crust) with the results for the outer-crust
code shown in parentheses.

We see that the inner-crust code (TETFSI) underbinds with
respect to the outer-crust code (HFB) by around 5%. This
disagreement can be accounted for by the several approxi-
mations made in our TETFSI method, relative to the HFB
method adopted in our outer-crust calculations [7], as follows.
(i) The kinetic energy and spin currents are calculated with the
semiclassical (T)ETF method. (ii) Proton shell corrections are
put in perturbatively, and neutron shell corrections (shown in
Refs. [13,23] to be much smaller than proton shell corrections
as soon as neutron drip sets in, but obviously not zero in
the outer crust) are neglected completely. (iii) Rather than
allowing arbitrary density variations when minimizing the
total energy, the density is parametrized according to Eqs. (2)
and (3). (iv) Pairing is neglected completely. We have checked
that the assumption of sphericity in the inner-crust code has a
negligible impact in this region of the nuclear chart.

It will also be seen from Table I that there is a slight
disagreement in the values of Z and N at the drip point. One
might speculate that the favoring of Z = 40 over 38 is the
result of an exaggerated shell effect, but if we drop the proton
shell corrections altogether then we find slightly higher values
of Z, typically 41. However, we have already remarked how
the inclusion of pairing might well shift the unique value of Z

(at T = 0) away from 40, and we see from Fig. 2 that a priori
it would be difficult to rule out any value of Z between 36 and
50 at the drip density. The disagreement in the neutron number
N is somewhat larger, presumably because of our neglect of

FIG. 5. (Color online) Pressure P per nucleon at zero temperature
as a function of density n̄ in the inner crust. The solid symbols
represent the transition densities nN∗M

trans (see Sec. III C).

neutron shell effects, but it is Z that is the more astrophysically
relevant nucleonic number.

C. Transition to the homogeneous core

The densities nN∗M
trans shown in Figs. 4 and 5 and tabulated

in Table II are the densities below which homogeneous β-
equilibrated N*M is calculated, for the functional in question,
to be unstable to breakup into inhomogeneities. Our values for
nN∗M

trans were calculated by the method described in Ref. [33], in
which one defines a free-energy curvature matrix by

CNMe,dyn =

⎛
⎜⎝

∂μn

∂nn

∂μn

∂np
0

∂μp

∂nn

∂μp

∂np
0

0 0 ∂μe

∂ne

⎞
⎟⎠ + k2

⎛
⎜⎝

2C∇
nn 2C∇

np 0

2C∇
pn 2C∇

pp 0

0 0 0

⎞
⎟⎠

+ 4π2e2

k2

⎛
⎝ 0 0 0

0 1 −1
0 −1 1

⎞
⎠ , (6)

where the μi(≡ ∂f

∂ni
) are the neutron, proton, and electron chem-

ical potentials; note that ne = n̄p. The coefficients C∇
ij account

for the density-gradient terms in the nuclear density functional,
which come into play in the presence of inhomogeneities.
The third term on the right-hand side of this equation gives
the Coulomb contribution. Stability of N*M against breakup
(actually, against density fluctuations of infinitesimally small
amplitude) will be assured as long as the curvature matrix
CNMe,dyn has no negative eigenvalues for all real values of k,
the wave number of density fluctuations. Thus in practice one
calculates the lowest eigenvalue of CNMe,dyn along the line
of β equilibrium of N*M in the nn-np plane and determines
the density nN∗M

trans at which it changes sign. Along with nN∗M
trans ,

Table II also shows the value of the proton fraction Ye and the
pressure at the transition point.

It is instructive to see how our density distributions, as given
by Eq. (2), approach homogeneity as the density increases. In
Fig. 6 we follow the approach to homogeneity by showing
the neutron and proton density profiles within the WS cell

TABLE II. Parameters relating to the crust-core transition.

Force nN∗M
trans (fm−3) Ye Ptrans (MeV fm−3)

BSk19 0.0885 0.0376 0.428
BSk20 0.0854 0.0356 0.365
BSk21 0.0809 0.0335 0.268
SLy4 0.0798 0.0358 0.361
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FIG. 6. Profiles of neutron (solid curves) and proton (dashed
curves) density distributions in the Wigner-Seitz cell for functional
BSk21 and different values of the mean density n̄. Shading denotes
the region beyond the cell radius.

for different values of the mean density n̄. As far as can
be seen from this figure, the transition to homogeneous
matter is very smooth, with no evidence of any discontinuity.
However, it is not clear in this figure at what precise density
homogeneity can be said to set in, but Figs. 7 and 8 complete
the picture in this respect. The former shows the variation of
the “cluster strength” parameters n�n and n�p as a function

FIG. 7. (Color online) Variation of the “cluster strength” param-
eters n�n and n�p as a function of density [see Eq. (2)]. The solid
symbols represent the transition densities nN∗M

trans (see Sec. III C).

FIG. 8. (Color online) Variation of the inhomogeneity factor �,
given by Eq. (7), as a function of density. The solid symbols represent
the transition densities nN∗M

trans (see Sec. III C).

of density: Eq. (2) shows that homogeneity corresponds to
these parameters being equal to zero. Now in Fig. 7 we see
that, for all functionals, these parameters vanish when the
density is very close to nN∗M

trans , calculated as described above
by a completely different method. A similar conclusion can be
drawn from Fig. 8, where we plot a more global measure of
the departure from homogeneity, the “inhomogeneity factor”

� = 1

Vcell

∫
d3r

(
n(r)

n̄
− 1

)2

, (7)

where Vcell is the volume of the WS cell and the integration
goes over the cell. We plot this as a function of density in
Fig. 8, where the transition to homogeneity at a density very
close to the density nN∗M

trans is again apparent.
We stress also that in both Figs. 7 and 8 the fall to zero of

the appropriate measure of inhomogeneity is smooth, with
no indication of any discontinuity. We cannot exclude the
possibility that the transition is first order, albeit very weak,
but all our results are consistent with the transition being of
second order or higher.

Figures 6 and 7 make it clear that for none of the four
functionals considered here have we found a spherical bubble
configuration anywhere in the inner crust. That is, energy
minimization always leads to a droplet configuration until
homogeneity is reached. This result confirms, as far as force
SLy4 is concerned, the CLDM calculations of Douchin and
Haensel [34]. However, we cannot exclude the possibility
of very shallow bubbles in a very narrow density range,
although such configurations would be of limited astrophysical
interest. Note, moreover, that since our calculations are
limited to spherical configurations we can say nothing about
nonspherical bubbles, such as the very shallow ones found for
SLy4 in Ref. [16].

IV. DISTRIBUTION OF MASS

With the EOS determined (for a given functional),
the distribution of mass within a neutron star (assumed
to be nonrotating) is given by the solution to the TOV
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equations [24,25],

dP (r)

dr
= −Gρ(r)M(r)

r2

[
1 + P (r)

c2ρ(r)

][
1 + 4πP (r)r3

c2M(r)

]

×
[

1 − 2GM(r)

c2r

]−1

(8)

and

M(r) = 4π

∫ r

0
ρ(r ′)r ′2dr ′. (9)

Here ρ(r) is the mass-energy density at the radial coordinate
r , given by

ρ(r) = n̄(r)

(
M + e

c2

)
, (10)

where M is the nucleon mass and e is the internal energy per
nucleon, as plotted in Fig. 4. The pressure P (r) appearing in
Eq. (8) has to be expressed in terms of ρ(r) through the EOS.

Proceeding as in Sec. III C of Ref. [7], we solve the TOV
equations (8) and (9) for the functions ρ(r) and M(r) by
integrating inward from the surface. (If we had followed
the usual procedure of integrating outward from the center
our crust results would have been contaminated by the
uncertainties in the EOS of the core.) Then the total baryonic
mass of the shell of inner radius r and outer radius R, the
radius of the star, is


MB(r) = 4π M

∫ R

r

r ′2(r ′)1/2
n(r ′)dr ′, (11)

where we have introduced the metric function

(r) =
(

1 − 2GM(r)

c2r

)−1

. (12)

Note that 
MB(r), as defined by Eq. (11), contains the
baryonic mass of the entire outer crust, as calculated in Ref. [7]
for the three BSk forces and from Refs. [35,36] for SLy4.

We plot 
MB(n̄(r)) as a function of the density n̄ in Fig. 9
for a neutron star of mass 1.5M� and radius 13 km; the fraction
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FIG. 9. (Color online) Variation of the baryonic mass of the crust
(inner plus outer) with density n̄ for a neutron star of mass 1.5M�
and radius 13 km.
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FIG. 10. (Color online) Variation of density n̄ with proper depth
z for a neutron star of mass 1.5M� and radius 13 km.

of this mass that consists of protons can be read off from Fig. 3,
given that everywhere we have Z = 40.

For many purposes it might be more convenient to express

MB as a function of the proper depth, given by (see Sec. 5.6
of Ref. [37])

z(r) =
∫ R

r

dr ′
(

1 − 2GM(r ′)
c2r ′

)−1/2

, (13)

which is the only measurable depth in the gravitationally
distorted metric. We plot in Fig. 10 n̄ as a function of z, again
for a neutron star of mass 1.5M� and radius 13 km, whence

MB(r) can be read off from Fig. 9 as a function of z.

In Fig. 11 we show how the total gravitational mass of the
crust (inner plus outer) varies as a function of the total star
mass for a given radius of 9 km. Figure 12 shows the same
function for stars with a radius of 14 km.

V. CONCLUSIONS

We have calculated the composition and EOS of the inner
crust of neutron stars for the three generalized Skyrme-type
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FIG. 11. (Color online) Variation of the gravitational mass of the
crust (inner plus outer) with the total mass of a star with a radius of
9 km.
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FIG. 12. (Color online) Variation of the gravitational mass of the
crust (inner plus outer) with the total mass of a star with a radius of
14 km.

functionals, BSk19, BSk20, and BSk21, and for the conven-
tional Skyrme functional SLy4, using in all cases the TETFSI
method at temperature T = 0. We have also solved the TOV
equations to calculate the distribution of mass within the crust.

Qualitatively similar results are obtained for all four forces.
In particular, in all cases we find Z = 40 for the optimal
number of protons per Wigner-Seitz cell throughout the inner
crust. However, other values of Z lie very close in energy, and
if we took pairing into account the optimal value of Z might
very well be shifted away from 40. Moreover, it is clear that
at realistic values of the temperature an appreciable range of
values of Z will be found. This underlines the importance of
extending the present calculations to finite temperatures and
to include pairing.

The fact that there are no substantial differences in the
inner-crust properties for force SLy4 and for the three BSk
forces despite their having been fitted to different values of the
symmetry coefficient J means that this parameter is not of any
great relevance in this respect.

We have studied in some detail the transition between
the inner crust and the homogeneous core, considering two
different measures of the inhomogeneity of our density
distributions. We find for each of the four functionals that
homogeneity is established in our calculated distributions at
a density very close to the value predicted for the onset in
homogeneous N*M of instability against density fluctuations
of infinitesimally small amplitude.

No evidence for bubbles was found in the course of this
study of the transition region, despite a thorough search. This
conclusion does not preclude the existence of nonspherical
pasta configurations, a possibility that lies beyond the scope
of the present paper. Even though such phases would have
a negligible impact on the EOS, they might affect transport
properties.

The calculations on the inner crust presented here show that
our forces BSk19, BSk20, and BSk21 make possible a unified
and realistic treatment of all regions of neutron stars, as in
Ref. [39].
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APPENDIX A: MINIMIZATION OF GIBBS OR
HELMHOLTZ FUNCTIONS?

For simple systems, which in the present context means
systems with a single (N,Z) configuration, minimizing the
Gibbs free energy per nucleon, g, at constant pressure P

is completely equivalent to minimizing the Helmholtz free
energy per nucleon, f , at constant density n̄, since in that case
the thermodynamic identity(

∂g

∂X

)
P,T

=
(

∂f

∂X

)
n̄,T

(A1)

holds, where X denotes any thermodynamical variable. But
when two different phases or components, i.e., two different
(N,Z) configurations in the present context, coexist in
equilibrium this identity breaks down, and it is the Gibbs
prescription that leads to a correct description of the phase
transition: there is a discontinuity in the range of densities over
which single-phase solutions can be found, but the pressure
remains constant over this discontinuity, which corresponds to
the equilibrium coexistence of the two phases. If, on the other
hand, one minimizes f at constant density n̄, discontinuities
in the pressure will be found in the vicinity of transitions from
one (N,Z) configuration to another. An example of this is seen
in Fig. 13, where we show the transition from Z = 40 to Z =
20 for functional BSk14 [20], with N being optimized in each
case.

Such discontinuities in the pressure are unphysical, and they
arise in our calculations only because our model does not allow
the coexistence of two different (N,Z) configurations that can

7

FIG. 13. EOS for functional BSk14 in the vicinity of the Z = 40
to Z = 20 transition.
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occur in reality. But even then, when minimizing f at constant
density n̄, the correct equilibrium pressure can be found
by making a Maxwell construction, as indicated in Fig. 13.
However, on the pressure scale of Fig. 5 these discontinuities
will be imperceptible, and the Maxwell construction is quite
unnecessary: the attendant error will be far smaller than the
differences between the equations of state of the different
functionals seen in Fig. 5.

In any case, the question of transitions between different
values of Z does not arise with functionals BSk19–BSk21,
since for all these forces Z retains the constant value of 40
throughout the inner crust. As for changes in N , we recall that
this varies continuously in our calculations, whence it follows
that minimizing f at constant density n̄ leads to absolutely no
error at all in this respect.

APPENDIX B: PRESSURE FORMULA

The pressure P at any given point in the neutron-star crust,
as given by the EOS and as used in the TOV equations, is
defined thermodynamically by considering a region of volume
V that contains the point in question and is macroscopically
sized but small enough for all intensive thermodynamic
variables to be sensibly constant over it. If F denotes the
total Helmholtz free energy contained in this region then

P = −
(

∂F

∂V

)
T ,Ne,Nq

, (B1)

where T is the temperature (here T = 0), Ne its number of
electrons, and Nq its number of nucleons of type q = n, p

for neutrons and protons, respectively. By treating the crust as
a perfect crystal, this expression remains exact if the region
of volume V is taken as the appropriate Wigner-Seitz cell,
because of the translational symmetry. In the approximation
used here of spherical WS cells we then have

P = − 1

4πR2

(
∂F

∂R

)
T ,Ne,Nq

, (B2)

where R is the cell radius. We assume that the Helmholtz free
energy in the cell can be written as

F = 4π

∫ R

0
dr r2F(r), (B3)

where F(r) is a functional of the nucleon density nq(r) and
of the electron density ne(r). These densities are related to the
total numbers of nucleons and electrons in the cell by

Nq = 4π

∫ R

0
dr r2nq(r), (B4a)

Ne = 4π

∫ R

0
dr r2ne(r). (B4b)

Combining Eqs. (B2) and (B3) yields

P = −F(R) − 1

R2

∫ R

0
dr r2

(∑
q

δF

δnq(r)

∂nq(r)

∂R

+ δF

δne(r)

∂ne(r)

∂R

)
, (B5)

where δF/δnq(r) and δF/δne(r) denote the functional deriva-
tives of F with respect to the nucleon and electron densities,
respectively.

Minimizing now the Helmholtz free energy F with respect
to arbitrary variations in nq(r) and ne(r) leads to the Euler-
Lagrange equations

λq = δF

δnq(r)
(B6a)

and

λe = δF

δne(r)
, (B6b)

where the λq and λe are Lagrange multipliers introduced
to ensure that the nucleon and electron numbers given by
Eqs. (B4a) and (B4b) remain fixed; they are identified with the
corresponding chemical potentials. Using next the identities∫ R

0
dr r2 ∂nq(r)

∂R
= −R2nq(R) (B7a)

and ∫ R

0
dr r2 ∂ne(r)

∂R
= −R2ne(R), (B7b)

which follow from the differentiation of Eqs. (B4a) and (B4b),
respectively, we arrive at

P = −F(R) + λene(R) +
∑

q

λqnq(R). (B8)

This pressure formula is a generalization of the expression
derived in atomic physics in the framework of the Thomas-
Fermi-Dirac model (see, e.g., Ref. [38] and references therein).

We decompose now the total Helmholtz free-energy density
in the WS cell into a nuclear part, a purely kinetic electron part,
and a Coulomb part,

F(r) = Fnuc(r) + Fe(r) + FCoul(r). (B9)

Then substituting Eq. (B9) into Eq. (B8) leads to

P = −Fnuc(R) − Fe − FCoul(R) + λene +
∑

q

λqnq(R),

(B10)

where we are assuming that ne and Fe are position-
independent. We now examine in more detail the different
components of F(r) appearing in Eq. (B9).

In the fourth-order ETF method with Skyrme functionals
the nuclear part Fnuc(r) is a local functional of the nucleon
densities nq(r) and their derivatives up to just the second
order, provided the higher-order terms have been integrated
as described in Sec. II. Note that we have not included the
proton-proton Coulomb interaction inFnuc(r). For the electron
gas, since it is supposed to be uniform we can write simply

Fe = VFe(ne, T ), (B11)

where Fe is the electron Helmholtz free-energy density, which
depends only on the electron density ne = Np/V = n̄p and
the temperature T . The Coulomb part of the Helmholtz free
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energy is given by

FCoul = FCoul,dir + FCoul,ex

= 4π

∫ R

0
dr r2

[
FCoul,dir(r) + FCoul,ex(r)

]
. (B12)

Here the direct term is

FCoul,dir(r) = e

2
nc(r)φ(r), (B13)

where nc(r) ≡ np(r) − ne is the net electric-charge density,
and φ(r) is the Coulomb potential, found on solving Poisson’s
equation to be given by

φ(r) = 4πe

∫ R

0
dr ′ r ′2nc(r ′)K(r, r ′), (B14)

in which

K(r, r ′) = r + r ′ − |r − r ′|
2rr ′ . (B15)

For r = R, Eq. (B14) reduces to

φ(R) = 4πe

R

∫ R

0
dr r2nc(r) = 0, (B16)

the last step being a consequence of global charge neutrality.
It then follows from Eq. (B13) that

FCoul,dir(R) = 0. (B17)

For the Coulomb exchange term we have

FCoul,ex(r) = −3e2

4

(
3

π

)1/3[
xnp(r)4/3 − 1

2
n4/3

e

]
, (B18)

where x is usually equal to 1 but, as explained in Sec. II, is set
equal to zero for the BSk forces of this paper; for the electrons
we have taken the extreme relativistic expression [32]. Then

FCoul(R) = −3e2

4

(
3

π

)1/3[
xnp(R)4/3 − 1

2
n4/3

e

]
. (B19)

To proceed we have to evaluate the chemical potentials
appearing in Eq. (B10). The Euler-Lagrange equation (B6a)
for nucleons can be written explicitly as

λq = ∂Fnuc(r)

∂nq(r)
− ∇ · ∂Fnuc(r)

∂∇nq(r)
+ ∇2 ∂Fnuc(r)

∂∇2nq(r)

+
[
eφ(r) − xe2

(
3

π

)1/3

np(r)1/3

]
δq,p. (B20)

The constant λq can be evaluated at any point r � R, but taking
r = R leads to a considerable simplification of the right-hand
side of Eq. (B20), since with our parametrization all derivatives
of the density vanish at that point. Thus the second and third
terms of this expression likewise vanish at that point, since
each can be expressed as a sum of terms every one of which
contains a factor of some derivative of nq(r). By using then
Eq. (B16) the nucleon chemical potential becomes

λq = ∂Fnuc(R)

∂nq(R)
− xe2

(
3

π

)1/3

np(R)1/3δq,p. (B21)

A further consequence of the vanishing of the derivatives
of nq(r) at r = R is that the first term here, like the term

Fnuc(R) appearing in Eq. (B10), involves only the bulk part
of the nuclear free-energy density. Next, the Euler-Lagrange
equation (B6b) for electrons simplifies to

λe = ∂Fe

∂ne

− eφ(r) + e2

2

(
3

π

)1/3

n1/3
e , (B22)

because of the uniformity of the electron gas. For the same
reason we can write the electron pressure (without the
Coulomb exchange term) as

Pe = −∂Fe

∂V
= −Fe + ne

∂Fe

∂ne

. (B23)

Also, the Coulomb-potential term eφ(r) in Eq. (B22) vanishes
at r = R, and it must be negligible for r < R, since otherwise
ne and Fe would be position-dependent, which would be
inconsistent with the assumption made and justified in Sec. II
that the electron gas is essentially uniform in the inner crust.
Then Eq. (B22) can be rewritten as

λe ne = Pe + Fe + e2

2

(
3

π

)1/3

n1/3
e . (B24)

Substituting now Eqs. (B19), (B21), and (B24) into Eq. (B10)
gives us for the total pressure

P = Pnuc + Pe + PCoul,ex, (B25)

where

Pnuc = −Fnuc(R) +
∑

q

nq(R)
∂Fnuc(R)

∂nq(R)
(B26)

and

PCoul,ex = e2

8

(
3

π

)1/3

n4/3
e − x

e2

4

(
3

π

)1/3

np(R)4/3. (B27)

Given that both terms on the right-hand side of Eq. (B26) relate
only to bulk matter, being independent of any density-gradient
terms, it is easy to show from Eq. (B1) that Pnuc represents
the purely nuclear pressure of homogeneous nuclear matter
with neutron and proton densities equal to nn(R) and np(R),
respectively, without any Coulomb term, direct or exchange.
However, from Eq. (B18) it is seen that the last term of
Eq. (B27) is just the Coulomb exchange pressure associated
with the protons of this homogeneous system, while the
first term of this equation is likewise the Coulomb exchange
pressure of the uniform electron gas.

This means that the pressure of any crustal layer is the
same as that obtained in a homogeneous medium of neutrons,
protons, and electrons, with the neutron and proton densities
being those found at the surface of the WS cell, i.e., in the
homogeneous background, nBn and nBp, respectively, while
the electron density is to be taken as that of the actual uniform
electron gas, ne. It is remarkable that the direct Coulomb
contribution, calculated exactly, vanishes identically, even
though np(R) is not equal to ne. However, this term still
manifests itself indirectly, since it influences the actual values
of nn(R) and np(R) through the Euler-Lagrange equations.
A similar remark applies also to the inhomogeneities inside
the cell.
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For the generalized Skyrme force (1), the purely nuclear
pressure can be expressed as

Pnuc = h̄2

3M
τ0 +

∑
t=0,1

(
Cn

t n2
Bt + 5

3
Cτ

t nBtτt + nB0
∂Cn

t

∂nB0
n2

Bt

+ nB0
∂Cτ

t

∂nB0
nBtτt

)
, (B28)

where nB0 = nBn + nBp, while nB1 = nBn − nBp, and like-
wise for τ0 and τ1, with

τq = 3
5 (3π2)2/3nq(R)5/3. (B29)

The various coefficients are given by

Cn
0 = 3

8 t0 + 3
48 t3n

α
B0, (B30a)

Cn
1 = − 1

4 t0
(

1
2 + x0

)− 1
24 t3(1 + x3)nα

B0, (B30b)

Cτ
0 = 3

16 t1 + 1
4 t2

(
5
4 + x2

) + 3
16 t4n

β

B0 + 1
4 t5

(
5
4 + x5

)
n

γ

B0,

(B30c)

Cτ
1 = − 1

8 t1
(

1
2 + x1

) + 1
8 t2

(
1
2 + x2

) − 1
8 t4n

β

B0

(
1
2 + x4

)
+ 1

8 t5n
γ

B0

(
1
2 + x5

)
. (B30d)

The pressure Pe of the uniform electron gas is calculated as
described in Sec. II, using expressions given in Sec. 24 of Cox
and Giuli [30].
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