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Hyperons and massive neutron stars: Vector repulsion and SU(3) symmetry
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With the discovery of massive neutron stars such as PSR J1614-2230, the question has arisen of whether exotic
matter such as hyperons can exist in the neutron star core. We examine the conditions under which hyperons
can exist in massive neutron stars. We consistently investigate the vector baryon-meson coupling, going from the
SU(6) quark model to a broader SU(3) symmetry. We propose that the maximum neutron star mass decreases
linearly with the strangeness content fs of the neutron star core as Mmax(fs) = Mmax(0) − 0.6M�(fs/0.1), which
seems to be independent of the underlying nuclear equation of state and the vector baryon-meson coupling
scheme. Thus, pulsar mass measurements can be used to constrain the hyperon fraction in neutron stars.
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I. INTRODUCTION

The discovery of the massive neutron star PSR J1614-2230
has raised new challenges for theories of dense matter beyond
nuclear saturation density. Shapiro delay measurements from
radio timing observations of the binary millisecond pulsar
indicate a large mass of 1.97 ± 0.04M� of the neutron star [1].
The core of a neutron star harbors a dense matter environment,
which could be the site for strangeness-containing matter, such
as hyperons. Though nuclear interactions in the saturation
regime are well understood, one has to utilize neutron star
observations to find clues about the physics of cold and dense
matter beyond several times saturation density. Any theory of
ultradense matter has to explain the recently observed large
neutron star mass. According to existing models of dense
matter, the presence of hyperons leads to a considerable
softening of the equation of state (EoS), resulting in a
corresponding reduction of the maximum mass of the neutron
star [2–5]. Then the existing theories involving hyperons are
in conflict with the large pulsar masses [6]. On including
hyperons, most relativistic models obtain maximum neutron
star masses in the range 1.4–1.8M� [7–14]. However, in
exceptional cases, neutron stars with maximum masses larger
than 2M� have been obtained, either by pushing the threshold
for appearance of hyperons to higher densities or due to strong
hyperon vector repulsion [14–21]. Taurines et al. [22] achieved
large neutron star masses including hyperons by considering a
model with density-dependent coupling constants, which were
varied nonlinearly with the scalar field. Recently, Bednarek
et al. [23] also achieved a stiffening of the EoS by using a non-
linear relativistic mean field (RMF) model with quartic terms
involving the hidden strangeness vector meson. In addition to
the inclusion of such a meson into a density-dependent RMF
model, Lastowiecki et al. [24] assumed a quark matter core
in order to obtain massive stars. Bonanno and Sedrakian [25]
also modeled massive neutron stars with a hyperon and quark
core using a fairly stiff EoS and vector repulsion among
quarks. In several studies, the maximum neutron star masses
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obtained when including hyperons were not very different
from those containing nucleons only [16,17,19]. In more
sophisticated models such as the Brueckner-Hartree-Fock
model, the maximum neutron star masses were generally
found to be lower than 1.6M�, which is in contradiction with
observed pulsar masses [3–5,26–30].

From the studies cited in the previous paragraph, it seems
that the possible presence of hyperons in massive neutron
stars is in many cases reconciled by incorporating large vector
repulsion in an ad hoc way. In contrast, we investigate the role
of vector repulsion starting from symmetry arguments. As-
suming SU(3) symmetry, we perform a controlled parameter
study and constrain the parameters using the observed mass
of PSR J1614-2230. This procedure is in line with modern
microscopic models for realistic baryon-baryon potentials
such as the Bonn potentials [31] and the Nijmegen potentials
[32], which adopt SU(3) symmetry to describe the baryon
interactions for the baryon octet. For our investigations, we
employ a RMF model, in which the parameters are calibrated
around nuclear saturation density [7,9,33]. However, the
extrapolation of such properties to supranuclear densities
presents uncertainties. In a previous paper [34], we investi-
gated how the uncertainty in nuclear saturation properties,
such as effective nucleon mass or nuclear compressibility, or
hypernuclear properties, such as potential depths of hyperons
in nuclear matter, could influence our conclusions about the
presence of hyperons in the core of massive neutron stars. In
this work, we question the fundamental assumption of SU(6)
symmetry, which relates the hyperon couplings to the nuclear
couplings.

This paper is organized in the following way. In Sec. II, we
describe the model to calculate the EoS. The parameters of
the model are listed in Sec. III. The results of our calculations
are discussed in Sec. IV, and a summary of our conclusions is
given in Sec. V.

II. THEORETICAL MODEL

As elaborated in our previous paper [34], a RMF theoretical
model is adopted to describe neutron star matter subject to
chemical equilibrium and charge neutrality. The octet baryons,
electrons, and muons are considered as constituents of the
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core. In this model [33], baryon-baryon interaction is mediated
by the exchange of scalar (σ ), vector (ω), and isovector
(ρ) mesons. The hyperon-hyperon interaction is incorporated
through additional strange scalar (σ ∗) and vector (φ) mesons.
The stiffest possible EoS within the model is obtained on
inclusion of the strange vector meson φ and by omitting the
σ ∗ meson and is referred to as the “model σωρφ” [34]. The
vector meson-hyperon couplings in this model are related to
those of nucleons through the symmetry of the SU(6) quark
model. In this paper a consistent investigation for the vector
meson coupling is achieved, going from the SU(6) symmetry
to the more general SU(3) symmetry, in order to provide a
general analysis for the role of repulsive hyperon interactions
on the properties of neutron stars.

A. Determination of vector meson-hyperon couplings

1. Flavor SU(3) and the baryon-meson interaction Lagrangian

SU(3) in flavor space can be regarded as a symmetry group
of strong interaction (restricting it to three quark flavors: up,
down, and strange). For neutron stars, we consider only the
[8] representation for the baryons, namely the JP = 1

2
+

octet.
The product of the baryon and meson representations reads

[8] ⊗ [8] = [1] ⊕ [8]A ⊕ [8]S ⊕ [10] ⊕ [27]. (1)

With the help of matrix representations for the baryon octet (B)
and meson nonet (singlet state M1 and octet states M8), SU(3)
invariant expressions can be constructed [32]. The interaction
Lagrangian for the whole meson nonet and the baryons can
be written as a sum of terms, one coming from the coupling
of the meson singlet to the baryon octet (S), and other two
terms from the interaction of the meson octet and the baryons,
one being antisymmetric (F ) and the other being symmetric
(D) [35,36]:

Lint = −g8

√
2[αTr([B,M8]B) + (1 − α)Tr({B,M8}B)]

− g1

√
1

3
Tr(BB)Tr(M1) . (2)

Here, g8 and g1 denote the meson octet and singlet coupling
constants. The F/(F + D) ratio α, which lies in the range
of 0 � α � 1, is a weight factor for the contributions of the
symmetric D and the antisymmetric F couplings relative to
each other.

The assumption of SU(3) symmetry implies that all possible
combinations of couplings for each type of meson with all
possible baryons can be described with only four parameters:
the singlet coupling constant g1, the octet coupling constant
g8, the F/(F + D) ratio α [32,37], and a “mixing angle” θ

relating the physical isoscalar mesons to their pure octet and
singlet counterparts. The SU(6) quark model is obtained as
the combination of flavor SU(3) with spin SU(2) [and is thus
a special case of flavor SU(3)].

We restrict our attention to vector coupling terms containing
only baryons of the same species [38] and denote the F/(F +
D) ratio corresponding to vector meson interaction by αV .
The requirement of spin independence for the couplings of the

identically flavored � and 	 baryons

g�ω = g	ω, g�φ = g	φ, (3)

leads to a fixed value of the F/(F + D) ratio αV :

αV = 1. (4)

This means we have a pure F -type coupling in the interaction
Lagrangian (2). Further, the proposition that the nucleon does
not couple to the φ meson, which is a pure ss̄ state (i.e.,
gNφ = 0) in the case of “ideal mixing” for the ω and φ meson
[39],

tanθV = 1√
2
, (5)

leads to the relative coupling strengths [37]

gNω : g	ω : g�ω : g
ω = 3 : 2 : 2 : 1 (6)

and

g	φ : g�φ : g
φ = 1 : 1 : 2, (7)

where Eqs. (6) and (7) are related through [38]

g	ω = − 1√
2
g
φ. (8)

This leaves only one degree of freedom, say gNω, which is
fitted to saturation properties of nuclear matter [8]. We fit the
σ meson-hyperon couplings to the potential depths of hyperons
in nuclear matter (see Ref. [34] for discussions).

2. Beyond SU(6)

In order to explain the large observed mass of PSR J1614-
2230 we might either introduce more particles and parameters
into our RMF model or reconsider the necessity of fixing them
to the SU(6) values.

From the quadratic mass formula for the mesons, one
obtains θV ≈ 40o, which is quite close to the ideal mixing
angle θ ≈ 35.3o [39]. Thus, we may retain the condition of
ideal mixing for the vector mesons. The parameters αV , g1,
and g8, however, we may consider as being free. Since we
later fix gNω to saturation properties of nuclear matter, we
combine the singlet and octet coupling constants to a single
parameter z, which we define as

z := g8

g1
(9)

and keep the parameters αV , z, and gNω. If we set z to its SU(6)
value z = 1/

√
6 and use ideal mixing while varying αV , which

by definition is within the range 0 � αV � 1, it gives

g	ω

gNω

= 2αV + 4

4αV + 5
,

g�ω

gNω

= 8 − 2αV

4αV + 5
,

g
ω

gNω

= 5 − 2αV

4αV + 5
,

gNφ

gNω

=
√

2
4αV − 4

4αV + 5
,

g	φ

gNω

=
√

2
2αV − 5

4αV + 5
,

g�φ

gNω

= −
√

2
2αV + 1

4αV + 5
,

g
φ

gNω

= −
√

2
2αV + 4

4αV + 5
. (10)
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If we set αV to its SU(6) value αV = 1 and use ideal mixing
while keeping z as a free parameter instead, we arrive at

g	ω

gNω

=
√

2√
2 + √

3z
= g�ω

gNω

,
g
ω

gNω

=
√

2 − √
3z√

2 + √
3z

,

gNφ

gNω

=
√

6z − 1√
2 + √

3z
,

g	φ

gNω

= −1√
2 + √

3z
= g�φ

gNω

, (11)

g
φ

gNω

= − 1 + √
6z√

2 + √
3z

.

If we require the interaction due to ω exchange to be repulsive
for all baryons, we want no changes of sign in the ω couplings,
especially g
ω/gNω � 0, and therefore 0 � z � 2/

√
6. The

couplings of the ρ meson to the baryons may be related to
gNω by relations analogous to Eqs. (10) and (11) involving αV

or z. However, since the ρ couplings control the asymmetry
energy and its density dependence L, gNρ may alternatively
be fitted directly to the asymmetry energy coefficient at
saturation (following Ref. [40]). For the hyperons, the ρ

coupling strengths are then related to gNρ , according to isospin.
This method we adopt for our calculations and thereby we
avoid the problem of having gNρ = 0 at z = 0, αV = 1, which
would yield unphysically low values for the symmetry energy
coefficient. For the two ways to fix the ρ couplings, the
difference in the obtained maximum neutron star masses is
rather negligible (�Mmax � 0.05M�).

From the relations (10) and (11) it is clear that for values
of αV or z not coinciding with SU(6) the φ meson couples
to the nucleon, which is supported by the large strange quark
condensate in the nucleon found in lattice gauge simulations
[41,42].

III. PARAMETERS OF THE MODEL

A. Nucleon-meson coupling constants

The nucleon-meson coupling constants gσN , gωN , gρN , b,
and c are determined from the saturation properties of nuclear
matter [40]: binding energy = −16.3 MeV, baryon density
n0 = 0.153 fm−3, and asymmetry energy coefficient aasy =
32.5 MeV. The incompressibility K and effective nucleon
mass m∗

N/mN are varied according to the parameter set in
consideration (e.g., GM1 [8], NL3 [43], TM1 [44]).

B. Hyperon-meson coupling constants

The strange and nonstrange vector meson-hyperon cou-
plings have already been described in detail in the previous
section. The nonstrange scalar meson-hyperon couplings are
fitted to the potential depths for the hyperons in nuclear matter.
The following values U

(N)
	 = −30 MeV, U

(N)
� = +30 MeV,

U
(N)

 = −28 MeV have been adopted from the hypernuclear

experimental data (see, e.g., Refs. [45–48]; a summary of usual
choices is found in Ref. [49]). However, the particular choice
of hyperon potentials does not have crucial consequences
regarding the maximum mass of neutron stars as has been
discussed in Ref. [34]. In fact, a larger 
 potential is the more

conservative choice as it gives a slightly smaller maximum
mass.

When fixing the parameter gNω we remember that by
means of nonvanishing gNφ the φ meson also contributes to
the saturation properties of nuclear matter. In particular, in
all thermodynamic quantities (e.g., in the nucleon chemical
potential), we have to replace the term

g̃Nωω̃ −→ gNωω + gNφφ, (12)

where the tilde (̃ ) denotes the coupling and corresponding field
at nuclear saturation for the case of gNφ = 0. RMF models
without vector meson self-interaction (e.g., GM1, NL3) yield
as equations of motion for the ω and φ:

gNωω = g2
Nω

m2
ω

ρN, gNφφ = g2
Nφ

m2
φ

ρN . (13)

This allows to rewrite the substitution prescription (12) as

g̃2
Nω −→ g2

Nω

(
1 + g2

Nφ

g2
Nω

m2
ω

m2
φ

)
, (14)

where the ratio gNφ/gNω appearing inside the term in paren-
theses is a function of αV or z as it fulfills Eq. (10) or
(11) respectively. We fix g̃Nω to the saturation properties of
nuclear matter (following Ref. [40]), because then it is clear
that the EoS of pure nuclear matter is independent of αV

and z. This is desired, because with or without φ we wish
the properties of nuclear matter to be independent of any
variations in the hyperon coupling strength relative to the
nucleon one. In the TM1 model there is an additional d(ωμ)4/4
term in the Lagrangian that prevents the mean meson fields
from dropping out of the equation when substituting as in
Eq. (12). Thus, it becomes necessary to solve the nonlinear
equation of motion for the new and old ω at nuclear saturation
density. To fully resolve the problem of nonlinear vector meson
self-interactions, we would need to adapt gNω as well as d to
the presence of φ mesons, which requires an additional input
from experiments.

IV. RESULTS AND DISCUSSIONS

A. Varying the g8/g1 ratio z

We probe the effects of the g8/g1 ratio z on the stiffness of
the hadronic EoS. We plot the coupling constants as functions
of z in Fig. 1, for the explicit formulas given in Eq. (11). For
z = 0, all coupling constants gBω are the same, and similarly
are all coupling constants gBφ equal. This is due to the fact
that z = 0 corresponds to g8 = 0, which results in the equality
of the corresponding baryon-meson couplings as the baryons
couple only to the flavor singlet state. With increasing z (i.e.,
with increasing contribution from the coupling to the octet
g8), the resulting couplings all become smaller except for g
φ .
At z = 1/

√
6 ≈ 0.4082 the SU(6) case is reached where the

φ does not couple to the nucleon. Thereafter, for z > 1/
√

6
the coupling constant gNφ changes its sign so that it is not
a repulsive but now an attractive interaction. Note that the ω

coupling constants for 	 and � hyperons are equal for all
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FIG. 1. (Color online) Relative vector meson coupling constants
as functions of the g8/g1 ratio z for fixed αV = 1. The value z = 1/

√
6

corresponds to the SU(6) case.

values of z. As anticipated in Sec. II A2, we restrict z to the
interval z ∈ [0 : 2/

√
6].

The EoS for z = 0.1, 0.2, . . ., 0.8 are plotted in Fig. 2.
At first glance it becomes clear that the EoS stiffens with
decreasing z. This can be explained with the help of Fig. 1,
where we had plotted the z dependence of the vector meson
coupling constants. We noticed that with increasing z, all
couplings except g
φ decrease. Since the 
 hyperons play
only a subordinate role compared to the neutrons, the increase
of g
φ does not prevent that part of the overall interaction
between the baryons, which is mediated by the vector mesons,
to become less repulsive. Therefore, the EoS must soften
with increasing z. Together with further decreasing coupling
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FIG. 2. (Color online) EoS for different g8/g1 ratios z within a
nonlinear σ -ω model with additional φ meson and the full baryon
octet for GM1 parameter set. The EoS get stiffer with decreasing z.
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FIG. 3. (Color online) Mass-radius relations for the EoS dis-
played in Fig. 2. The maximum mass is obtained for the case z = 0,
where all baryons couple to the vector mesons with equal strengths.

strengths between the vector mesons and the other baryons
(except again g
φ) the EoS becomes even softer until z =
2/

√
6 is reached.

In Fig. 3 we plot the mass-radius relations for the various
EoS we just discussed in the context of Fig. 2. As expected
from the influence of z on the stiffness of the EoS, the lowest
maximum mass is obtained for z = 2/

√
6 ≈ 0.8165, or in the

case of Fig. 3 at z = 0.8, namely M = 1.49M�. The maximum
mass grows up to the value M = 2.36M� for z = 0. We notice
that the maximum mass of a neutron star in our RMF model
reacts rather strongly to the variation of z: Over the whole z

range the change in the maximum mass is �M = 0.87M�.
After varying z in rather big steps, we now plot in Fig. 4

the maximum neutron star mass as a continuous function of z

for the models GM1, NL3, and TM1 and for nuclear matter
as well as for baryonic matter. As already analyzed in the
discussion of Fig. 1, we see that the branch for nucleonic matter
is insensitive to the changes in z for the NL3 and GM1 models.
For TM1, the quartic self-interaction term in the Lagrangian
spoils this property since we had to keep the corresponding
coupling constant d from the SU(6) value of z fixed for the
whole z range: The maximum masses for pure nucleonic stars
therefore depend on the actual z value, showing a minimum
for the SU(6) case z ≈ 0.4082, namely M = 2.18M�.

Considering the neutron stars containing hyperons, we see
in Fig. 4 that the maximum masses depend on z as already
observed in Fig. 3: For the largest z values the maximum
masses are the smallest and continually grow with decreasing
z. It is interesting to see that toward z = 0 the maximum
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FIG. 4. (Color online) Maximum masses as functions of the
g8/g1 ratio z for NL3, GM1, and TM1 parameter sets. For each
parametrization, the case of pure nucleonic matter is also displayed.

masses of these stars seem to approach the maximum masses
of the corresponding pure nucleonic stars for all parameter sets
studied. A look at the particle number fractions for the GM1
parameter set at z = 0.8 [which we plot in Fig. 5(a)] shows that
the first hyperons to appear in the hadronic matter are the 
−
and the 	 at total baryon number densities of nb ≈ 0.28 fm−3

and nb ≈ 0.29 fm−3 respectively, while the 
0 appears much
later at nb ≈ 0.76 fm−3. On increasing z to its SU(6) value
[Fig. 5(b)], the 	 hyperon appears first at nb ≈ 0.36 fm−3,
followed by 
− at nb ≈ 0.4 fm−3 and 
0 at nb ≈ 0.89 fm−3.
At z = 0 [Fig. 5(c)], the threshold of appearance of hyperons
is pushed to even higher densities: nb ≈ 0.73 fm−3 for 	,
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FIG. 5. (Color online) Particle fractions for the GM1 param-
eter set for three different values of z: z = 0.8 (a), z = 0.408
(b) corresponding to the SU(6) case, and z = 0 (c). The threshold
for the appearance of the hyperons 	, 
−, and 
0 is pushed to higher
densities with decreasing z.
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FIG. 6. (Color online) Maximum masses of hyperonic neutron
stars as functions of effective nucleon mass m∗

N for different values
of the g8/g1 ratio z. For comparison, a line for nucleonic stars and
points to mark RMF sets (e.g., TM1, NL3) corresponding to the SU(6)
case are also given.

nb ≈ 0.74 fm−3 for 
−, and nb ≈ 1.38 fm−3 for 
0. Thus,
for z = 0 the neutron stars consist mainly of nuclear matter,
which is why the maximum masses are so close to those of
the pure nucleonic stars. For the case of the parameter sets
NL3 and TM1, the particle fractions are qualitatively the same
as in the GM1 case. In the case of NL3 parametrization,
a well-known instability occurs at high densities when the
effective nucleon mass becomes zero [33]. The critical density
for the appearance of the instability depends on the value
of the hyperon coupling constants. However, for the present
investigation, this instability plays no role as it appears beyond
the maximum densities reached in the neutron star interior.

1. Combining m∗
N and z variations

The impact of z on the maximum mass of neutron stars is as
comparably large as the influence of the effective nucleon mass
at saturation m∗

N as investigated in our previous study [34].
We therefore combine both parameters in a single plot, Fig. 6,
where we show the maximum neutron star mass as a function
of m∗

N/mN for different z values. The incompressibility in
this case is fixed to K = 240 MeV, but the exact value is
irrelevant as shown in our previous paper [34]. We see in Fig. 6
that the effective mass has basically the same effect for all z

values and z the same effect for all effective masses: For fixed
z, the maximum masses decrease drastically for increasing
effective mass. For low z values, where the EoS is stiffer than
for higher z values, the dependence of the maximum mass
on the effective mass is slightly larger: The difference along
the whole range of m∗

N/mN is ≈0.6M� for z = 0.8 while
for z = 0 it is ≈0.9M�. The influence of z on the maximum
masses is slightly more pronounced than that of the effective
masses: The difference in the maximum mass between z = 0
and z = 0.8 is ≈0.65M� for m∗

N/mN = 0.8 and about 1M� for
m∗

N/mN = 0.55. For comparison, we also plot the maximum
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FIG. 7. (Color online) Vector meson coupling constants as func-
tions of the F/(F + D) ratio αV . The g8/g1 ratio is fixed to its SU(6)
value z = 1/

√
6 and ideal mixing is assumed. The SU(6) case is given

by αV = 1.

masses of purely nucleonic neutron stars and also mark in the
figure the points corresponding to the SU(6) case for several
other RMF sets fitted to properties of nuclei (e.g., TM1, NL3,
or NL-SH) [43,44,50–52]. In Fig. 4 the masses of baryonic
stars were found to approach the limit of purely nucleonic stars
for decreasing values of z. With Fig. 6 we can now visualize
that the maximum masses in these two cases differ slightly
(�M < 0.01M�).

We close this section by concluding that a maximum mass
of at least 1.97 ± 0.04M� requires very small values of z for
large effective masses (z � 0.1 at m∗

N/mN = 0.8), z values
around SU(6) for effective masses close to m∗

N/mN ≈ 0.7, and
very low effective masses for large z values (m∗

N/mN < 0.58
for z = 0.7). We note that z values close to the maximum
of z = 2/

√
6 are now allowed configurations within the plot

range: The maximally allowed z value for the investigated
model is z < 0.77 at m∗

N/mN = 0.55.

B. Varying the F/(F + D) ratio αV

After systematically investigating a wider z range we repeat
the formalism for the αV ratio in the present section. The
F/(F + D) ratio is by definition restricted to the interval
αV ∈ [0; 1], where the lower bound corresponds to a pure
D-type coupling and the upper limit [i.e., the SU(6) value]
corresponds to a pure F -type coupling. Analogous to the case
studied above, we adopt ideal mixing as well as a g8/g1 ratio
fixed to its SU(6) value z = 1/

√
6 and we allow for the φ

meson to couple to the nucleon. We plot the coupling strengths
in Fig. 7, where we vary αV between 0 and 1. Note that
the coupling constants gω	 for 	 hyperons do not change
considerably and that all vector couplings remain repulsive
(do not change their sign).

The ratio of the F - and D-type couplings can be continu-
ously varied between the two extremes of a pure F - and a pure
D-type coupling. We see that from αV = 1 down to αV = 0 all
couplings become stronger except for g�φ/gNω. Since the �

hyperons have but very little influence on the EoS up to neutron
star densities, we can expect that the EoS become stiffer with
decreasing αV . This is exactly what we find in Fig. 8 where
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FIG. 8. (Color online) EoS for “model σωρφ” in GM1
parametrization for different values of αV . z is fixed to its SU(6) value
z = 1/

√
6 and ideal mixing is assumed. The EoS become stiffer with

decreasing αV .

we plot the EoS for several values of αV using “model σωρφ”
and GM1 parameter set.

The stiffness depends monotonously on αV and we get the
softest EoS for the SU(6) case αV = 1 (i.e., a pure F -type
coupling), while the stiffest EoS is obtained for αV = 0,
which corresponds to the pure D-type coupling of the baryon
and meson multiplets. The EoS for αV � 0.2 appear to be
indistinguishable at neutron star densities. This is evident in
Fig. 9, where we plot the mass-radius relations corresponding
to the EoS from Fig. 8: For the values αV = 0.0–0.2 the
maximum masses but also the radii of the corresponding stars
coincide (Mmax = 2.36M�, R = 11.8 km). We note that this
value of the maximum mass is also obtained for the purely
nucleonic case (compare, e.g., Fig. 4). Thus, for the “model
σωρφ” the nuclear matter limit is reached below αV < 0.2 in
the case of GM1, GM3, and NL3 parameter sets, while for the
very stiff PL-Z EoS (having effective mass m∗

N/mN 
 0.55)
[51] pure nucleonic stars are already obtained for αV < 0.3.

In this way, for hyperonic stars the limit of nucleonic stars
is continuously approached for decreasing values of the g8/g1

ratio z, or for decreasing values of the F/(F + D) ratio αV

away from the SU(6) value, respectively.
To generalize our findings, we plot in Fig. 10 the maximum

masses of neutron stars as a function of strangeness fraction
fs (the number of strange quarks divided by the total number
of quarks) for four different EoS: for m∗

N/mN = 0.55, 0.75,
and for the NL3 (m∗

N/mN = 0.6) and GM1 (m∗
N/mN = 0.7)

parameter sets, by varying αV (solid lines) and z (dashed
lines). It is evident from the figure that on decreasing αV or
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FIG. 9. (Color online) Mass-radius relations obtained from the
EoS in Fig. 8.

z, the strangeness fraction in the core decreases, and there is
a corresponding increase in the maximum mass of the star. At
zero strangeness fraction, the nucleonic limit is reached, and
this corresponds to the highest value of the maximum mass.
For m∗

N/mN � 0.7, the relation between the maximum mass
of the star and its strangeness fraction can be fitted linearly
according to the formula

Mmax

M�
= Mmax(fs = 0)

M�
− c

(
fs

0.1

)
, (15)
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FIG. 10. (Color online) Maximum masses of neutron stars as
functions of strangeness fraction fs in the neutron star core for
four different EoS. The maximum mass decreases linearly with
the strangeness fraction approximately as Mmax(fs) = Mmax(0) −
0.6M�(fs/0.1).

where c ≈ 0.6M�. This has interesting consequences when we
use these results to predict the maximally allowed strangeness
fraction in maximum mass neutron stars. In an associated
study [53], we applied the results from measurements of
subthreshold kaon production in heavy-ion collisions (HIC)
to study the implications on neutron star properties. It was
found that the heavy-ion data and causality imply a firm upper
limit on maximum mass of compact stars of three solar masses.
By substituting this value into the derived formula above, we
can show that the strangeness fraction in a 2M� star cannot be
more than

f max
s = MHIC

max − Mobs
max

6M�

= 3M� − 2M�
6M�

= 0.17. (16)

We also point out that for the EoS compatible with the
observed mass limit, the hyperon fraction in a canonical 1.4M�
star is zero. Only for small effective nucleon masses and values
of z above the SU(6) value can a hyperon fraction of less than
0.5% be reached.

We have now found that we can reach the nuclear matter
limit starting from a RMF model including hyperons and
continuously changing the model parameters, instead of
making a discrete “on/off” decision about whether to include
or exclude hyperons. Instead, we should take the position of
saying that one can only exclude a RMF parameter set as soon
as the corresponding maximum mass for nucleonic stars is
incompatible with observations. As long as the observational
mass limit is below the nucleonic mass limit of the model, it
is possible to have hyperons in the core of maximum mass
neutron stars.

V. SUMMARY

We investigated the conditions for the existence of hyperons
in massive neutron stars. We went beyond the spin-flavor SU(6)
quark model for determining the vector meson couplings to the
more general relations from flavor SU(3), where we varied the
g8/g1 ratio z and the F/(F + D) ratio αV while assuming
ideal mixing.

We fixed either z or αV to their SU(6) values and allowed
for a nonvanishing N − φ coupling. We found within “model
σωρφ” that decreasing z below its SU(6) value leads to stiffer
EoS and larger maximum masses. The most massive stars were
obtained for z = 0, where only the meson singlet couples to
the baryon octet, meaning that all vector couplings take the
same value. We have seen that at z = 0 the masses of the stars
come very close to the case of purely nucleonic neutron stars.

Keeping z fixed at its SU(6) value and varying αV has
even a greater impact on the maximum masses of neutron
stars: The lowest value is given for the SU(6) case αV = 1.
Toward αV = 0 the maximum masses increase monotonically.
In both cases, that is, on lowering z and on lowering αV ,
we found that the combined repulsive interactions mediated
by the ω and φ mesons cause the hyperons to appear at
successively higher densities so that hyperons appear only
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in a small core (z = 0, αV = 1) of the maximum mass star or
not at all (z = 1/

√
6, αV = 0). Thus, the EoS becomes stiffer

and the strangeness fraction of neutron stars decreases with
decreasing values of αV or z until the limit is reached where the
whole sequence of neutron stars contains only pure nucleonic
stars. There is a smooth transition between strange hadronic
and nucleonic stars as well as between their corresponding
maximum masses where formerly there was only an explicit
inclusion or exclusion of hyperons in the construction of the
model. This finding holds for all investigated parameter sets,
but it should be stressed that the inclusion of the φ is vital
for reaching the nuclear limit. We find that the maximum
mass decreases linearly with the strangeness fraction fs of the
neutron star core as Mmax(fs) = Mmax(0) − 0.6M�(fs/0.1),
independent of the chosen nuclear EoS and the adopted
baryon-vector meson coupling scheme. For instance, given
the mass of 3M� for a purely nucleonic neutron star, the

strangeness fraction for a neutron star with an observed mass
of 1.97M� would then be below fs � 17%.
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