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Precise calculation of the two-step process for K−d → π�n in the �(1405) resonance region
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The reaction K−d → π�n is investigated taking into account single scattering and the two-step process
owing to K̄N → π� rescattering. The influence of some common approximations are examined. It is
found that the treatment of the kinematics in the Green’s function that appears in the loop integral of the
rescattering process has a rather strong impact on the resulting lineshape of the π� invariant mass spectrum.
Specifically, a calculation with correct kinematics where the three-body unitarity cut owing to the nK−p

threshold occurs at the physical value yields a pronounced peak in the invariant mass spectrum at this
threshold and, at the same time, suppresses the signal in the region of the �(1405) resonance. On the other
hand, an approximation applied in past calculations shifts that threshold down and, consequently, leads to
an accidental and therefore erroneous enhancement of the signal of the �(1405) in the π� invariant mass
spectrum.
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I. INTRODUCTION

The �(1405), a baryon resonance with I (JP ) = 0( 1
2

−
),

has intrigued theorists for several decades. The proximity
of its nominal mass [1] to the K̄N threshold (at around
1435 MeV) has led to speculations that this resonance is,
in fact, a K̄N (quasi-) bound state rather than a genuine
three-quark state as soon as it was experimentally identified
in the early 1960s. A further and even more peculiar facet
was added to this when it was suggested that the �(1405)
could be actually a superposition of two resonance states [2,3].
This conjecture emerged from model calculations performed
within the so-called chiral unitary approach based on coupled
channels (K̄N , π�, . . .).

Subsequent investigations conducted within variants of
that approach, utilizing the leading-order chiral Lagrangian
(Weinberg-Tomozawa term) as the interaction potential but
also higher-order contributions, supported the existence of two
poles in the energy region of the �(1405) resonance [4–8].
Thereby it was found that typically one of the poles lies
very close to the K̄N threshold, i.e., around 1420–1430 MeV,
and couples strongly to the K̄N system [3]. The other pole
exhibits a much larger variation from model to model, i.e., is
usually located around 1340–1400 MeV (though even values
around 1470 MeV are reported [8]) and usually has a much
larger width. Furthermore, it couples more strongly to the π�

system.
Naturally, the prospect of finding two �(1405) resonances

has also triggered an increased interest in performing corre-
sponding experiments. These experiments are guided by the
idea that reactions that are dominated by either the K̄N or
the π� transition channels should then also provide evidence
for the presence of either one or the other corresponding pole.
Specifically, K−-induced reactions should then be dominated
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by the pole around 1420 MeV and, accordingly, show an
enhancement in the distribution at the corresponding invariant
mass [3].

In the present work we consider the reaction K−d → π�n

where the �(1405) can be excited. Our study is motivated by
a corresponding proposal submitted to the J-PARC 50-GeV
proton synchrotron. This proposal aims at a spectroscopic
study of hyperon resonances below the K̄N threshold via the
(K−, n) reaction on a deuteron target where the neutron is
planned to be detected at a forward angle [9]. The primary
goal of the experiment is to study the position and width of
the �(1405) resonance produced in the K̄N → π� channel.
For this reaction theoretical investigations were presented by
Jido et al. in Ref. [10] and, with emphasis on the kinematical
conditions of the DAFNE facility at Frascati, in Ref. [11].
Their calculation is performed in impulse approximation and
considers for the reaction mechanism single (K̄N → π�)
scattering but also the two-step process where the kaon first
scatters off one of the nucleons and then undergoes the
transition K̄N → π� on the other nucleon. The required
elementary K̄N → K̄N and K̄N → π� amplitudes are taken
from the Oset-Ramos model [12,13], which utilizes the
Weinberg-Tomozawa term as the interaction potential. The
model calculation in Ref. [10] yields results that are roughly
in line with an old measurement of the π+�− invariant mass
spectrum for the reaction in question from 1977 [14]. Indeed
the data exhibit a peak around Mπ� ≈ 1425 MeV, i.e., at
roughly the energy where all modern K̄N interactions cited
above predict a pole, so that everything seemed to match
perfectly. However, because some approximations are applied
in the study in Ref. [10], this apparent success has to be taken
with a grain of salt.

Our investigation intends to scrutinize the results in
Ref. [10] in two aspects. First and most importantly, we want to
avoid some of the approximations introduced in Ref. [10]. For
example, we do not use factorization, i.e., we do not pull out
the (K̄N → K̄N and K̄N → π�) amplitudes from the loop
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integral that occurs in the calculation of the two-step process.
Also, and more importantly, we treat the kinematics in the
Green’s function that appears in the loop integral properly.
Specifically we make sure that the three-body unitarity cut for
the intermediate K̄NN system occurs at the correct (physical)
threshold. As we will see, this has a decisive influence on the
achieved results.

In addition, we also consider different models for the
elementary K̄N -π� interaction. Practically all the interactions
in the literature are fitted to the near-threshold cross sections
for K̄N elastic and charge-exchange scattering and for the
K̄N → π� and K̄N → π� transitions. As a consequence,
the properties of these interactions in the K̄N threshold region
are very similar, even down to the position of the (nominal)
�(1405) resonance. However, for energies farther away from
the threshold there is a significant model dependence. This is
reflected, for example, in the large variation in the position of
the lower pole, already mentioned above (see also Ref. [15]).
Indeed there are phenomenological models that describe the
data around the K̄N threshold with a comparable quality but
do not even have a second pole [16]. It is interesting to see
whether and how these model differences are reflected in the
results for K−d → π�n. After all, the π� invariant mass
spectrum samples the properties of the K̄N -π� interaction
down to the π� threshold.

In the present study we utilize the Oset-Ramos interaction
[12,13] so that we can compare our results directly with others
that can be found in the literature [10]. The pole positions
produced by this interaction in the isospin I = 0 channel,
which are associated with the �(1405), are 1426 + i16 and
1390 + i66 MeV [3], respectively. In addition, we use a
potential model that differs not only in the position of the
lower pole from the Oset-Ramos interaction [12] but also
conceptually. In particular, we resort to a meson-exchange
potential of the K̄N -π� systems that was published by the
Jülich group more than 20 years ago [17], i.e., long before
the chiral unitary approach became popular. As can be seen
in the original paper [17], the Jülich model describes the K̄N

scattering data in the near-threshold region quite satisfactorily.
Other threshold quantities are fairly well reproduced too, as
shown in a recent paper [18]. Of importance for the present
study is also that the Jülich model likewise generates two
poles in the region of the �(1405) resonance. One pole, the
K̄N “bound state”, is located fairly close to the K̄N threshold
and to the physical real axis (1436 + i26 MeV), while the
other one is close to the π� threshold and has a significantly
larger imaginary part (1334 + i62 MeV). In fact, this pole
lies at the lower end of the ”lower pole spectrum” mentioned
above.

The paper is structured as follows: In the subsequent
section we summarize briefly the salient features of the K̄N

interaction of the Jülich group. In Sec. III we describe in
detail the formalism that is employed in our calculation of the
reaction K−d → π�n. The results of our calculation for the
Oset-Ramos and the Jülich K̄N interactions are presented in
Sec. IV. In particular, we discuss approximations applied in
previous investigations and study their impact on the shape
of the π� invariant mass spectrum. The article closes with a
summary.

II. THE JÜLICH K̄ N MODEL

The Jülich meson-exchange model of the KN and K̄N

interactions has been described in detail in the literature
[21–24] and we refer the reader to those works. The interaction
model was constructed along the lines of the (full) Bonn NN

model [19] and its extension to the hyperon-nucleon (YN )
system [20] (Y = �, �). Specifically, this means that one
has used the same scheme (time-ordered perturbation theory),
the same type of processes, and vertex parameters (coupling
constants, cutoff masses of the vertex form factors) already
fixed by the study of these other reactions.

The diagrams considered for the K̄N interaction are shown
in Fig. 1. Obviously the Jülich model contains not only
single-meson exchanges, but also higher-order box diagrams
involving K̄∗N , K̄�, and K̄∗� intermediate states. Most
vertex parameters involving the nucleon and the �(1232)
isobar are taken over from the (full) Bonn NN potential.
The coupling constants at vertices involving strange baryons
are fixed from the YN model (model B in Ref. [20]).
Those quantities (gN�K , gN�K , gNY ∗K ) have been related
to the empirical NNπ coupling by the assumption of SU(6)
symmetry (cf. Refs. [21,22]).

For the vertices involving mesons only, most coupling
constants have been fixed by SU(3), relating them to the
empirical ρ → 2π decay. An exception is the coupling
constant gKKσ , which has been adjusted to the KN data [21],
for the following reason: The σ meson (with a mass of about
600 MeV) is not considered to be a genuine particle but a
simple parametrization of correlated 2π -exchange processes
in the scalar-isoscalar channel. Therefore, its coupling strength
cannot be taken from symmetry relations. Concerning the ω

exchange the coupling strengths for both gNNω and gKKω were
kept at their SU(6) values. At the same time a phenomenolog-
ical, very short-ranged contribution was added, denoted σrep.
This phenomenological piece has the same analytical form as
σ exchange, but an exchange mass of 1200 MeV and, most
importantly, an opposite sign. Such a short-range contribution
was required in order to obtain sufficient repulsion for a
reasonable description of the S-wave KN phase shifts [21].
It was shown in Ref. [25] that this phenomenological piece
can be explained dynamically, even on a quantitative level, by
genuine quark-gluon exchange processes.
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FIG. 1. Meson-exchange contributions included in the K̄N inter-
action.
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FIG. 2. Meson-exchange contributions included in the K̄N →
π�, π� transition potentials and in the π�,π� → π�,π� inter-
actions.

The contributions to the K̄N interaction in Ref. [22] are
fixed from those of the KN model [21] via a G-parity
transformation. The only exception is the phenomenological
σrep, whose strength is readjusted by a fit to K̄N data. Its
contribution required there was found to be considerably
reduced compared to that of KN . Indeed, this is in line with
the results of Ref. [25] because the quark-gluon exchange
processes that generate most of the repulsion simulated
by the σrep in the case of KN are absent in the K̄N

channel owing to the different quark structure of the K̄

meson.
Of course, in the case of the K̄N system there are already

open channels at the reaction threshold and the coupling to
those channels (π�, π�) is taken into account explicitly. The
diagrams considered for the K̄N → πY transitions and the
πY → πY interactions are shown in Fig. 2. Also, here SU(3)
symmetry has been used for fixing the vertex parameters as far
as possible.

With the K̄N potential and the K̄N → πY and the
πY → πY transition interaction derived from the dia-
grams in Figs. 1 and 2, the reaction amplitude T is
obtained by a solving a (coupled-channels) Lippmann-
Schwinger-type equation defined by time-ordered perturbation
theory:

Tαβ = Vαβ +
∑

γ

Vαγ G0,γ Tγβ, (1)

with α, β, γ = K̄N , π�, π�.

III. FORMULATION OF K−d → π�n

In our study of the reaction K−d → π�n we include the
three diagrams shown in Fig. 3. Other two-step processes
in conjunction with process A in the form of a subsequent
πn or �n final-state interaction (FSI) are neglected. This
is done because, as demonstrated later, the contribution
from process A to the cross section is a factor of 102–103

smaller than the one from process B2 in the considered
region of incident K− laboratory momenta around pk− =
600 MeV/c and for emission of the neutron in the forward
direction. The general expression of the cross section is

d

p

n

n

K
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d

p

n
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K

π n

K
0

t I

t F

tPWIA

d

p

n
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K

π  Σ

t I

t F

K

FIG. 3. Mechanisms included in our calculation of the reaction
K−d → π�n. Plane-wave impulse approximation (A); K̄0n → π�

(B1) and K−p → π� (B2) rescattering.

given by

dσ = 1

|vK− − vd | (2π )4δ4(pn + pπ + p� − pK− − pd )

× |〈 pn|〈 pπ |〈 p�| T | pK−〉|d〉|2 d3pn

(2π )3

d3pπ

(2π )3

d3p�

(2π )3
,

(2)

where the obvious dependence of the cross section on spin
variables is omitted. The matrix element is given by

〈 pn|〈 pπ |〈 p�| T | pK−〉|d〉
=

√
2 tPWIA( pπ p� , pK− p̃1) d ( p̃)

+
√

2
∫

d3q2

(2π )3
tF ( pπ p� , q1q2) G0(q1q2)

× t I (q1 pn , pK− p1) d ( p). (3)

The first term on the right-hand side is the plane-wave impulse
approximation (PWIA), which is given by the contribution of
diagram A, while the second term refers to diagram B, whose
contribution is discussed and shown explicitly later for the two
possible intermediate particle states (B1 and B2). The factor√

2 comes from the proper antisymmetrization. The quantities
tF and t I denote the K̄N → π� and K̄N → K̄N amplitudes,
respectively. The various momentum variables which appear
in the second term are depicted in Fig. 4. We work in the
laboratory frame (deuteron rest frame), and then the momenta

d

p

tF
q

1

q
2p

1

p

n

K

pπ

t I

pΣ

FIG. 4. Definition of the kinematical variables used in our
calculation of the reaction K−d → π�n.
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in Eq. (3) satisfy

p̃ = p̃1 = − pn,

p = p1 = −q2, (4)

q1 = p1 + pK− − pn.

The meson-baryon two-body energy EI of the fully off-shell
t matrix t I is given by

EI = Etotal −
√

q2
2 + m2

N

= EK− + md −
√

q2
2 + m2

N . (5)

Equations (2) and (3), presented here in a rather compact
form, can be derived within a field theoretical approach in
an appropriate manner (see, e.g., Ref. [26]). One only has to
take care that the bound state (deuteron) in the initial state
is incorporated, which should be described as a state in the
Heisenberg representation (see also, e.g., Ref. [27]). Because
we use different interaction models for generating the t

matrices, derived in different frameworks, and a nonrelativistic
deuteron wave function, those equations are not written in
invariant form. Also, note that we assume that the intermediate
K̄ with momenta q1 propagates forward in time, so that the
Green’s function G0 will be described only by the positive-
frequency part. This is a quite reasonable treatment because
we consider transitions to final states in the low-energy region
around the nK̄N threshold.

Let us now derive the expression for the inclusive
d(K−, n)π� cross section, where π� indicates one of
the charge states, π+�−, π0�0, or π−�+. For evaluating the
cross section it is convenient to take as integration variables the
direction of the pion momentum pc.m.

π in the center-of-mass
(c.m.) frame of π and �. Thus, we first rewrite part of the
phase-space factor,

δ4(pn + pπ + p� − pK− − pd ) d3pn d3pπ d3p�

= δ
(
Ec.m.

π + Ec.m.
� − Wπ�

)
δ3

(
pc.m.

π + pc.m.
�

)

× Eπ

Ec.m.
π

E�

Ec.m.
�

d3pn d3pc.m.
π d3pc.m.

� , (6)

where

W 2
π� = (EK− + md − En)2 − | pK− − pn|2. (7)

Owing to the three-momentum δ function, the integral over
pc.m.

� can be eliminated. Next, the quantity dpc.m.
π is converted

to dMπ� by the relation,

dpc.m.
π = Ec.m.

π Ec.m.
�

Mπ�pc.m.
π

dMπ�, (8)

where Mπ� (=Ec.m.
π + Ec.m.

� ) is the invariant mass of the π�

system. We would like to integrate over the magnitude of the
neutron momentum pn, which is related to Wπ� by Eq. (7).
Hence, the energy-conserving δ function is substituted as

δ(Mπ� − Wπ�)

= Wπ�

|(EK− + md ) pn/En − pK− cos θn|δ(p̆n − pn), (9)

where θn is the polar angle of the neutron with regard to the
K− beam direction, and p̆n satisfies

M2
π� = (EK− + md − Ĕn)2 − | pK− − p̆n|2. (10)

Performing the integral over pn, we obtain the final
expression of the inclusive cross section:

dσ

dMπ� d�n

= 1

vK− (2π )5

pc.m.
π p̆2

n

|(EK− + md ) p̆n/Ĕn − pK− cos θn|
×

∫
d�c.m.

π EπE�|〈 p̆n|〈 pπ |〈 p�| T | pK−〉|d〉|2. (11)

Now let us discuss the second term on the right-hand side
of Eq. (3) by introducing particle states explicitly. This term
written out in detail amounts to

√
2〈n(1)|〈π�(2)|tF (2)G0t

I (1)|d〉|K−〉, (12)

where the two baryons are numbered 1 and 2, and the argument
1 in the operator t I (1) indicates that it acts only on particle
1. The same holds for tF (2). The process corresponding to
tF (1) G0 t I (2) is absorbed into the factor

√
2. Applying the

operator t I (1) on |d〉 with the isospin part of the deuteron
written out explicitly yields

〈n(1)| t I (1) |d〉|K−〉
= 〈n(1)|t I (1)

1√
2

[|p(1)〉|n(2)〉 − |n(1)〉|p(2)〉]|φd 〉|K−〉

= 1√
2

[|n(2)〉〈n(1)|t I (1)|p(1)K−〉

− |p(2)〉〈n(1)|t I (1)|n(1)K−〉]|φd 〉. (13)

Inserting the complete set,

|K̄0n(2)〉〈K̄0n(2)| + |K−p(2)〉〈K−p(2)|,
between tF (2)G0 and t I (1) in Eq. (12), which is allowed by
the total-charge conservation, we end up with

√
2〈n(1)|〈π �(2) |tF (2) G0 t I (1)|d〉|K−〉
= 〈π�|tF G0|K̄0n〉 〈K̄0n|t I |K−p〉|φd 〉

− 〈π�|tF G0|K−p〉 〈K−n|t I |K−n〉|φd 〉, (14)

where the first term on the right-hand side corresponds
to diagram B1, and the second term to diagram B2, in
Fig. 3. Obviously, there is an interference between these two
terms.

Let us now come to the explicit expression of G0(q1q2)
in Eq. (3). As already mentioned, the K̄ with momenta q1
propagates forward in time and G0 is described only by the
positive-frequency part. Because we work in the laboratory
frame, the Green’s function is given by

G0(q1q2) = 1

E1 − E1(q1) + iε

= 1

Eπ + E� − E2(q2) − E1(q1) + iε
, (15)
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where

E1 ≡ Etotal − En − E2(q2)

= Eπ + E� − E2(q2), (16)

and

E2(q2) =
√

q2
2 + m2

N, E1(q1) =
√

q2
1 + m2

K̄
. (17)

The total energy and the energies of the outgoing particles are
indicated by Etotal and by Eπ , E� , En, respectively. We can
express the laboratory energies Eπ + E� and E2(q2) + E1(q1)
in Eq. (15) by using the energies in the c.m. frame of the K̄N

system. Then

G0(q ′) = 1√
P2 + M2

π� −
√

P2 + W (q ′)2 + iε

, (18)

where P is the K̄N total momentum, and W (q ′) is defined by
the momentum q ′ of the K̄ in the c.m. frame:

P = q1 + q2 = pπ + p�,
(19)

W (q ′) =
√

q ′2 + m2
K̄

+
√

q ′2 + m2
N .

In order to expose the nK̄N three-body unitarity cut explicitly,
we rewrite Eq. (18) as

G0(q ′) = 1

Mπ� − W (q ′) + iε

×
√

P2 + M2
π� +

√
P2 + W (q ′)2

Mπ� + W (q ′)
. (20)

In particular, the singular part is given by

1

Mπ� − W (q ′) + iε
= 1

q2
0 − q ′2 + iε

f (q0, q
′), (21)

where q0 is defined by

W (q0) = Mπ�, (22)

and

f (q0, q
′)−1 = [E1(q0) + E1(q ′)]−1 + [E2(q0) + E2(q ′)]−1.

(23)

Consequently, one finds

G0(q ′) = 1

q2
0 − q ′2 + iε

f (q0, q
′)

×
√

P2 + M2
π� +

√
P2 + W (q ′)2

Mπ� + W (q ′)
. (24)

The c.m. momentum q ′ of the K̄ is related to the laboratory
momentum q2 of the nucleon by the relation [28]

q ′ = ε2q1 − ε1q2

ε1 + ε2
= −q2 + ε2

ε1 + ε2
P, (25)

where εi = (Ei + Ec.m.
i )/2 (i = 1, 2). Thereby, in practice, we

change the integral variable q2 in Eq. (3) to q ′ and then we can
treat the nK̄N three-body cut in Eq. (24) precisely.

In the actual calculation the deuteron wave function of the
Nijmegen soft-core potential Nijm93 [29] is employed. Test
calculations performed with the wave function of the CD Bonn
potential [30] led to practically identical results. Note that we
used both the S and the D wave components, but the latter has
no visible effect on the considered observables.

IV. RESULTS AND DISCUSSION

Inclusive cross sections for the reaction d(K−, n)�π are
shown in Figs. 5 and 6, where the Jülich meson-exchange
[17,18] and the Oset-Ramos chiral [12,13] interactions are
used for generating the K̄N − π� amplitude, respectively.
We fixed the K− beam momentum to pK− =600 MeV/c and
the neutron angle to θn = 0◦, considering the kinematics of
the J-PARC experiment [9], where the neutron is planned to
be detected at a forward angle. Taking a glance at the figures,
one immediately finds that no clear peaks are seen below the
nK−p threshold (Mπ� � 1432 MeV) for either the Jülich or
the Oset-Ramos potential. Only for the π−�+n final state of
the latter interaction (Fig. 6) is a fairly broad enhancement
around Mπ� = 1425 MeV visible, although with a shape
strongly deformed by the threshold. Obviously our results are
in contradiction to the preceding work by Jido et al. [10], where
the same kind of calculation, using the Oset-Ramos potential,
shows clear peaks below the threshold for all the three final
states. In Ref. [10] lineshapes of the π� invariant mass spectra
integrated over neutron angles are presented, but in Ref. [9]
lineshapes limited to θn = 0◦ are given, which exhibit similar
peaks to the integrated ones. Because these peaks provide the
motivation for the intended experiment at J-PARC with regard
to the �(1405) resonance position, first we want to clarify
where this conspicuous difference comes from.

We start with examining the factorization approximation to
the integral in Eq. (3), which is applied in Ref. [10]. Corre-
sponding results are presented in Fig. 7. This approximation
pulls the two amplitudes tF and t I out of the integral, fixing
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FIG. 5. (Color online) π� invariant mass spectrum for the
reaction K−d → π�n at a K− beam momentum of 600 MeV/c and
neutron angle θn = 0◦. The K−N → π� amplitudes of the Jülich
model [17] are used.
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FIG. 6. (Color online) π� invariant mass spectrum for the
reaction K−d → π�n at a K− beam momentum of 600 MeV/c

and neutron angle θn = 0◦. The K−N → π� amplitudes of the
Oset-Ramos model [13] are used.

the momentum variables for these amplitudes to

p1 = −q2 ≈ 0,
(26)

q1 ≈ pK− − pn,

which are the values that give the maximum of the deuteron
wave function [see Eq. (4) and keep in mind that we
work in the deuteron rest frame]. Furthermore, the two-body
energy EI of the full off-shell t matrix t I is approximated
by

EI = Etotal − E2(q2)

= EK− + md − E2(q2) (27)

≈ EK− + mN

[see Eq. (17) for the definition of E2(q2)]. Then the sec-
ond term on the right-hand side of Eq. (3) is expressed
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FIG. 7. (Color online) π−�+ invariant mass spectrum for the
reaction K−d → π−�+n at a K− beam momentum of 600 MeV/c

and neutron angle θn = 0◦. The solid line is the correct result, while
the dashed line was obtained by factorizing the two-body amplitudes
in the loop integral of the two-step process B. The K−N → π�

amplitudes of the Oset-Ramos model [13] are used.
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FIG. 8. (Color online) π−�+ invariant mass spectrum for the
reaction K−d → π−�+n at a K− beam momentum of 600 MeV/c

and neutron angle θn = 0◦. Individual contributions from the reaction
mechanisms A (dashed line), B1 (dash-dotted line), and B2 (solid line)
are shown based on the factorization approximation. The K−N →
π� amplitudes of the Oset-Ramos model [13] are used.

as

√
2

∫
d3q2

(2π )3
tF ( pπ p� , q1q2) G0(q1q2)

× t I (q1 pn , pK− p1) d ( p)

≈
√

2tFappt
I
app

∫
d3q2

(2π )3
G0(q1q2) d ( p), (28)

where tFapp and t Iapp are the pertinent amplitudes corresponding
to the kinematics specified in Eqs. (26) and (27). In Fig. 7 we
illustrate the effect of the factorization in the case of the final
state π−�+n. One can see that the magnitude of the cross
section is reduced by about 30%, but the lineshape remains
practically unchanged.

Before moving to the more crucial approximation adopted
in Ref. [10], we show individual contributions from processes
A, B1, and B2 (depicted in Fig. 3), where the factorization
approximation is applied for B1 and B2 (see Fig. 8). As
already mentioned, the cross section for process A is quite
small at forward angles of the neutron. The large momentum
of the outgoing neutron, which is directly emitted from the
deuteron in the case of process A, leads to a tiny value of the
deuteron wave function and suppresses the process (note that
the momentum p̃ in Eqs. (3) and (4) is 3.9 fm−1 at the nK−p

threshold). As shown in Fig. 8, process B2 yields the main
contribution. This is because the amplitude t I (K−n → K−n)
that enters process B2 is much larger than t I (K−p → K̄0n)
in B1 at pK− = 600 MeV/c, something that was pointed out
in Ref. [10].

Now let us reveal why no clear peaks are seen in our
results for the cross sections, in contrast to what was shown in
Refs. [9,10]. The authors of Ref. [10] applied the same approx-
imation as introduced to EI in Eq. (27) also to the intermediate
K̄ energy E1 in the propagator G0(q1q2) given in Eq. (16):

E1 = Etotal − En − E2(q2)

≈ EK− + mN − En (29)
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FIG. 9. (Color online) π� invariant mass spectrum for the
reaction K−d → π�n at a K− beam momentum of 600 MeV/c and
neutron angle θn = 0◦. Shown are results based on the integral over
the Green’s function alone [cf. Eq. (28)], where either the correct
expression, Eq. (24) (solid line), or the approximation, Eq. (30)
(dashed line), is used.

(see Eq. (14) in Ref. [10]). Then it follows that

G0(q1q2) = 1

Etotal − En − E2(q2) − E1(q1) + iε

≈ 1

EK− + mN − En − E1(q1) + iε
. (30)

This approximation has a serious impact on the lineshapes
of the cross section, as we will see. Comparing it with
the expressions without the approximation, Eqs. (15), (18),
and (24), one already suspects that it shifts the nK̄N

three-body unitarity cut and the nK̄N threshold position.
In order to make the effect of this approximation more

transparent we work within the factorization approximation
[Eq. (28)] and we consider here the two ingredients that
provide the dominant momentum dependence in the evaluation
of the cross section separately, namely, the K̄N → π� am-
plitude tFapp and the integral

∫
d3q2 G0(q1q2) d ( p). We focus

on process B2, which yields the overall largest contribution.
Results based on the assumption that the matrix element
〈 pn|〈 pπ |〈 p�| T | pK−〉|d〉 is given solely by the integral
over the Green’s function and the deuteron wave function
are presented in Fig. 9, where the solid and dashed lines
correspond to the cases without and with the approximation
described by Eq. (30), respectively. One can see that the
approximation shifts the nK−p threshold to lower energies by
an amount of 14 MeV compared to its actual physical value.
Furthermore, one realizes that the integral that enters Eq. (28)
generates a characteristic behavior of the cross section at the
threshold, in particular, a rapid decrease below the threshold,
which comes from the principal-value part of the integral over
G0(q1q2).

In Fig. 10 we display results for the cross sections where
the matrix element Eq. (28) is now assumed to be given by
the amplitude tFapp alone. The cross sections for the three
charge states are displayed, each of which shows a clear peak
around Mπ� = 1420 MeV. As expected (and checked by us),
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FIG. 10. (Color online) π� invariant mass spectrum for the
reaction K−d → π�n at a K− beam momentum of 600 MeV/c and
neutron angle θn = 0◦. Results are based on using only tF

app in Eq. (28)
and considering only reaction mechanism B2. The K−N → π�

amplitudes of the Oset-Ramos model [13] are used.

those lineshapes agree pretty well with the two-body invariant
mass distributions owing to the K−p → π� amplitudes.
Finally, in Fig. 11, we plot the cross section based on the
full matrix element of Eq. (28) but with the approximation of
Eq. (30) for Green’s function. (Please note that in the employed
factorization approximation this amounts practically to the
product of the results shown in Figs. 9 and 10.) As shown
and discussed above, the nK−p threshold is shifted to lower
energies, specifically to Mπ� � 1418 MeV. As a consequence,
this artificial threshold position is then very close to the energy
where the amplitude tFapp has its peak so that this approximation
generates a huge bump of the cross section just at that energy.
Please compare the result for the π−�+n final state in Fig. 11
with the solid line in Fig. 8, where the approximation of
Eq. (30) is not made!
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FIG. 11. (Color online) π� invariant mass spectrum for the
reaction K−d → π�n at a K− beam momentum of 600 MeV/c

and neutron angle θn = 0◦. Results are based on the approximation,
Eq. (30), considering only reaction mechanism B2. The K−N → π�

amplitudes of the Oset-Ramos model [13] are used.
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The above considerations strongly suggest that in a precise
calculation where the three-body (nK̄N ) unitarity cut is
implemented correctly, the peaks which are present in the
two-body amplitude tF , owing to �(1405), are suppressed
by the threshold behavior of Green’s function G0(q1q2), so
that no clear peak (besides a threshold cusp) appears in the
corresponding π� invariant mass spectrum of the three-body
final state. We believe that this explains the difference between
our result and the one by Jido et al. shown in [9]. In the
latter the peak owing to the �(1405) in the three-body case is
seen at practically the same invariant mass as in the two-body
amplitude—because approximations are applied to the Green’s
function that shift the opening of the three-body cut to a lower
invariant mass.

The success of the paper by Jido et al. in stimulating
experimental efforts (and pertinent proposals) results not
least from the fact that their calculation is roughly in line
with data from an old measurement of the π+�− invariant
mass spectrum for the reaction in question from 1977 [14].
These data suggest a peak around Mπ� ≈ 1425 MeV—and
not at the nK−p threshold! In our own calculation within
a similar approach, but where now the nK−p unitarity cut is
implemented correctly, we do not observe such a peak—at least
not for the kinematics of the proposed J-PARC experiment.
However, we would like to emphasize that in a full calculation,
where all rescattering processes are summed up to infinite
order as is the case in Faddeev-type approaches, it is possible
that the structure owing to the �(1405) could still survive,
after the characteristic behavior of G0(q1q2) is smoothed out.
Such a calculation would then not only have the opening
of the nK−p channel at the correct location, it would also
fulfill exact three-body unitarity, which is not the case in
our study (and also not in Ref. [10]), where only two-step
processes are considered. On the other hand, one has to
admit that recently presented results based on coupled-channel
Faddeev-AGS equations [31,32] are somewhat discouraging
with respect to the above conjecture. In these studies the
neutron spectrum for the reaction K−d → π�n is considered,
but again, no clear signature of the �(1405) was seen.
One has to keep in mind, however, that the calculations in
Refs. [31,32] were performed at significantly lower energies,
i.e., for kinetic energies of the kaon only up to 50 MeV
(corresponding to K− beam momenta below 250 MeV/c).
Thus, at present it cannot be excluded that at least some trace
of the �(1405) will be left at the higher energy where the
J-PARC experiment is planned—and for very specific reaction
kinematics.

Because within our calculation based on two-step pro-
cesses, the cross sections below the nK−p threshold turn
out to be suppressed by the Green’s function, we refrain
from discussing the results below the threshold, i.e., in the
�(1405) resonance region, in detail. Rather we focus on the
differences in the predictions for the π� invariant mass spectra
at pK− =600 MeV/c based on the Jülich and the Oset-Ramos
interactions, as shown in Figs. 5 and 6. To shed light on this
difference let us compare the individual contributions from
processes B1 and B2 for the two interactions in question.
This is done in Figs. 12 and 13, exemplary for the final states
π0�0n and π−�+n. As is clear from Fig. 12, the contributions
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FIG. 12. (Color online) π� invariant mass spectrum for the
reaction K−d → π�n at a K− beam momentum of 600 MeV/c

and neutron angle θn = 0◦. Comparison of results based on the
K−N → π� amplitudes of the Jülich (dash-dotted and solid lines)
[17] and the Oset-Ramos (dotted and dashed lines) [13] models. Only
reaction mechanism B2 is taken into account.

from process B2 predicted by those two interactions are very
similar above the nK−p threshold. On the other hand, the
cross section for process B1 by the Oset-Ramos interaction is
much smaller than that by the Jülich potential and amounts to
just about 40% compared to the latter at the nK̄0n threshold
(cf. Fig. 13). These two processes (B1 and B2) interfere and
produce the differences seen between Fig. 5 and Fig. 6. We
have confirmed that the difference owing to B1 above comes
from the difference in the amplitude t I (K−p → K̄0n) in the
relevant s wave. For example, the corresponding K−p → K̄0n

(two-body) cross section at pK− = 600 MeV/c is 3.62 mb for
the Jülich interaction, while it is just 1.57 mb for the Oset-
Ramos interaction. On the other hand, the K−n elastic total
cross sections at pK− = 600 MeV/c based on the amplitude
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FIG. 13. (Color online) π� invariant mass spectrum for the
reaction K−d → π�n at a K− beam momentum of 600 MeV/c

and neutron angle θn = 0◦. Comparison of results based on the
K−N → π� amplitudes of the Jülich (dash-dotted and solid lines)
[17] and the Oset-Ramos (dotted and dashed lines) [13] models. Only
reaction mechanism B1 is taken into account.
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TABLE I. Various K̄N s-wave cross sections in mb for pK− ≈
600 MeV/c. Results are given for the Jülich [17] and Oset-Ramos
(OR) [12] K̄N interactions and two partial wave analyses [33,34].

Channel Jülich OR Alston [33] Gopal [34]

K−p → K−p 13.5 22.4 13.5 13.9
K−n → K−n 13.8 13.5 6.9 7.5
K−p → K̄0n 3.62 1.57 1.62 1.81

t I (K−n → K−n) that enters into process B2 are similar for
the two interactions: 13.8 mb for the Jülich and 13.5 mb for
the Oset-Ramos interaction.

In Table I we summarize the s-wave cross sections for
various channels at pK− = 600 MeV/c and compare them
with results of two partial-wave analyses from the 1970s
[33,34]. Obviously the predictions of the Jülich model agree
well with the s-wave K−p scattering cross section deduced
from empirical information but overshoot the other channels,
while the Oset-Ramos interaction is only in line with phe-
nomenology in case of the charge-exchange reaction. This may
not be too surprising in view of the fact that both models were
primarily designed to reproduce the K̄N data near threshold.
On the other hand, it is obvious that for a future quantitative
analysis of the reaction K−d → π�n, two-body amplitudes
for K−n → K−n and K−p → K̄0n are required that are fully
consistent with the available scattering data. Furthermore, one
should not forget that at momenta around 600 MeV/c higher
partial wave could already play a role, an issue which likewise
has to be addressed in a quantitative analysis of upcoming
experimental information.

V. SUMMARY

We investigated the reaction K−d → π�n taking into
account single scattering and the two-step process owing
to K̄N → π� rescattering. This reaction is considered as
a promising candidate for exploring the properties of the
�(1405) resonance.

The main aim of our work was to examine the influence
of some approximations applied in earlier studies of this
reaction [10] on the results for the π� invariant mass spectrum,
considering the kinematics of the planned J-PARC experiment
[9], where the neutron is planned to be detected at a forward
angle. In particular, in our study we did not use factoriza-
tion, i.e., the K̄N → K̄N and K̄N → π� amplitudes that
enter into the calculation of the two-step process are not
pulled out of the loop integral, and more importantly, we
treated the kinematics in the Green’s function that appears
in the loop integral properly. Specifically we made sure
that the three-body unitarity cut for the intermediate K̄NN

system occurs at the correct (physical) threshold. In addition,

we consider different models for the elementary K̄N -π�

interaction.
We found that the factorization approximation leads to an

overall reduction in the magnitude of the predicted invariant
mass spectrum of the order of roughly 30%. However,
the lineshape itself remains practically unchanged by this
approximation. On the other hand, the approximation in the
kinematics of the Green’s function, also applied in the works of
Jido et al. [10,11], has a rather dramatic impact on the resulting
lineshape. This approximation shifts the three-body cut owing
to the opening of the nK−p threshold down by roughly
14 MeV from its physical value. It then coincides practically
with the peak value of the elementary K̄N -π� amplitude that
corresponds to the �(1405) resonance, and consequently, the
resulting lineshape exhibits a strong enhancement at a π�

invariant mass of around 1426 MeV. In contrast, a calculation
where the nK−p cut is taken into account precisely leads to
a π� invariant mass spectrum that has a pronounced peak
around 1435 MeV, i.e., at the opening of the nK−p channel.
Indeed the peak is nothing other than a threshold effect (cusp).
In that calculation the contribution of the rescattering process
K̄N -π� around 1426 MeV, where this amplitude has its
maximum, is already significantly suppressed by the deuteron
wave function and the falloff of the nK−p Green’s function.
Thus, only a rather broad structure is visible in the spectrum
for the case of the K̄N -π� generated from the Oset-Ramos
interaction, whereas for the Jülich K̄N model there is no direct
sign at all of the �(1405) resonance.

Interestingly, existing angle-averaged data on the π+�−
invariant mass spectrum from the reaction K−d → π�N [14]
seem to suggest a peak around Mπ� ≈ 1425 MeV—and not
at the nK−p threshold! Should such a behavior be seen
also for forward-angle neutrons in the planned measurements
at J-PARC, it would certainly be a sign of the inadequacy
of the approach adopted so far in pertinent investigations
[10,11]. And it could be a hint that one should rather rely
on Faddeev-type approaches where all rescattering processes
can be summed up to infinite order. Then the structure
in the two-body amplitudes corresponding to the �(1405)
resonance can be generated within the three-body context in
a consistent way. Moreover, exact three-body unitarity can be
automatically fulfilled. Such a calculation is beyond the scope
of the present investigation but we intend to address this issue
in a future study.
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[21] R. Büttgen, K. Holinde, A. Müller-Groeling, J. Speth, and
P. Wyborny, Nucl. Phys. A 506, 586 (1990).

[22] M. Hoffmann, J. W. Durso, K. Holinde, B. C. Pearce, and
J. Speth, Nucl. Phys. A 593, 341 (1995).
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