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Bose-Einstein interference in the passage of a jet in a dense medium
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When a jet collides coherently with many parton scatterers at very high energies, the Bose-Einstein symmetry
with respect to the interchange of the virtual bosons leads to a destructive interference of the Feynman amplitudes
in most regions of the momentum transfer phase space, but a constructive interference in some other regions
of the momentum transfer phase space. As a consequence, the recoiling scatterers have a tendency to come out
collectively along the incident jet direction, each carrying a substantial fraction of the incident jet longitudinal
momentum. The manifestation of the Bose-Einstein interference as collective recoils of the scatterers along the
jet direction may have been observed in angular correlations of hadrons associated with a high-pT trigger in
high-energy heavy-nuclei collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC).
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I. INTRODUCTION

Recently, at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC), angular correlations
of produced hadron pairs in AuAu, PbPb, and pp collisions
have been measured to obtain the yield of produced pairs as a
function of �φ and �η, where �φ and �η are the azimuthal
angle and pseudorapidity differences of the produced pair. The
correlations appear in the form of a “ridge” that is narrow
in �φ at �φ ∼ 0 and �φ ∼ π , but relatively flat in �η.
They have been observed in high-energy AuAu collisions
at RHIC by the STAR Collaboration [1–19], the PHENIX
Collaboration [20–24], and the PHOBOS Collaboration [25],
with or without a high-pT trigger [2,14–18]. They have also
been observed in pp and PbPb collisions at the LHC by the
CMS Collaboration [26–28], the ATLAS Collaboration [29],
and the ALICE Collaboration [30].

Subsequent to the observation of the �φ-�η angular
correlations, a momentum kick model [31–39] was put
forth to explain the ridge phenomenon, along with many
other models [40–74]. The model identifies ridge particles
as medium partons, because of the centrality dependence
of the ridge particle yield and the similarity between the
temperature and baryon/meson ratio of ridge particles with
those of the bulk medium. The model assumes that these
medium partons have an initial rapidity plateau distribution,
and when they suffer a collision with a jet produced in the
collision, they receive a momentum kick along the jet direction,
which will be designated as the longitudinal direction. The
physical contents of the momentum kick model lead to features
consistent with experimental observations: (i) the longitudinal
momentum kicks from the jet to the medium partons along
the jet direction give rise to the �φ ∼ 0 correlations on
the near side [1,3,31–35], (ii) the medium parton initial
rapidity plateau distribution shows up as a ridge along the
�η direction [1,3,31–35,37,38], (iii) the displaced parton
momentum distribution of the kicked medium partons leads
to a peak at pT ∼ 1 GeV/c in the pT distribution of the
kicked partons [18,33,38], and (iv) the kicked medium partons
therefore possess a correlation of |p1T | ∼ |p2T | ∼ 1 GeV,
without a high-pT trigger, for both the near side and the away

side [18,38]. The model has been successful in describing
extensive sets of triggered associated particle data of the STAR
Collaboration, the PHENIX Collaboration, and the PHOBOS
Collaboration, over large regions of pt , �φ, and �η, in many
different phase space cuts and pT combinations, including
dependencies on centralities, dependencies on nucleus sizes,
and dependencies on collision energies [31–38].

The phenomenological success of the momentum kick
model raises relevant questions about the theoretical foun-
dations for its basic assumptions. While the rapidity plateau
structure of the medium parton distribution may have its
origin in the Wigner function of particles produced in the
fragmentation of a string (or flux tube) [36], or in a color-glass
condensate [47], the origin of the postulated longitudinal
momentum kick along the jet direction in the model poses an
interesting puzzle. If each of the jet–medium-parton collisions
were a two-body elastic collision, it would lead only to a
dominantly forward jet scattering and a small longitudinal
momentum transfer to the medium scatterers along the jet
direction. The hard longitudinal momentum kick (of order
GeV) received by the medium scatterers along the jet direction
in the momentum kick model is unlikely to originate from
incoherent two-body collisions.

From an observational viewpoint, the experimental obser-
vation that many medium partons come out along the jet
longitudinal direction with �φ ∼ 0 implies the presence of
collective recoils of the medium partons, each of which must
have acquired a substantial longitudinal momentum transfer
(momentum kick) along the jet direction from the jet. What is
the origin of such collective recoils, in the interaction of the
jet with medium partons?

As the high-pT trigger particles under experimental
consideration have a momentum of order a few GeV
[1–3,20–23,27–30], we therefore consider incident jets with
an initial momentum of order 10 GeV. Strictly speaking, jets
with an initial momentum of order 10 GeV should be more
appropriately called “minijets” [75]. For brevity of nomencla-
ture, we continue to use the term “jet” to represent minijets.

In the collision of a jet p = (p0, p) with n medium partons,
how dense must the medium be for the multiple collisions to
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become a single coherent (1 + n)-body collision, instead of a
sequence of n incoherent two-body collisions? It is instructive
to find out the conditions on the medium density and the energy
of the incident jet that determine whether the set of multiple
collisions is coherent or incoherent. For such a purpose, we
consider a binary collision between the incident fast particle
p and a medium scatterer ai with the exchange of a boson,
in the medium center-of-momentum frame. The longitudinal
momentum transfer qz for the binary collision can be obtained
from the transverse momentum transfer qT by qz ∼ q2

T /2p0.
The longitudinal momentum transfer is associated with a
longitudinal coherence length �zcoh ∼ h̄/qz ∼ 2h̄p0/q

2
T that

specifies the uncertainties in the longitudinal locations at
which the virtual boson is exchanged between the fast particle
and the scatterer. The time it takes for the fast particle
to travel the distance of the longitudinal coherence length,
2p0h̄/q2

T c, can also be called the virtual boson formation
time or the virtual boson exchange time.

The nature of the multiple scattering process can be inferred
by comparing the longitudinal coherence length �zcoh with the
mean free path λ of the jet in the dense medium that depends
not only on the density of the medium but also on the binary
collision cross section.

If �zcoh � λ, then a single binary collision is well com-
pleted before another binary collision begins, and the multiple
collision process consists of a sequence of n incoherent
two-body collisions. On the other extreme, if

�zcoh ∼ 2h̄p0
/
q2

T � λ, (1)

then a single binary collision is not completed before another
one begins, and the multiple collision process consists of a set
of coherent collisions as a single (1 + n)-body collision. For a
set of initial and final states in such a coherent (1 + n)-body
collision, there are n! different trajectories in the sequence
of collisions along �zcoh at which various virtual bosons are
exchanged. By Bose-Einstein symmetry, the total Feynman
amplitude is then the sum of the n! amplitudes for all possible
interchanges of the exchanged virtual bosons. The summation
of these n! Feynman amplitudes and the accompanying
interference constitute the Bose-Einstein interference in the
passage of the fast particle in the dense medium.

In high-energy central collisions between heavy nuclei such
as those at RHIC and LHC, both jets and dense medium
are produced after each collision. The jets will collide with
partons in the dense medium, and these collisions may satisfy
the condition for coherent collisions. In a binary collision at
RHIC and LHC, the longitudinal coherent length �zcoh is of
order 25 fm, for a typical transverse momentum transfer of
qT ∼ 0.4 GeV/c from a jet of momentum p0 ∼ 10 GeV/c

to a medium parton. The longitudinal coherent length �zcoh

is much greater than the radius R of a large nucleus. On
the other hand, the away-side jet is quenched by the dense
medium in the most central AuAu collisions at RHIC and LHC
[76–82], and the near-side jet collides with about 4–6 medium
partons [31–38]. Therefore, one can infer that the mean free
path λ for the collision of the jet with medium partons is
much smaller than the nuclear radius R. In high-energy central
nuclear collisions at RHIC and LHC, the collision of a fast jet

with medium scatterers satisfies the following condition:

�zcoh ∼ 2h̄p0
/
q2

T � R � λ. (2)

As a consequence, the multiple-collision process constitutes
a set of coherent collisions. There will be Bose-Einstein
interference effects in the passage of the jet in the dense
medium.

In this connection of Bose-Einstein interference, we note
that Bose-Einstein interference effects in high-energy QED
and QCD collisions have been observed previously by many
workers [83–90]. In the emission or absorption of n identical
bosons from an energetic fermion in Abelian and non-Abelian
gauge theories leading to an on-mass-shell final fermion, the
Bose-Einstein symmetry with respect to the interchange of
virtual bosons leads to the sum of a set of n! Feynman
amplitudes that turns out simply to be a product of delta
functions. These distributions may be thought of as peaked
interference patterns produced by the coherent addition of
various symmetrized broad Feynman amplitudes [90]. In
the collision of two fermions, the sum of the ladder and
cross-ladder diagrams also exhibits remarkable Bose-Einstein
interference leading to similar products of delta functions and
the eikonal approximation [83–90].

We would like to study similar interference effects for the
case of the multiple collisions of a jet parton with many parton
scatterers. We wish to explore whether such a Bose-Einstein
interference may be the origin of the longitudinal momentum
kick. As the interference arises from the coherent collision of
more than one particle, it is clearly a many-body effect that
occurs with two or more scatterers.

The interference of Feynman amplitudes is only one of
the effects of coherent collisions. There is another important
effect that accompanies the coherent (1 + n)-body collision
and changes the nature of the collision process. It shows up as
an increase in the number of degrees of freedom. In a sequence
of n incoherent two-body collisions or quasielastic collisions,
there are two degrees of freedom in each two-body collision,
which can be chosen to be qiT = (qiT , φi). The sequence
of n incoherent or quasielastic two-body collisions contains
only 2n transverse momentum transfer degrees of freedom,
{q1T , q2T , q3T , . . . ,qnT }. The longitudinal momentum trans-
fer qiz in each individual jet-parton collision is a dependent
variable, depending on the corresponding transverse momen-
tum transfer as qiz ∼ |qiT |2/2p0. In contrast, in the case of
coherent collisions of the jet with n particles, there are 3n − 1
degrees of freedom, after the 3(n + 1) degrees of freedom
are reduced by the constraints of the conservation of energy
and momentum. The degrees of freedom increase from 2n

for incoherent collision and quasielastic collisions to 3n − 1
for coherent collisions. We can choose the 3n − 1 independent
variables to be {q1T q1z, q2T q2z, q3T q3z, . . . ,qnT qnz} for coher-
ent collisions, subject to a single condition of an overall energy
conservation. Thus, in the case of coherent collisions, the set
of longitudinal momentum transfers, {qiz, i = 1, 2, . . . , n},
can also be independent variables with their own probability
distribution functions, depending on the sum of n! sym-
metrized Feynman amplitudes. The recoiling scatterers share
the longitudinal momentum of the incident jet. The qiz degrees
of freedom allow the medium partons to acquire substantial
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fractions of the longitudinal momentum of the incident jet, as
we shall demonstrate in Sec. V of this paper.

In the problem of the passage of a jet in a dense medium,
the multiple-collision process of the jet with medium partons
is usually examined in the potential model [77–81,91–93],
as in the Glauber theory [94]. It should be noted that the
occurrence of coherent collisions discussed here coincides
with the condition for multiple scattering in the Glauber theory
given by Eq. (173) of [94] as

p0a
2/h̄ � R, (3)

where R is the dimension of the medium, and a is the range of
the interaction which can be related to the average transverse
momentum transfer by a ∼ h̄/qT . Thus Glauber’s condition
for multiple scattering is

h̄pz

/
q2

T � R. (4)

As the dimension of the medium is presumably much greater
than the mean free path λ between collisions, condition (3) for
Glauber’s multiple scattering is consistent with

h̄pz

/
q2

T � R � λ, (5)

which is nearly the same as the coherent condition (2) we
discussed here, except for an unimportant difference of a factor
of 2.

The near-coincidence of the conditions for coherent colli-
sions of Eqs. (2) and (5) indicates that the totality of coherent
collisions can be further divided according to the degree of
incident jet longitudinal momentum losses. There are elastic
and quasielastic coherent collisions with nearly no scatterer
recoils and little loss of the incident jet longitudinal momentum
that are at the center of Glauber-type potential model theories.
There are also coherent collisions in which scatterers can
undergo longitudinal recoils and the incident jet can lose a
substantial longitudinal momentum arising from the recoils
of scatterers. The elastic and quasielastic coherent collision
processes can be adequately studied in the potential model
[77–81,91–94], with the assumption that the scatterers suffer
approximately no recoils and appear in the form of potential
centers around which the projectile traverses.

We wish to investigate coherent collisions in the entire
domain of longitudinal scatterer recoils and the corresponding
incident jet longitudinal momentum loss due to these recoils.
For a general treatment of longitudinal recoils of scatterers,
the Glauber-type potential model cannot really be used. It is
inadequate because it is restricted to elastic and quasielastic
collisions and does not allow the scatterer longitudinal recoils
to be independent degrees of freedom. For well founded
reasons which we shall discuss in detail in Sec. II, we shall
forgo the potential model but turn to the Feynman amplitude
approach to study the longitudinal recoils of the scatterers in
a general treatment of coherent collisions.

In the remaining parts of the paper, we shall consider
implicitly only coherent multiple collisions of the jet with
medium partons unless indicated otherwise. In Sec. III, we
examine (coherent) multiple collisions of an energetic fermion
with fermion scatterers in the Abelian gauge theory to discuss
how the Bose-Einstein symmetry in the Feynman amplitudes
can lead to a destructive interference over most regions of

phase space but a constructive interference in some other
regions of phase space. In Sec. IV, we study the cross
section for such a multiple collision process. In Sec. V, we
examine the consequences of the constraints on the recoils of
the scatterers and find that the scatterers tend to come out
collectively along the incident jet direction, each scatterer
acquiring approximately 1/2n fraction of the longitudinal
momentum of the incident jet. In Sec. VI, we examine the case
for the coherent collision of an energetic fermion with fermion
scatterers in the non-Abelian gauge theory. In Sec. VII, we
generalize our considerations to the collision of a gluon jet on
quark scatterers. In Sec. VIII, we examine the collision of a
gluon or a fermion jet on gluon scatterers. In Sec. IX, we study
the longitudinal momentum distribution for gluon scatterers
and distinguish it from the longitudinal momentum distribution
for quark scatterers. In Sec. X, we examine the signatures of
the Bose-Einstein interference in the passage of a jet in a
medium and compare these signatures with experimental data.
In Sec. XI, we present our conclusions and discussions.

II. THE POTENTIAL MODEL VERSUS THE FEYNMAN
AMPLITUDE APPROACH

The potential model of multiple collisions [77–81,91–94]
has been a useful tool to study the energy loss of a jet as it passes
through a dense medium in elastic and quasielastic scatterings.
It can also be adequately used to study the longitudinal
momentum transfers qiz from the jet to the scatterers in these
elastic and quasielastic processes. The potential model gives
the longitudinal recoil (longitudinal momentum transfer)

qiz ∼ |qiT |2/2p0, (6)

for each jet-scatterer collision, in either coherent or incoherent
collisions.

We shall see that in the Feynman amplitude approach the
probability distribution for the longitudinal recoil qiz includes
not only the probability for quasielastic processes with small
scatterer longitudinal recoils, but also a significant probability
for the scatterers to recoil with a substantial fraction of the
incident jet longitudinal momentum. It is therefore important
to inquire which of the two different approaches should be
used to investigate the longitudinal recoils of the scatterers in
a general treatment of the coherent collisions that are at the
focus of our attention.

It is instructive to review how the longitudinal recoils of the
scatterers are determined in the two different approaches. In the
potential model [77–81,91–94], the medium parton scatterers
are assumed to be fixed in space and the scatterings between the
incident particle and the medium scatterers are represented by
potentials with the positions of the scatterers as static centers,
as in the Glauber model for potential scattering [94]. By
using static scatterer centers, the range of applicability of the
potential model is limited to elastic or quasielastic scatterings
with small momentum transfer qi . Furthermore, we can trace
how qi = (qiT , qiz) is determined in the potential model, in the
collision of the jet with the ith scatterer. After passing through
the potential generated by the ith scatterer, the trajectory of
the incident jet is obtained and the transverse momentum
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transfer qiT determined. The longitudinal momentum transfer
qiz from the jet to the scatterer is subsequently calculated
to ensure longitudinal momentum conservation. Hence the
longitudinal momentum transfer from the jet to the ith scatterer
is determined as qiz ∼ q2

iT /2p0, as given in Eq. (6). As the
longitudinal momentum transfer qiz is determined completely
by qiT and p0, it is no longer an independent dynamical
variable. It is in effect a frozen and dependent quantity. Not
only is the potential model limited to scattering with small
momentum transfers qi , the model is also limited to cases in
which the longitudinal momentum transfers qiz from the jet to
the scatterers are no longer independent dynamical variables.

In the potential model with many scatterers, the total
potential is the sum of all scatterer potentials. In the coherent
collisions limit, the wave function of the incident jet becomes
[94]

ψ(bz) = exp{ik(z − z0) + iχtot(b, z)}, (7)

where the phase χtot(b, z) is the sum of the scattering phases
from scatterer potentials Vi centered at {bi , zi},

χtot(b, z) = − i

hv

∫ z

z0

dz′
n∑

i=i

Vi(b − bi , z
′ − zi). (8)

The width of the transverse momentum distribution of the
incident jet is broadened by collisions with scatterers. From
the broadening of the transverse momentum distribution
associated with the transverse momentum transfer qiT due
to the interaction of the jet with the ith scatterer, one infers
that the corresponding longitudinal momentum transfer to the
ith scatterer is given again by qiz ∼ |qiT |2/2p0 as in Eq. (6)
in the coherent collision limit.

From the above review, we recognize that, in the potential
model, all recoils of the scatterers have been assumed to
be zero initially to allow a static description of the centers
of the scatterers. The scatterer longitudinal recoils are only
subsequently corrected as an appendage to the dynamics of
the transverse deflection of the incident jet. Such a potential
model may be adequate for incoherent collisions and for
quasielastic coherent collisions in which the longitudinal
momentum transfers to the scatterers are very small.

As the longitudinal recoils of the scatterers are at the focus
of our attention, it is important to realize that the potential
model cannot be used to examine the longitudinal recoils
of the scatterers in a general treatment where one wants
to explore the behavior of the probability distribution for
the scatterer longitudinal momentum transfer over a large
domain, or in regions where there may be a high probability
for recoiling scatterers to share substantial fractions of the
longitudinal momentum of the incident jet. A general treatment
of coherent collisions necessitates the use of the longitudinal
recoils of the scatterers as independent dynamical variables.
The longitudinal recoils of the scatterers are, however, not
allowed to be independent dynamical variables in the potential
model. This leads us to forgo the potential model and
to turn to the use of Feynman amplitudes for coherent
collisions.

In the Feynman amplitude approach, such as given in
what follows, for a set of the initial momenta of the jet and

scatterers, the (n + 1) final momenta involved in the collision
process are dynamical variables. The Feynman amplitudes
give the probability amplitudes for various reaction channels
as a function of these dynamical variables. In particular, the
longitudinal momenta of the recoiling scatterers or the corre-
sponding longitudinal momentum transfers from the jet to the
scatterers are dynamical variables, in contrast to the potential
model in which they are frozen and dependent quantities.
Feynman amplitudes with explicit scatterer momenta on the
external legs are the proper tools to examine the probability
amplitudes as a function of the longitudinal recoils of the
scatterers.

In the Feynman amplitude approach, the momenta of
recoiling scatterers are intimately linked together with the
momentum of the incident jet in various Feynman amplitudes
and their corresponding symmetrized n! permutations. The
n scatterers and the jet compose an (n + 1)-body system,
with 3(n + 1) degrees of freedom constrained by the four-
dimensional energy and momentum conservation. Among
the 3(n + 1) degrees of freedom are the transverse and
longitudinal momentum transfers from the jet to the scatterers,
(qiT , qiz), i = 1, . . . , n. As the recoiling scatterers and the
recoiling jet are tied together by the coherent collision, they
can share the initial longitudinal momentum of the jet. We
shall find from the Feynman amplitude approach that 〈qiz〉
can be a substantial fraction of the longitudinal momentum of
the incident jet (see Sec. IV). The potential model in contrast
gives the result qiz = |q2

iT |/2p0, which cannot be relied upon
for a general coherent collision, because (i) the potential
model confines the system to regions of small qiz, (ii) as
it has been designed for elastic and quasielastic processes,
the potential model does not allow qiz to be independent
dynamical variables, and (iii) as a consequence, the potential
model precludes the exploration into other qiz regions where
the probability distribution as a function of qiz may be large in
coherent collisions.

In the general treatment of coherent collisions with the jet,
we are therefore justified to forgo the potential model and use
the Feynman amplitude approach to study the transverse and
longitudinal recoils of parton scatterers.

III. BOSE-EINSTEIN INTERFERENCE
OF THE FEYNMAN AMPLITUDES

We consider a jet p passing through a dense medium and
making (coherent) multiple collisions with medium partons.
The assembly of medium partons has an initial momentum
distribution. We choose to work in the center-of-momentum
frame of the parton scatterers {a1, a2, . . . , an}. We select the
longitudinal z axis to be along the momentum of the incident
jet.

As an illustration of the salient features of the interference of
the Feynman amplitudes, we consider first multiple collisions
of a fermion p with rest mass m and two fermion scatterers
a1 and a2 with rest masses m1 and m2 in p + a1 + a2 →
p′ + a′

1 + a′
2. We study this problem in the Abelian gauge

theory in this section and in the non-Abelian gauge theory in
Sec. VI. We shall consider the collision of gluons in Sec. VII.
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FIG. 1. Feynman diagrams for the collision of a fast fermion p

with medium fermions a1 and a2, with the emission and absorption
of virtual bosons of momenta q1 and q2.

Using the Feynman rules1 as in Ref. [84], the Feynman
amplitude for Fig. 1(a) is given by [95]

Ma = −g4ū(p′)γν

1

/p − /q1 − m + iε′ γμu(p)

× 1

q2
2

ū(a′
2)γνu(a2)

1

q2
1

ū(a1
′)γμu(a1). (9)

If the spatial separation between the scatterers is so large
such that λ � �zcoh, the fast particle is nearly on the mass
shell after the first collision and diagram 1(a) suffices. It can
be cut into two disjoint pieces. The collision process consists
effectively of a sequence of two two-body collisions. We shall
show in Sec. IV that, for a ladder diagram of the type shown in
Fig. 1(a) for quasielastic collision, with intermediate fast par-
ticles assumed to be on the mass shell and qi0 ∼ 0, the (1 + n)-
body cross section is a product of n two-body cross sections.

On the other hand, if the collision is characterized by
λ � �zcoh, the collision process is in a coherent (1 + 2)-body
collision. There is an additional Feynman amplitude Mb for
diagram 1(b), obtained by making a symmetrized permutation
of the bosons in diagram 1(a),

Mb = −g4ū(p′)γμ

1

/p − /q2 − m + iε′ γνu(p)

× 1

q2
2

ū(a′
2)γνu(a2)

1

q2
1

ū(a′
1)γμu(a1). (10)

The trajectories for diagrams 1(a) and 1(b) are both possible
paths in a coherent collision, leading from a set of initial states
to a set of final states. By Bose-Einstein symmetry, the total
amplitude M for coherent collisions is the symmetrized sum
of Ma and Mb.

We consider the high-energy limit and assume the conser-
vation of helicity with

{p0, |p|, p′
0, |p′|} � {|ai |, q0, |qi |} � m, for i = 1, 2.

We shall later find that 〈qiz〉/pz is of order 1/2n. The above
high-energy limit of {p0, |p|, p′

0, |p′|} � {q0, |qi |} provides a

1In this manuscript, we use the Feynman rule in Ref. [84] which
includes explicitly an overall multiplicative phase factor of (−i). Such
a overall phase (−i) is not explicitly stated but is implied in Appendix
A-4 of Ref. [95].

reasonable approximation to the gross features of the collision
processes. Higher-order corrections to this approximation
will lead to refinements that will be the subjects of future
investigations.

In this high-energy limit, we have approximately [84]

ū(a′)γμu(a) ∼
√

a0 + m

a′
0 + m

a′
μ

2m
+
√

a′
0 + m

a0 + m

aμ

2m
≡ ãμ

m
, (11)

1

/p − /q1 − m + iε′ γνu(p) ∼ − /p − /q1 + m

2p · q1 − iε
γνu(p), (12)

ū(p)γν(/p − /q1 + m)γμu(p) ∼ 2pνpμ

m
, (13)

where ε is a small positive quantity. We shall be interested in
the case in which the fermion p′ after the collision is outside
the medium and is on the mass shell. The mass-shell condition
can be expressed as

(p − q1 − q2)2 − m2 ∼ −2p · q1 − 2p · q2 ∼ 0. (14)

The symmetrized sum of the Feynman amplitudes Ma and Mb

in the high-energy limit is

M ∼ g4

2m

2p · ã1

m1q
2
1

2p · ã2

m2q
2
2

(
1

2p · q1 − iε
+ 1

2p · q2 − iε

)
.

(15)

Note that the amplitudes Ma and Mb correlate with each other
because of the mass-shell condition (14). The real parts of
the amplitudes destructively cancel, and the imaginary parts
interfere and add constructively, to result in sharp distributions
at p · q1∼ 0 and p · q2 ∼ 0,

M ∼ g4

2m

2p · ã1

m1q
2
1

2p · ã2

m2q
2
2

{iπ�(2p · q1) + iπ�(2p · q2)},
(16)

where

�(2p · q1) = 1

π

ε

(2p · q1)2 + ε2
,

which approaches the Dirac delta function δ(2p · q1) in the
limit ε → 0.

We consider next the case of the (coherent) multiple
collisions of a fast fermion with three fermion scatterers
in the reaction p + aa + a2 + a3 → p′ + a′

1 + a′
2 + a′

3. The

(a) (b) (c)

(d) (e) (f )

FIG. 2. Feynman diagrams for the multiple collisions of a fast
fermion with three medium fermions in different permutations of the
exchanged bosons.
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Feynman diagrams for the multiple collisions process are
shown in Fig. 2.

In the high-energy limit, the Feynman amplitude for the
collision is

M = g6

2m

2p · ã1

m1

2p · ã2

m2

2p · ã3

m3

1

q2
1q2

2q2
3

×
{[

1

(2p · q1 − iε)(2p · q1 + 2p · q2 − iε)

+ 1

(2p · q2 − iε)(2p · q1 + 2p · q2 − iε)

]

+
[

1

(2p · q2 − iε)(2p · q2 + 2p · q3 − iε)

+ 1

(2p · q3 − iε)(2p · q2 + 2p · q3 − iε)

]

+
[

1

(2p · q3 − iε)(2p · q3 + 2p · q1 − iε)

+ 1

(2p · q1 − iε)(2p · q3 + 2p · q1 − iε)

]}
. (17)

Each amplitude term in the curly brackets contains a distribu-
tion that is nonzero in various regions of p · qi . These Feynman
amplitudes interfere among themselves. We can write Eq. (17)
in the form

M = g6

2m

⎧⎨
⎩

3∏
i=1

2p · ãi

miq
2
i

⎫⎬
⎭
⎧⎨
⎩

2∏
j=1

1∑j

i=1 2p · qi − iε

+ symmetric permutations

⎫⎬
⎭ . (18)

Generalizing to the case of the coherent collision of a fast
fermion with n fermion scatterers in the process

p + a1 + · · · + an → p′ + a′
1 + · · · + a′

n, (19)

the total Feynman amplitude is

M = g2n

2m

{
n∏

i=1

2p · ãi

miq
2
i

}
M(q1, q2, . . . ,qn), (20)

whereM(q1, q2, . . . , qn) is the sum of n! amplitudes involving
symmetric permutations of the exchanged bosons given by

M(q1, q2, . . . ,qn) =
n−1∏
j=1

1∑j

i=1 2p · qi − iε

+ symmetric permutations. (21)

The above sum involves extensive cancellations. Remarkably,
it can be shown that this sum of n! symmetric permutations
turns out to be a product of sharp distributions centered at
2p · qi ∼ 0 [84],

M(q1, q2, . . . ,qn)�

(
n∑

i=1

2p · qi

)
= (2πi)n−1

n∏
i=1

�(2p · qi),

(22)

which gives

M(q1, q2, . . . ,qn) = (2πi)n−1

n

n∑
i=1

⎛
⎝ n∏

j=1,j 
=i

�(2p · qj )

⎞
⎠ .

(23)

Equations (21)–(23) indicate that, for coherent collisions, there
is a destructive interference of the Feynman amplitudes, lead-
ing to a cancellation in most regions of the phase space. How-
ever there is a constructive interference in some other regions
of the the phase space, leading to sharp distributions at 2p ·
qi ∼ 0. The constraint �(2p · qi) is mathematically the same
as the constrain �((p − qi) − m2) in the high-energy limit,
which can be interpreted as the intermediate state pi+1 = (p −
qi) to be on the mass shell. It should however be kept in mind
that the intermediate state pi+1 = (p − qi) in the constraint of
Eqs. (20), (22), and (23) is not a single particle but a quasipar-
ticle that is the result of the interference of many amplitudes.

Equations (20)–(23) for the total Feynman amplitude for
a coherent collision as a product of delta functions of 2p · qi

are similar to previous results obtained for the emission of
many real photons or gluons in bremsstrahlung, and for the
sum of ladder and cross-ladder amplitudes in the collision of
two fermions [84–90].

IV. CROSS SECTION FOR (1 + n)-BODY COLLISION

We wish to obtain the cross section for the coherent
collision of a fast fermion p on n fermions {a1, a2, a3, . . . ,an}
in reaction (19). While the Feynman rules to construct the
Feynman amplitude are well known, the differential cross
section for the reaction (19) as a single (1 + n)-body collision
process, written in terms of the Feynman amplitude M , does
not seem to be available in the literature. We would like to
examine the cross section rules in some details in this section.

It should be mentioned that the cross section rules for
the (1 + n)-body collision depend on the conventions of the
Feynman rules for the Feynman amplitude M . We shall use
the Feynman rules of Refs. [84,95] for M , which adopt
the normalization ūu = 1 for the fermion wave function. A
different normalization of the fermion wave function according
to ūu = 2m, as given in Ref. [96], will lead to slightly different
cross section rules.

To be concrete, we use the auxiliary variable pi with i =
1, . . . ,n to label the intermediate state (or quasi-particle) of
the incident fermion prior to its exchange of a virtual boson
with scatterer ai (or after its exchange of a virtual gluon with
scatterer ai−1), with the special case p1 = p and pn+1 = p′.
The differential cross section for the collision process (19)
involving (1 + n) fermions is given by

dnσ = |M|2(2π )4δ4
{
p +∑n

i=1 ai − p′ −∑n
i=1 a′

i

}
{∏n

i=1 fpi

}{∏n
i=2(m/pi0)

}{∏n
i=2 Ti

}
× d4p′2m

(2π )3

Dp′(p′)
2p′

0

{
n∏

i=1

d4a′
i2mi

(2π )3

Di(a′
i)

2ai0

}
, (24)
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where M is the total Feynman amplitude as follows from the
Feynman rules of Refs. [84,95]. The quantity fpi is the flux
factor for a two-body collision between pi and the scatterer ai

of rest mass mi ,

fpi = 4
√

(pi · ai)2 − (mmiT )2

(2m)(2mi)
, (25)

and miT =
√

m2
i + a2

iT .
In Eq. (24) we construct the flux factor for the (1 + n)-

body collision by requiring that it should be the same for all
scatterers. Hence, it is the product of flux factors from all
scatterers,

∏n
i=1 fpi . We also need to require that, in this flux

factor, the momentum of the incident fermion and the scatterer
fermions appear in the same power. Thus, the flux factor needs
to be linear in the energy of the colliding particles. But the
product of

∏n
i=1 fpi gives

∏n
i=1 pi0. It is therefore necessary

to multiply
∏n

i=1 fpi by the factor
∏n

i=2(m/pi0) to get the flux
factor for the (1 + n)-body collision that is linear in the energy
of all colliding particles, resulting in the factors as given in the
cross section formula in Eq. (24).

The quantity Ti , with {i = 2, . . . ,n} is the collision time or
the mean lifetime of the intermediate state (or quasiparticle)
pi of the incident fast particle prior to the incident particle
exchanging a virtual boson with ai (or after the incident particle
has already exchanged a virtual gluon with scatterer ai−1). It
arises in the cross-section formula because the cross section
is proportional to the transition rate per unit time of collision
and thus depends on the lifetime of the intermediate state pi

of the projectile before it exchanges a virtual boson with the
scatterer ai . The precise value of Ti need not concern us at
this point, as it will be canceled later by the delta function that
specifies the energy-momentum constraint of the intermediate
state pi , evaluated at the condition of the constraint of the delta
function.

The states of the incident particle p′ and the medium
scatterer i ′ after the collision can come in different forms.
They can be described by the functions Dp′/2p′

0 and Di/2a′
i0.

For example, the final fast particle p′ resides outside the
medium after the collisions without interactions. Its state can
be adequately described as being nearly on the mass shell,

Dp′(p′)
2p′

0

∼ δ(p′
0 −
√

p′2 + m2)

2p′
0

= δ(p′2 − m2). (26)

It may subsequently break up as jet fragments in a collimated
narrow cone, in accordance with a jet fragmentation function.
We shall examine the states of the scatterers in the next section.

To show the validity of Eq. (24), we note first that it
is clearly correct for the case of a two-body collision with
n = 1, as given in Appendix A-3 of Ref. [95]. We would
like to test whether it gives the correct result for the case of
quasielastic collisions where the answer is known. Such a case
of quasielastic collisions is described by the generalization
of ladder diagrams of Figs. 1(a) and 2(a), with the incident
particle nearly on the mass shell and qi0 ∼ 0. The diagram can
be effectively cut at the intermediate fermion lines, resulting
in a sequence of n disjoint two-body collision diagrams, and
the many-body cross section is just the product of n two-body
collisions.

We would like to show that for the above quasielastic
collision case the Feynman amplitude approach with the
cross-section rules of Eq. (24) also leads to the known result.

In the high-energy limit, the Feynman amplitude for the
ladder diagrams of Figs. 1(a) and 2(a) can be generalized for
n scatterers as given by

M ∼ −g2n

2m

{
n−1∏
i=1

2pi · ãi

miq
2
i

1(
p2

i+1 − m2
)+ iε

}
2pn · ãn

mnq2
n

. (27)

For quasielastic collisions with qi0 ∼ 0, the incident particle
is nearly on the mass shell with p2

i+1 ∼ m2. As a consequence,
the propagator represented by 1/(p2

i+1 − m2 + iε) in the
Feynman amplitude can be approximated by the pole term

1

p2
i+1 − m2 + iε

→ −iπ�
(
p2

i+1 − m2
)
. (28)

The Feynman amplitude becomes

M ∼ g2n

2m

{
n−1∏
i=1

2pi · ãi

miq
2
i

iπ�
(
p2

i − m2
)} 2p′ · ãn

mnq2
n

. (29)

We substitute this Feynman amplitude in Eq. (24), and we
obtain

dnσ = 1{∏n
i=1 fpi

}{∏n
i=2(m/pi0)Ti

} g4n

(2m)2

×
{

n−1∏
i=1

(2pi · ãi)2

m2
i q

4
i

π2
[
�
(
p2

i − m2
)]2 d4a′

i2mi

(2π )3

Di(a′
i)

2ai0

}

× (2p′ · ãn)2

m2q4
n

(2π )4δ4

{
p +

n∑
i=1

ai − p′ −
n∑

i=1

a′
i

}

× d4p′2m

(2π )3

Dp′(p′)
2p′

0

d4a′
n2mn

(2π )3

Dn(a′
n)

2an0
. (30)

On the other hand, for the two-body collision pi + ai →
pi+1 + a′

i , the Feynman amplitude is

M2B
pi = g2

2m

2pi · ãi

miq
2
i

. (31)

Upon writing �(p2
i+1 − m2) in terms of the mean lifetime

Ti+1 = 1/�i+1 of the intermediate state of pi+1, we have

�
(
p2

i+1 − m2
) = �i/(4πp(i+1)0)[

p(i+1)0 −
√

p2
i+1 + m2

]2 + �2
i+1/4

;

we get

∣∣�(p2
i+1 − m2

)∣∣2 = �
(
p2

i+1 − m2
) 1

2p(i+1)0

2Ti+1

π
, (32)

where the mean lifetime Ti+1 cancels the corresponding factor
in the denominator of Eq. (30). Using Eqs. (31) and (32) in
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Eq. (30), we obtain

dnσ =
n−1∏
i=1

∣∣M2B
pi

∣∣2
fpi

(2m)2π�
(
p2

i+1 − m2
)d4a′

i2mi

(2π )3

Di(a′
i)

2ai0

×
∣∣M2B

pn

∣∣2
fpn

(2π )4δ4

(
p′ +

n∑
i=1

qi − p

)

× d4p′2m

(2π )3

Dp′(p′)
2p′

0

d4a′
n2mn

(2π )3

Dn(a′
n)

2an0
. (33)

Inserting the unity factor
∏n−1

i=1 δ(pi + ai − pi+1 −
a′

i)d
4pi+1 = 1 into the above equation and noting that

the differential cross section for pi + ai → pi+1 + a′
i is

dσ 2B
pi =

∣∣M2B
pi

∣∣2
fpi

(2π )4δ4(pi + ai − pi+1 − a′
i)

× d4pi+12m

(2π )3

Di+1(pi+1)

2p(i+1)0

d4a′
i2mi

(2π )3

Di(a′
i)

2ai0
, (34)

we can rewrite Eq. (33) as

dnσ =
n∏

i=1

dσ 2B
pi , (35)

which is the cross section for quasielastic collisions. This show
that Eq. (24) gives the correct cross section for the case for
which the answer is known. It can therefore be used for a
general treatment for the cross section in terms of many-body
Feynman amplitudes in the general case of coherent collisions.

Equation (24) exhibits explicitly the rules for the cross
section for coherent collision of an incident fast fermion with
n fermion scatterers. The other cases for incident gluons and
gluon scatterers will be taken up in Sec. IX.

V. CONSEQUENCES OF THE BE INTERFERENCE
ON THE RECOIL OF FERMION SCATTERERS

The states of a medium scatterer after the collision can come
in different forms. As it acquires a large amount of energy and
momentum from the incident jet, the medium scatterer can be
far off the mass shell and it may subsequently fragment into a
cluster of on-mass-shell particles. For an incident jet of energy
10 GeV with scatterers in a medium, it is, however, unlikely
that the final scatterers themselves will be energetic enough or
far off the mass shell to fragment as clusters. Far more likely
is the case in which the scatterer a′

i acquires a fraction of the
incident jet energy and momentum and becomes only slightly
off the mass shell, with the degree of its being off mass shell
described by a width �i . As the medium particles reside in
an interacting medium, it will be subject to the interactions
of the medium before and after the collision. We can describe
the mass-shell constraint for the medium scatterer a′

i after the
collision as

Di(a
′
i) = �i/2π

[a′
i0 −√(a′

i − giA)2 + (mi + S)2 + giA0]2 + �2
i

4

,

where A = {A, A0} and S are the vector and scalar mean
fields experienced by the medium scatterer a′

i after the

collision, respectively. As the mean fields and scatterer widths
increase with medium density and are presumably quite large
and dominant for a dense medium, we shall approximately
represent Di as an average constant that is only a weak function
of a′

i . Other descriptions of Di/2a′
i0 for the states of the

scatterers are also possible but may not be as general; they
can be the subjects for future investigations.

We integrate over δ(p′ +∑ qi − p)d4p′ and change vari-
ables from a′

i to qi = a′
i − ai . Writing out the matrix M

explicitly as in Eq. (20) and using the relations in Eqs. (22)
and (23), we obtain from Eqs. (24)

dnσ = g4n(2m)n−1

(2π )n+1

{
n∏

i=1

Di

fij

}{
n−1∏
i=1

|�(2p · qi)|2dqi0

(m/p(i+1)0)Ti+1

}

×�(2p · qn)dqn0

{
n∏

i=1

(2p · ãi)2

m22a′
i0

dqiT dqiz

q4
i

}
, (36)

where for simplicity, we have taken mi = m. The distribution
�(2p · qi) can be written as

�(2p · qi) = 1

p0 + pz

�(qi0 − qiz − ζ ), (37)

where ζ is

ζ = −(p0 − pz)(qi0 + qiz) + 2pT · qiT

p0 + pz

, (38)

and the quantity ζ approaches zero in the high-energy limit of
large p0. The function �(qi0 − qiz − ζ ) provides the constraint
at qi0 − qiz ∼ 0. As a consequence of the constraint, the
integration �(qi0 − qiz − ζ )dqi0 can be carried out, yielding∫

�(2p · qi)dqi0 =
∫

1

pz + p0
�(qi0 − qiz + ζ )dqi0 = 1

2pz

.

(39)

Noting that �(2p · qi) ∼ (p − qi)2 − m2, we can express
�(2p · qi) in terms of the mean lifetime Ti+1 = 1/�i+1 of the
intermediate state p − qi = pi+1 of the fast projectile, after it
has exchanged of a virtual boson with the scatter i, as

�(2p · qi) = �i+1/4πp(i+1)0[
p(i+1)0 −

√
p2

(i+1) + m2
]2 + �2

i+1/4
; (40)

then we have

|�(2p · qi)|2 = �(2p · qi)
Ti+1

πp(i+1)0
. (41)

The above mean lifetime Ti+1 cancels the mean lifetime Ti in
the denominator of Eq. (36). The boson propagator q2

i in the
denominator becomes

q2
i = (qi0 + qiz)(qi0 − qiz) − |qiT |2 ≈ −|qiT |2. (42)

We obtain

dnσ = 1

4

(
α2

mpz

)n
{

n∏
i=1

8Di

fpi

(2p · ãi)2

m2a′
i0

dqizdqiT

|qT |4
}

, (43)

where α = g2/4π . The last factor in the curly brackets is
dimensionless, and dnσ has the dimension of (α2/mpz)n, as it
should.
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To find the probability distribution for the longitudinal mo-
mentum transfer qiz, we introduce the fractional longitudinal
momentum kick

xi = qiz

pz

, dqiz = pzdxi. (44)

To investigate the xi dependence of the factor (2p · ãi)2/2a′
i0

in Eq. (43), we note from Eq. (11) that ãi can be written as a
function of qi and ai ,

ãi ∼
√

ai0 + m

a′
i0 + m

qi

2
+ a′

i0 + m + ai0 + m√
(a′

i0 + m)(ai0 + m)

ai

2
. (45)

Because of the �(2p · qi) constraint, the factor (2p · ãi)2/2a′
i0

in Eq. (43) becomes

(2p · ãi)2

2a′
i0

∼ (a′
i0 + ai0)2

2(a′
i0)2

(p · ai)2

ai0
≡ κi

(p · ai)2

ai0
. (46)

We obtain from Eq. (43)

dnσ =
{

1

4

(
α2

m

)n
(

n∏
i=1

8Di

fij

κi(p · ai)2

mai0

)}

× dx1dx2 · · · dxndq1T dq2T · · · dqnT

|q1T |4|q2T |4 · · · |qnT |4 . (47)

The fermion scatterers can possess different initial energies
ai0 at the moment of their collisions with the energetic
jet. In the case when ai0 � qi0, the factor κi approaches
1/2 + O(ai0/qiz) with (ai0/qiz) � 1. In the other extreme
when ai0 � qi0, the factor κ approaches 2 + O(qiz/ai0) with
(qiz/ai0) � 1. The dependence of κi on xi and qiT is weak
in either limit, and such dependencies can be neglected in our
approximate estimate. We obtain then

dnσ ∼ Cq

dx1dx2 · · · dxndq1T dq2T · · · dqnT

|q1T |4|q2T |4 · · · |qnT |4 , (48)

where Cq is

Cq =
{

1

4

(
α2

m

)n
(

n∏
i=1

8Di

fij

κi(p · ai)2

mai0

)}
; (49)

the quantity Cq is a weak function of xi and qiT and can be
approximated as a constant.

By symmetry, the fraction of momentum transfers xi for
different scatterers should be approximately the same on
average, and xmax

i ∼ 1/n. Then as far as xi is concerned,
the average distribution is

dP

dxi

∼ n�

(
1

n
− xi

)
, (50)

and the average longitudinal momentum fraction is

〈xi〉 ∼ 1

2n
or 〈qiz〉 ∼ pz

2n
. (51)

The above result in Eq. (50) indicates that the probability
distribution of the longitudinal momentum transfer of a
scatterer is approximately flat in xi . The quasielastic scattering
with qiz ∼ 0 occurs, but with about the same probability as
other longitudinal momentum transfers up to qiz = pz/n. On

average, a scatterer acquires approximately 1/2n fraction of
the incident jet longitudinal momentum.

Because of the recoils of the scatterers, the incident jet
loses its longitudinal momentum. On average, the jet loses a
longitudinal momentum fraction of 1/2n after each collision
with a scatterer. When the jet emerges out of the medium
after colliding with n scatterers, the (average) fractional
jet longitudinal momentum loss due to scatterers recoils is
approximately

〈fractional jet longitudinal momentum loss〉 ∼ n × 1

2n
= 1

2
.

(52)

Having obtained the differential cross section Eq. (48), we
can infer the distribution of the scatterers with respect to the
incident particle axis. Equation (48) indicates that the reaction
has a high probability for the occurrence of small values of
|qiT |, in the passage of an energetic fermion making coherent
collisions with medium partons. The singularities at |qiT | ∼ 0
in Eq. (48) correspond to the case of infrared instabilities
that may be renormalized, and a momentum cutoff �cut may
be introduced. As qiT are independent degrees of freedom,
Eq. (43) or (48) shows that the standard deviation of the
transverse momentum distribution of the scattered incident
particle is related to the transverse momentum transfers to the
scatterers by

〈(p′
T )2〉 =

〈(
n∑

i=1

qiT

)2〉
=

n∑
i=1

〈
q2

iT

〉 = n
〈
q2

iT

〉
, (53)

as in a random walk in the transverse direction.
Equations (48)–(51) indicate further that the scatterers

acquire an average longitudinal momentum 〈qiz〉 ∼ pz/2n that
is expected to be much greater than 〈|qiT |〉. Thus, in a coherent
collision there is a collective quantum many-body effect
arising from Bose-Einstein interference such that the fermion
scatterers emerge in the direction of the incident particle, each
carrying a fraction of the forward longitudinal momentum of
the incident particle that is inversely proportional to twice the
number of scatterers, 〈qiz〉 ∼ pz/2n.

We have presented an explicit derivation of the differential
cross section as a function of the momenta of the recoil
scatterers by making many simplifying assumptions. The
explicit derivation has the advantage that it allows future
refinements on some parts of the calculation by modifying
some of the simplifying assumptions.

VI. BOSE-EINSTEIN INTERFERENCE FOR COLLISIONS
IN NON-ABELIAN THEORY

The above considerations for the Abelian theory can be
extended to the non-Abelian theory. As an example, we
consider a quark jet p making coherent collisions with quarks
a1 and a2 in the reaction p + a1 + a2 → p′ + a′

1 + a′
2, in the

non-Abelian theory. We shall neglect four-particle vertices and
loops, which are of higher orders. The Feynman diagrams are
then the same as those in Fig. 1. One associates each quark
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vertex with a color matrix T
(p,1,2)
α,β where the superscript p, 1,

or 2 identifies the quark p, a1, or a2, and the subscripts α or
β give the SU (3) color matrix index. The Feynman amplitude
Ma for diagram 1(a) is

Ma = −g4ū(p′)T (p)
β γν

1

/p − /q1 − m + iε′ T
(p)
α γμu(p)

× 1

q2
2

ū(a′
2)T (2)

β γνu(a2)
1

q2
1

ū(a′
1)T (1)

α γμu(a1).

The Feynman amplitude Mb for diagram 1(b) is

Mb = −g4ū(p′)T (p)
α γμ

1

/p − /q2 − m + iε′ T
(p)
β γνu(p)

× 1

q2
2

ū(a′
2)T (2)

β γνu(a2)
1

q2
1

ū(a′
1)T (1)

α γμu(a1).

In the high-energy limit for coherent collisions, the sum of the
Feynman amplitudes is

M ∼ g4

2m

2p · ã1

m

2p · ã2

m

1

q2
2q2

1

×
(

T
(p)
β T

(p)
α T

(2)
β T (1)

α

2p · q1 − iε
+ T

(p)
α T

(p)
β T

(2)
β T (1)

α

2p · q2 − iε

)
. (54)

We can rewrite the product of the color matrices for the quark
jet p as

T
(p)
β T (p)

α = 1
2

([
T

(p)
β , T (p)

α

]
+ + [T (p)

β , T (p)
α

]
−
)
, (55)

T (p)
α T

(p)
β = 1

2

([
T

(p)
β , T (p)

α

]
+ − [T (p)

β , T (p)
α

]
−
)
. (56)

We label the propagators in Eq. (54) as Ma and Mb,

Ma = 1

2p · q1 − iε
and Mb = 1

2p · q2 − iε
. (57)

The Feynman amplitude for coherent collision is then

M ∼ g4

2m

2p · ã1

m

2p · ã2

m

1

q2
2q2

1

×
{

(Ma + Mb)

[
T

(p)
β , T

(p)
α

]
+T

(2)
β T (1)

α

2

+ (Ma − Mb)

[
T

(p)
β , T

(p)
α

]
−T

(2)
β T (1)

α

2

}
. (58)

The first term inside the curly brackets has the same space-time
structure as what one obtains in the Abelian theory. It is given
by the Abelian Feynman amplitude in Sec. II, multiplied by
the color factor

C
CF

= T
(2)
β T (1)

α

2

[
T

(p)
β , T (p)

α

]
+. (59)

The sum ofMa andMb leads to sharp distributions at p · q1 ∼
0 and p · q2 ∼ 0,

Ma + Mb = i�(2p · q1) + i�(2p · q2). (60)

The second term is new and occurs only in the non-Abelian
theory, as it involves the commutator of T

(p)
b and T

(p)
a . It

involves the difference of Ma and Mb in which the sharp
distributions cancel each other, leaving a broad distribution,

Ma − Mb = 4p · q1

(2p · q1)2 + ε2
. (61)

From the above analysis, we find that the color degrees
of freedom in QCD bring in additional properties to the
Feynman amplitude. Bose-Einstein symmetry with respect
to the interchange of gluons in QCD involves not only the
space-time exchange symmetry but also color-index exchange
symmetry. The total exchange symmetry can be attained with
symmetric space-time amplitudes and symmetric color-index
factors as in the first Ma + Mb term in Eq. (58). The total
symmetry can also be attained with space-time antisymmetry
and color-index antisymmetry, as in the second Ma − Mb

term in Eq. (58).
We consider next the case for the collision of a quark jet

with three quark scatterers in the reaction p + aa + a2 + a3 →
p′ + a′

1 + a′
2 + a′

3 in the non-Abelian theory. The Feynman
diagrams for the collision process are the same as those in
Fig. 2, where we associate the color matrices T (1)

a , T
(2)
b , and

T (3)
c of color indices a, b, and c with fermion scatterers a1,

a2, and a3 respectively. In the high-energy limit, the Feynman
amplitude for the collision is

M = g6

2m

2p · ã12p · ã22p · ã3

m3q2
1q2

2q2
3

T (1)
a T

(2)
b T (3)

c

×{TaTbTcM123 + TaTcTbM132 + TbTcTaM231

+ TbTaTcM213 + TcTaTbM312 + TcTbTaM321}, (62)

where Ta,b,c without superscripts are the color matri-
ces for the incident quark jet p, and the amplitudes
M123, M132, M231, M213, M312, and M321 are sequentially
the six terms in the curly brackets of the Abelian Feynman
amplitudes in Eq. (17). It is easy to show that the quantity in
the curly brackets of Eq. (62) can be rewritten as

M = {Ta[Tb, Tc]+ + Tb[Tc, Ta]+ + Tc[Ta, Tb]+}
× [M123 + M132 + M231 + M213 + M312 + M321]/2

− Ta[Tb, Tc]+[M231 + M213 + M312 + M321]/2

− Tb[Tc, Ta]+[M123 + M132 + M312 + M321]/2

− Tc[Ta, Tb]+[M123 + M132 + M231 + M213]/2

+ Ta[Tb, Tc]−(M123 − M132)/2

+ Tb[Tc, Ta]−(M231 − M213)/2

+ Tc[Ta, Tb]−(M312 − M321)/2. (63)

The first term on the right-hand side involves the symmetric
sum of the space-time part of permuted amplitudes as in
the Abelian case, multiplied by the symmetric permutation
of the color indices. It yields a Feynman amplitude that is
just the Abelian Feynman amplitude multiplied by the color
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factor

C
CF

= T (1)
a T

(2)
b T (3)

c

2
{Ta[Tb, Tc]+ + Tb[Tc, Ta]+ + Tc[Ta, Tb]+}.

The other terms involve partial symmetry and antisymmetry
with respect to the exchange of color indices. Similar studies
on the collision of a jet with n partons can be carried out as
in Refs. [83–90]. For our present work, it suffices to note that
there will always be a component of the Feynman amplitude
that is symmetric under both space-time exchange and color-
index exchange involving the sum of all space-time amplitude
components, similar to the Ma + Mb sum in Eq. (58) and the
first term on the right-hand side of Eq. (63). There will also
be other space-time antisymmetric and color-index exchange
antisymmetric components.

For the space-time symmetric and color-index exchange
symmetric component, the Feynman amplitude is equal to
the Abelian Feynman amplitude multiplied by a color factor.
It will exhibit the same degree of Bose-Einstein interference
as in the Abelian theory. Previous analysis on the longitudinal
momentum transfer of recoiling fermions in the Abelian theory
in Sec. II can be applied for the non-Abelian theory for this
space-time symmetric and color-index exchange symmetric
component. There is thus a finite probability for the presence of
delta-function constraints to lead to recoiling quarks receiving
significant moment kicks along the direction of the incident
quark jet.

VII. COLLISION OF A GLUON JET
WITH QUARK SCATTERERS

It is of interest to generalize the above considerations to the
coherent multiple collisions of a gluon jet. We shall neglect
four-particle vertices and loops, which are of higher orders.
The Feynman diagrams for the collision of a gluon jet with
medium quarks or medium gluons then have structures and
momentum flows the same as those in the collision of a
quark jet with quark scatterers. In the high-energy limit, the
propagators and the three-particle vertices have approximately
the same momentum dependencies, and the Bose-Einstein
symmetry with respect to the interchange of the virtual bosons
is the same. One expects that, aside from the presence of color
factors and color indices, the results for the Bose-Einstein
interference in collisions with a gluon jet or a quark jet
should be similar. This is so because the high-energy processes
are insensitive to the spins of the colliding particles, as the
current carried by a high-energy particle is dominated by its
center-of-mass motion, much more so than its spin current
[86,97,98].

It is instructive to study the coherent collision of a fast
gluon p with two quarks in non-Abelian gauge field theories
in the reaction p + a1 + a2 → p′ + a′

1 + a′
2 as an example of

the type of BE interference for the collision of a gluon jet. The
collision process is represented by the two Feynman diagrams
in Fig. 3.

We consider the Feynman amplitude matrix element be-
tween the initial three-particle state |paα, a1f φ, a2kκ〉 and the
final state |p′cγ, a′

1hη, a′
2lλ〉, where {a, f, k, c, h, l} label the

p p − q1 p p p − q2 p
> > > > >
aα bβ cγ aα bβ cγ

q2∨ ∨q1∨q1 ∨q2 dδdδ

a1 a1 a2 a2 a1 a1 a2 a2

fφ hη kκ lλ fφ hη kκ lλ

>

(a) (b)

FIG. 3. Feynman diagrams for the collision of a gluon jet p with
quark partons a1 and a2 with the momentum transfers q1 and q2 in the
reaction p + a1 + a1 → p′ + a′

1 + a′
2. Here, {a, b, c, . . . ,k, l} label

the color states and {α, β, . . . ,η, λ} label the momentum components
of various particles.

color states and {α, φ, κ, γ, η, λ} label components of various
particle currents. Using the Feynman rules and the overall
phase factors as given in Ref. [84], the Feynman amplitude
matrix element of Fig. 3(a) is given by

〈p′cγ, a′
1hη, a′

2lλ|Ma|paα, a1f φ, a2kκ〉

= g4 fbecfbad

q2
1q2

2 (2p · q1 − iε)

(
T (2)

e

)
lk

(
T

(1)
d

)
hf

εγ (p′)

×{gγβ(p′ + p − q1)ε + gβε(−p + q1 − q2)γ

+ gεγ (q2 − p′)β}
× {gβα(2p − q1)δ + gαδ(−p − q1)β

+ gδβ(2q1 − p)α}ε∗
α(p)

× ū(a′
2)γεu(a2)ū(a1

′)γδu(a1), (64)

where ε(p) and ε(p′) are the polarization vectors for gluons p

and p′ respectively. In the high-energy limit in which |p| �
{|qi |, |ai |,m}, terms of order {|qi |/|p|, |ai|/|p|, m/|p|} in the
three-gluon vertices can be neglected, and the helicities can be
assumed to conserve. We then obtain

〈p′cγ, a′
1hη, a′

2lλ|Ma|paα, a1f φ, a2kκ〉

= g4

(
T

(p)
e

)
cb

(
T

(p)
d

)
ba

(
T (2)

e

)
lk

(
T

(1)
d

)
hf

q2
1q2

2 (2p · q1 − iε)

2p · ã1

m

2p · ã2

m
,

(65)

where the coefficients fbec and fbad in Eq. (64) have been
expressed as matrix elements of matrices T

(p)
d and T

(p)
e of the

incident gluon p (or p′) between gluon color states [84],(
T

(p)
d

)
ba

= ifdba = ifbad, (66)(
T (p)

e

)
cb

= ifecb = ifbec. (67)

Equation (65) can be rewritten in a matrix form as

Ma = g4 2p · ã12p · ã2

m2q2
1q2

2

T
(p)
e T

(p)
d T (2)

e T
(1)
d

2p · q1 − iε
. (68)

We can obtain a similar result for the Feynman amplitude for
diagram 3(b) by permuting the vertices of the exchange bosons.
As a consequence, the sum of the two Feynman amplitudes

064909-11



CHEUK-YIN WONG PHYSICAL REVIEW C 85, 064909 (2012)

from Figs. 3(a) and 3(b) is given by

M = g4 2p · ã12p · ã2

m2q2
1q2

2

×
{

T
(p)
e T

(p)
d T (2)

e T
(1)
d

2p · q1 − iε
+ T

(p)
d T

(p)
e T (2)

e T
(1)
d

2p · q2 − iε

}
. (69)

We note that the above equation for the collision of a gluon
jet is in the same form as Eq. (54) for the collision of a quark
jet except with the modification that, in the above equation
for a gluon jet, the operator T (p) has matrix elements between
gluon color states whereas the operator T (p) in Eq. (54) for the
quark jet has matrix elements between quark color states. As
in Eq. (54), we can likewise express the product of the color
matrices as

T
(p)
b T (p)

a = 1
2

([
T

(p)
b , T (p)

a

]
+ + [T (p)

b , T (p)
a

]
−
)
, (70)

T (p)
a T

(p)
b = 1

2

([
T

(p)
b , T (p)

a

]
+ − [T (p)

b , T (p)
a

]
−
)
. (71)

The Feynman amplitude for a gluon jet is then

M ∼ g4 2p · ã12p · ã2

m2q2
1q2

2

{
(Ma + Mb)

[
T

(p)
b , T

(p)
a

]
+T

(2)
b T (1)

a

2

+ (Ma − Mb)

[
T

(p)
b , T

(p)
a

]
−T

(2)
b T (1)

a

2

}
. (72)

Therefore, in the collision of both a gluon or a quark jet with
quarks, there will always be a component of the Feynman
amplitude that is symmetric under both space-time exchange
and color-index exchange, involving the sum of all space-time
amplitude components. The similarity is so close that previous
results concerning a quark jet in collision with quark scatterers
apply equally well to a gluon jet.

VIII. COLLISION OF A GLUON JET
WITH GLUON SCATTERERS

There is however a small difference in the coherent
collisions of a jet with gluon scatterers. We can consider the
collision of a fast gluon p with two gluon scatterers a1 and a2

as shown in Fig. 4.

p p − q1 p p p − q2 p
> > > >
aα bβ cγ aα bβ cγ

q2∨ ∨q1∨q1 ∨q2 dδdδ

a1 a1 a2 a2 a1 a1 a2 a2> > > >
fφ hη kκ lλ fφ hη kκ lλ

(a) (b)

FIG. 4. Feynman diagrams for the interaction of a gluon jet p

with gluon scatterers a1 and a2 with the momentum transfers q1 and
q2. Here, {a, b, c, . . . ,k, l} label the color states and {α, β, . . . ,η, λ}
label the momentum components of various particles.

The matrix element of the Feynman amplitude in Fig. 4(a)
is given by

〈p′cγ, a′
1hη, a′

2lλ|Ma|paα, a1f φ, a2kκ〉

= g4fbecfbadfkleff hd

q2
1q2

2 (2p · q1 − iε)
εγ (p′)ε∗

α(p)ελ(a′
2)ε∗

κ (a2)εη(a′
1)ε∗

φ(a1)

×{gγβ(p′ + p − q1)ε + gβε(−p + q1 − q2)γ
+ gεγ (q2 − p′)β}{gβα(2p − q1)δ + gαδ(−p − q1)β
+ gδβ(2q1 − p)α}{gκλ(−a2 − a′

2)ε + gλε(a′
2 + q2)κ

+ gεκ (−q2 + a2)λ}{gφη(−a1 − a′
1)δ + gηδ(a′

1 + q1)φ
+ gδφ(−q1 + a1)η}. (73)

In the high-energy limit in which |p| � {|qi |, |ai |,m} and the
helicities can be assumed to conserve, we obtain

〈p′cγ, a′
1hη, a′

2lλ|Ma|paα, a1f φ, a2kκ〉

= g4

(
T

(p)
e

)
cb

(
T

(p)
d

)
ba

(
T (2)

e

)
lk

(
T

(1)
d

)
hf

q2
1q2

2 (2p · q1 − iε)
4p · ā14p · ā2 (74)

where

āi = ai + a′
i

2
. (75)

We can obtain a similar result for the Feynman amplitude for
diagram 4(b) by permuting the vertices of the exchange bosons.
As a consequence, the sum of the two Feynman amplitudes
from Figs. 4(a) and 4(b) is given by

M = g4 4p · ā14p · ā2

q2
1q2

2

×
{

T
(p)
e T

(p)
d T (2)

e T
(1)
d

2p · q1 − iε
+ T

(p)
d T

(p)
e T (2)

e T
(1)
d

2p · q2 − iε

}
. (76)

By comparing the results for a quark jet on quark scatterers
Eq. (54) with those for a gluon jet on quark scatterers Eq. (69)
or on gluon scatterers Eq. (76), we obtain the following simple
rules to obtain from the results of quark jet on quark scatterers
of Eq. (54) to those involving gluons: (1) provide an overall
multiplicative factor of 2m when a quark is replaced by a
gluon; (2) keep the same form of the color operators, with
the color operators that operate on the quark color states
switched to operate on the gluon color states; and (3) change
the momentum variable ãi of Eq. (11) for a quark scatterer to
āi of Eq. (75) for a gluon scatterer when a quark scatterer is
replaced by a gluon scatterer. The above rules (1) and (2) are
well known results that were obtained previously on page 198
of Ref. [84]. Rule (3) is for our case in the collision with quark
or gluon scatterers.

For completeness, we can use these rules to obtain the
Feynman amplitude for the collision of a quark jet with two
gluon scatterers as

M = g4

2m

4p · ā14p · ā2

q2
1q2

2

{
T

(p)
e T

(p)
d T (2)

e T
(1)
d

2p · q1 − iε
+ T

(p)
d T

(p)
e T (2)

e T
(1)
d

2p · q2 − iε

}
.

(77)
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IX. LONGITUDINAL MOMENTUM TRANSFER
FOR GLUONS SCATTERERS

The cross-section rules for Eq. (30) have been written for the
collisions involving fermions (or quarks). The cross-section
rule involving incident gluons and/or gluon scatterers can be
generalized by the rule that, in replacing a fermion with a
gluon, the 2mfermion factor for a fermion is replaced by unity
for a gluon. Thus, we have explicitly the cross-section formula
for the coherent collision of an incident gluon with n fermion
scatterers, given by

dnσg+nf = |M|2(2π )4δ4
{
p +∑n

i=1 ai − p′ −∑n
i=1 a′

i

}
{∏n

i=1 fpi

}{∏n
i=2(1/2pi0)

}{∏n
i=2 Ti

}
× d4p′

(2π )3

Dp′(p′)
2p′

0

{
n∏

i=1

d4a′
i2mi

(2π )3

Di(a′
i)

2ai0

}
, (78)

where

fpi(gluon on fermion) = 4p · ai

2mi

. (79)

Similarly, the cross-section formula for the coherent collision
of an incident gluon with n gluon scatterers is given by

dnσg+ng = |M|2(2π )4δ4
{
p +∑n

i=1 ai − p′ −∑n
i=1 a′

i

}
{∏n

i=1 fpi

}{∏n
i=2(1/2pi0)

}{∏n
i=2 Ti

}
× d4p′

(2π )3

Dp′ (p′)
2p′

0

{
n∏

i=1

d4a′
i

(2π )3

Di(a′
i)

2ai0

}
, (80)

where

fpi(gluon on gluon) = 4p · ai. (81)

The cross-section formula for the coherent collision of an
incident quark of rest mass m with n gluon scatterers is given
by

dnσq+ng = |M|2(2π )4δ4
{
p +∑n

i=1 ai − p′ −∑n
i=1 a′

i

}
{∏n

i=1 fpi

}{∏n
i=2(m/pi0)

}{∏n
i=2 Ti

}
× d4p′

(2π )3

Dp′(p′)2m

2p′
0

{
n∏

i=1

d4a′
i

(2π )3

Di(a′
i)

2ai0

}
, (82)

where

fpi(fermion on gluon) = 4p · ai

2m
. (83)

The results in the last section indicate that for the Feynman
amplitude there is a modification from ã of Eq. (11) for
a quark scatterer to āi of Eq. (75) for a gluon scatterer,
when a quark scatterer is replaced by a gluon scatterer. Such
a modification brings with it a change in the longitudinal
momentum distribution of the gluon scatterers, which we shall
examine in this section.

We consider the coherent multiple collisions of a gluon
jet or a gluon jet on n gluons scatterers. From the results in
Eq. (76), the cross section for the scattering in the space-time

symmetric and color symmetric state is

dnσg+ng = C
CF

4

(
2α2

pz

)n
{

n∏
i=1

16Di

fpi

(2p · āi)2

2a′
i0

dqizdqiT

|qT |4
}

,

(84)

where C
CF

is the color factor for the space-time symmetric and
color symmetric component and

fpi = 4pi · ai. (85)

To investigate the longitudinal distribution of the scatterers, we
need to investigate the qiz dependence of the factor (2p · āi)2

in Eq. (84), which can be written as

(2p · āi)
2 = [2p · (2ai + qi)]

2. (86)

Because of the �(2p · qi) constraint, the above result gives

(2p · āi)
2�(2p · qi) ∼ (4p · ai)

2�(2p · qi), (87)

where the factor (4p · ai)2 is independent of the longitudinal
recoil qiz of the scatterer. It is convenient to use the transfer
rapidity ξi to represent the longitudinal momentum transfer
qiz,

qiz = mgT sinh ξi, (88)

a′
i0 =

√
m2

gT + (aiz + mgT sinh ξi)2, (89)

where for simplicity the final transverse masses of the
scatterers are taken to be their average value mgT . To make
the problem simple, we can take aiz to have its average value
〈aiz〉, which is zero in the medium center-of-momentum frame.
In that approximation, we obtain from Eqs. (88) and (89)

dqiz

a′
i0

∼ dξi. (90)

From Eq. (84), the cross section becomes becomes

σ ∼ Cg

dξ1dξ2 · · · dξndq1T dq2T · · · dqnT

|q1T |4|q2T |4 · · · |qnT |4 , (91)

where Cg is

Cg = C
CF

4

(
2α2

pz

)n
{

n∏
i=1

16Di

fpi

(2p · āi)2

2

}
. (92)

The quantity Cg is a weak function of ξi and qiT and can
be approximated as a constant. The probability distribution is
then a flat function of ξi . The transfer rapidly ξi has the upper
limit

ξimax = cosh−1

{
p0

nmgT

}
. (93)

Then as far as ξi is concerned, the average distribution is

dP

dξi

∼ 1

ξimax
�(ξimax − ξi). (94)

The average 〈qiz〉 is

〈qiz〉 = p0/n − mgT

ξimax
. (95)
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With p0 = 10 GeV/c and mgT = 0.6 GeV, we find for n = 6,

qiz ∼ 0.6 GeV/c, (96)

and for n = 2.4, we find

qiz ∼ 1.4 GeV/c. (97)

These estimates indicate that the average longitudinal momen-
tum kick acquired by a gluon scatterer is slightly smaller than
that acquired by a fermion scatterer. They are approximately
inversely proportional to the number of scatterers in a coherent
collision.

X. SIGNATURES OF BOSE-EINSTEIN INTERFERENCE
AND COMPARISON WITH EXPERIMENTAL DATA

The results in the above sections provide information on the
signatures for the occurrence of Bose-Einstein interference in
the coherent collisions of a jet with medium partons:

(i) The Bose-Einstein interference is a quantum many-
body effect. It occurs only in the multiple collisions
of the fast jet with two or more scatterers. Therefore
there is a threshold corresponding to the requirement
of two or more scatterers in the multiple collisions,
n � 2.

(ii) Each scatterer has a transverse momentum distribution
of the type 1/|qT |4, which peaks at small values of |qT |.

(iii) Each scatterer acquires a longitudinal momentum kick
that is an order 1/2n fraction of the incident jet
momentum along the incident jet direction.

(iv) As a consequence, the final effect is the occurrence of
collective recoils of the scatterers along the jet direction.

To inquire whether Bose-Einstein interference may corre-
spond to any observable physical phenomenon, it is necessary
to identify the scatterers to separate them from the incident
jet in a measurement. Such a separation is indeed possible in
�φ-�η angular correlation measurements of produced pairs
with a high-pT trigger [1–30]. Particles in the “ridge” part
of the correlations with |�η| > 0.6 at RHIC and |�η| > 1.0
at LHC with �φ ∼ 0 can be identified as belonging to the
medium partons, because of the following observations at
RHIC:

(i) The yield of these ridge particles increases approxi-
mately linearly with the number of participants [3].

(ii) The yield of these ridge particles is nearly independent
of (i) the flavor content, (ii) the meson/hyperon char-
acter, and (iii) the transverse momentum pT (above
4 GeV) of the jet trigger [3,4,6].

(iii) The ridge particles have a temperature (inverse slope)
that is similar (but slightly higher) than that of the
inclusive bulk particles, but lower than the temperature
of the near-side jet fragments [3].

(iv) The baryon/meson ratio of these ridge particles is
similar to those of the bulk hadrons and is quite different
from those in the jet fragments [19].

With the scatterers as ridge particles that can be separated
from the incident high-pT jet, the occurrence of the Bose-

Einstein interference will be signaled by item (4) of the
collective recoils of the scatterers (the ridge particles) along the
jet direction. Such collective recoils will lead to the �φ ∼ 0
correlation of the ridge particles with the high-pT trigger, as
has been observed in angular correlations of produced hadrons
in AuAu collisions at RHIC [1–23], and in pp and PbPb
collisions at LHC [26–30]. The collective recoils of the kicked
medium partons have been encoded into the longitudinal
momentum kick 〈qiz〉 of the momentum kick model that yields
the observed �φ, �η, and pT dependencies of the angular
correlations in AuAu collisions at RHIC [31–37], and pp

collisions at LHC [38].
It is of interest to examine item (3) of the signature of the

Bose-Einstein interference with regard to the relationship be-
tween the (average) magnitude of the longitudinal momentum
kick, 〈qiz〉, and the (average) number of scatterers, 〈n〉, when
such a collective momentum kick occurs. For the most central
AuAu collisions at

√
sNN = 200 GeV at RHIC, we previously

found that 〈fR〉〈n〉 ∼ 3.8, where n is the number of kicked
medium partons and 〈fR〉 is the average attenuation factor for
the kicked partons to emerge from the collision zone [33].
The value of 〈fR〉 is not determined, but a similar attenuation
factor 〈fJ 〉 for jet fragments is of order 0.63 [33]. We can
therefore estimate that for the most central AuAu collisions
at

√
sNN = 200 GeV at RHIC, 〈n〉 ∼ 6. For an incident jet of

pz∼10 GeV/c [20], the estimates of Eq. (51) and (72) give

qiz ∼
{

0.83 GeV/c for a quark scatterer,

0.63 GeV/c for a gluon scatterer.
(98)

These estimates of the momentum kick are of the same order
as the value of 〈qiz〉 ∼ 1 GeV/c estimated in Ref. [33] and
0.8 GeV/c in Ref. [35], obtained in the momentum kick model
analysis.

In another momentum kick model analysis for the highest
multiplicity pp collisions at

√
sNN = 7 TeV at the LHC, we

previously found that 〈fR〉〈n〉 ∼ 1.5 [38]. The value of ridge
particle attenuation factor 〈fR〉 is not determined, but we can
use again the similar attenuation factor for jet fragments, 〈fJ 〉
of order 0.63 [33], to estimate 〈n〉 ∼ 2.4. For an incident jet of
10 GeV/c, the estimates of Eqs. (51) and (95) give the average
scatterer longitudinal recoil momentum as

qiz ∼
{

2.1 GeV/c for a quark scatterer,

1.4 GeV/c for a gluon scatterer.
(99)

These estimates of the momentum kick are slightly lower than,
but of the same order as the value of 〈qiz〉 ∼ 2 GeV/c inferred
from experimental data in the momentum kick model analysis
[38]. The experimental data give a longitudinal momentum
transfer that is approximately inversely proportional to the
number of scatterers.

With regard to item (1) for the signature for the occurrence
of the Bose-Einstein interference, the presence of a threshold
implies a sudden increase of the ridge yield as a function of the
number of kicked medium scatterers, n, which increases with
the increasing centrality, as represented either by an increasing
number of participants or by increasing multiplicities. The
slope of the yield as a function of centrality will change
from zero below threshold to infinite over a small range
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FIG. 5. (Color online) The ridge yield per high-pT trigger as a
function of the participant number Npart for nucleus-nucleus collisions
at

√
sNN = 200 and 62 GeV. The solid circular points (for AuAu)

and the square points (for CuCu) are from the STAR Collaboration
[4,10]. The curves are the momentum kick model results of Ref. [34]
modified to include the Bose-Einstein interference threshold effect of
n � 2.

of centralities at threshold. We expect that such a sudden
threshold will be smoothed out by the fluctuations of the
participant numbers and multiplicities with respect to the
number of kicked medium partons. However, the change of
the slope of the ridge yield as a function of centralities
will remain. Hence, the BE threshold effect will show up
as a change of the slope of the ridge yield as a function of
centralities, measured by the number of participants or by
multiplicities. Equivalently, the ridge yield as a function of
centralities will appear to have a kink near the threshold region
of centrality. A search for a change of the slope or a kink in
the ridge yield as a function of centralities will allow us to find
the BE interference threshold.

We show in Fig. 5 the experimental ridge yield per high-pT

trigger as a function of Npart for AuAu and CuCu collisions
at

√
s = 200 and 62 GeV at RHIC [4,10]. We also show

in Fig. 5 the theoretical yields obtained in the momentum
kick model [33], where the ridge yield at the most central
collision at Npart = 320 was calibrated as n = 6 [33]. With
such a calibration, the threshold values in Npart at which
n = 2 can be located are listed in Table I, where the 30%

TABLE I. Comparison of the locations of the theoretical thresh-
old, at which the (average) number of scatterers n is equal to 2, with the
observed experimental threshold [14–17] for the sudden increase of
the 2D Gaussian distribution amplitude and width (ridge component)
in AuAu collisions at

√
sNN = 200 and 62 GeV in Fig. 8.

Collision
√

sNN Theoretical Experimental
system (GeV) threshold Npart threshold Npart

AuAu 200 69±21 58–86
AuAu 62 146±45 85–122
CuCu 200 51±15
CuCu 62 103±31
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FIG. 6. (Color online) (a) Preliminary CMS Collaboration data
of the ridge yield per trigger (associated yield) in the region of
2 < |�η| < 4 for pp collisions at 7 TeV, for 2 < p

trig
T < 3 GeV and

1 < passoc
T < 2 GeV, as a function of multiplicities N [99]. (b) The

slope of the ridge yield, d(associated yield)/dN , as a function of N .

theoretical errors arise from the errors in measuring the ridge
yield at the most central collision at Npart = 320. Theoretical
ridge yields from the momentum kick analysis in Fig. 10 of
Ref. [33], modified to include the Bose-Einstein interference
threshold effect of n � 2, are shown as the solid curves for
AuAu collisions, and as dashed curves for CuCu collisions in
Fig. 5. The theoretical thresholds in Fig. 5 will be smoothed
out by the fluctuations of the number of scatterers as a function
of Npart and by uncertainties in the estimates of the number
of scatterers. Although the experimental data appear to be
consistent with theory, the large error bars and the scarcity of
the number of data points in the threshold regions preclude a
definitive conclusion.

In Fig. 6(a), we show the CMS preliminary data on the near-
side ridge yield per trigger (associated yield) as a function of
centralities, as measured by multiplicities N , for pp collisions
at

√
s = 7 TeV [99]. To search for the BE threshold that may

show up as a change of slope or a kink of the ridge yield as a
function of multiplicities, we show the slope of the associated
ridge yield, d(associated yield)/dN , as a function of N in
Fig. 6(b). The lines in Figs. 6(a) and 6(b) join the data points
to guide the eyes. The CMS preliminary data in Figs. 6(a) and
6(b) indicate a sharp change of the slope of the ridge yield in
the region around N ∼ 50–70, which may suggest a threshold
for the ridge yield at around N = 50–70.

We show CMS preliminary data [99] on the near-side ridge
yield per trigger (associated yield) for PbPb collisions at

√
sNN

= 2.76 GeV/c as a function of the number of participants Npart

in Fig. 7(a), and the corresponding d(associated yield)/dNpart

in Fig. 7(b). In Fig. 7, we also include the minimum-biased pp

data point as an open circle for Npart = 2 (for very peripheral
PbPb collisions), at which the ridge yield is zero [26,28]. The
integrated near-side associated yield for 4 < p

trig
T < 6 GeV/c

and 2 < passoc
T < 4 GeV in the ridge region of 2 < |�η| < 4

appears to have a kink in the ridge yield as a function of Npart at
〈Npart〉 ∼ 30 in Fig. 7(a). The slope increases sharply starting at
Npart ∼ 20 in Fig. 7(b) and reaches a large value at Npart ∼ 40.
Such a behavior may suggest the presence of a ridge yield
threshold. The location of a possible threshold at 〈Npart〉 ∼ 30
for PbPb collisions appears to be qualitatively consistent with
the decrease of 〈Npart〉 as a function of increasing collision
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FIG. 7. (Color online) Preliminary CMS data of the ridge yield
per trigger in the ridge region of 2 < |�η| < 4 for PbPb collisions at√

sNN = 2.76 TeV, for 4 < p
trig
T < 6 GeV and 2 < passoc

T < 4 GeV,
as a function of the number of participants Npart [99].

energies, as indicated in Table I. It will be of interest to examine
in future work whether the ridge thresholds as suggested by
the CMS pp and PbPb data correspond quantitatively to the
location of n = 2 for the onset of the BE interference.

Threshold effects for the ridge yield (2D Gaussian yield)
as a function of Npart have been observed in another angular
correlation measurement with a low-pT trigger from the STAR
Collaboration [14–17], as shown in Fig. 8. We noted previously
that a fast jet parton possesses low-pT jet fragments, and
a minimum-pT -biased low-pT trigger can also indicate the
passage of a fast parent jet [38]. As a consequence, ridge
particles will also be associated with a low-pT trigger. The
change of the slope of the amplitude of the 2D Gaussian
distribution (the ridge yield) shown in Fig. 8 indicates the
presence of a threshold for the ridge yield as a function of
centrality.

For AuAu at 200 GeV/c, the experimental ridge yield
threshold occurs at Npart = 58–86 (Fig. 8), which can be
compared in Table I with the theoretical ridge yield threshold
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FIG. 8. (Color online) STAR Collaboration data of the 2D
Gaussian distribution amplitude (ridge yield) for AuAu collisions
at

√
sNN = 200 GeV (solid circles) and 62 GeV (open circles), with

a low-pT trigger [14–17]. The solid and dashed curves are lines
joining the data points. The dashed-dotted and dotted curves represent
Glauber linear superposition (GLS) estimates.

of Npart = 69 ± 21 as estimated in the momentum kick model
for n = 2. For AuAu at 62 GeV/c, the experimental ridge
yield threshold occurs at Npart = 85–122 (Fig. 8), which can be
compared with the theoretical threshold of Npart = 146 ± 45
as estimated in the momentum kick model for n = 2 (Table I).
These comparisons indicate that experimental data with low-
pT trigger are consistent with the presence of ridge thresholds
as a function of the number of the medium scatterers located at
n ∼ 2, as in the threshold effect in Bose-Einstein interference.

XI. CONCLUSIONS AND DISCUSSIONS

Conventional investigations [77–81,91–94] on scattering of
a fast particle with medium scatterers use the potential model
in which the scatterers are represented by static potentials
and the longitudinal recoils of the scatterers are considered
as dependent variables that are appendages to the deflected
motion of the incident particle. A general treatment of coherent
collisions necessitates the use of the longitudinal recoils of
the scatterers as independent dynamical variables which are,
however, not allowed in the potential model. This leads us to
forgo the potential model and to turn to the use of Feynman
amplitudes for the general treatment of coherent collisions.

In the Feynman amplitude approach for the coherent
collision of a fast particle on n scatterers, there are n! different
orderings in the sequence of collisions along the fast particle
trajectory at which various virtual bosons are exchanged.
By Bose-Einstein symmetry, the total Feynman amplitude is
the sum of the n! amplitudes for all possible interchanges
of the virtual bosons. The summation of these n! Feynman
amplitudes and the accompanying interference constitute the
Bose-Einstein interference in the passage of the fast particle
in the dense medium.

Our interest in examining this problem has been stimulated
by the phenomenological successes of the momentum kick
model in the analysis of the angular correlations of hadrons
produced in high-energy heavy-ion collisions [31–38]. We
seek a theoretical foundation for the origin of the longitudinal
momentum kick along the jet direction postulated in the
model. We explore whether such a longitudinal momentum
kick may originate from a quantum many-body effect arising
from the Bose-Einstein interference in the passage of a jet
in a dense medium. We take note of previous results on the
Bose-Einstein interference in the emission of real photons
and gluons in high-energy interactions and in the sum of the
ladder and cross-ladder loop diagrams in the collision of two
particles [83–90].

We find similarly that, in the coherent collisions of an ener-
getic fermion with n fermion scatterers at high energies in the
Abelian theory, the symmetrization of the Feynman scattering
amplitudes with respect to the interchange of the virtual bosons
leads to the Bose-Einstein interference, resulting in a sharp
distributions at p · qi ∼ 0. Such coherent collisions are in fact
a single collision, tying the incident fermion with the n fermion
scatterers as a single unit. There are then 3(n + 1) degrees
of freedom, subject to the constraints of the conservation of
energy and momentum. As a consequence, all 3n degrees
of freedom of the scatterers can be independently varied.
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The probability distribution in these 3n momentum degrees
of freedom depends on the Feynman amplitudes and the
phase-space factors. The Bose-Einstein symmetry constraints
of p · qi ∼ 0 limit the transverse momentum transfers of the
scatterers to small values of qiT . The longitudinal momenta of
the scatterers get their share of longitudinal momenta from the
jet, resulting in the collective recoils of the scatterers along the
jet direction.

For the coherent collision of an energetic parton with parton
scatterers in non-Abelian cases, we find that the complete
Bose-Einstein symmetry in the exchange of virtual gluons
consists not only of space-time exchange symmetry but also
color-index exchange symmetry. Nevertheless, there is always
a space-time symmetric and color-index symmetric component
of the Feynman amplitude that behaves in the same way as
the Feynman amplitude in the Abelian case, in addition to
the occurrence of space-time antisymmetric and color-index
antisymmetric components. For the space-time symmetric
and color-index symmetric component, the recoiling partons
behave in the same way as in collisions in the Abelian case.
There is thus a finite probability for the parton scatterers to
emerge collectively along the incident trigger jet direction,
each with a significant fraction of the longitudinal momentum
of the incident jet. The collective recoils will lead to the
�φ ∼ 0 correlation of the ridge particles with the high-pT

trigger. Such a signature of the Bose-Einstein interference
may have been observed in the �φ ∼ 0 correlation of the
ridge particles with a high-pT trigger in the angular correlation
measurements of produced hadron pairs in AuAu collisions at
RHIC [1–23] and in pp and PbPb collisions at LHC [26–30].
The centrality dependence of the ridge yields in pp and PbPb
collisions at LHC with high-pT trigger [28,99] and in AuAu
collisions at RHIC with a low-pT trigger [14–17] gives hints of
the presence of a ridge threshold, as expected in the quantum
many-body effect of Bose-Einstein interference.

Our focus at present is on the recoils of the scatterers.
We have been examining the collision between the incident
particle and the medium scatterers without radiation. We
find that the scatterer recoils range from quasielastic to a
substantial fraction of the incident particle momentum. For
a given multiple collision processes involving the recoils of
the scatterers, the radiative processes will involve addition
external legs in the Feynman diagram. They are high order in
αs . Therefore, as far as the cross sections are concerned, they
generally occur with lower probabilities. However, as far as jet
energy loss is concerned, these high-order radiative processes
can be important in certain kinematic regions. For example,
if one restricts oneself to quasielastic processes with small
scatterer longitudinal momentum recoils, then radiation can
take up more of the jet longitudinal momentum, even though
they occur with a lower probability than quasielastic scattering.
One therefore envisages that, in the investigation of the loss of
the incident longitudinal momentum, radiative energy loss is
important in the region of small scatterer longitudinal recoils,
but the relative importance of the radiative energy loss will
diminish as one moves toward the regions of greater scatterer
longitudinal recoils.

If one restricts oneself to potential models, then the
longitudinal momentum and energy losses due to scatterer

recoils will be small, and radiative energy loss becomes more
important than quasielastic collision energy loss. However,
for reasons we examined in Sec. II and discussed earlier
in this section, the general treatment of coherent collisions
necessitates the use of the longitudinal recoils of the scatterers
as independent dynamical variables, which are, however, not
allowed in the potential model. It is necessary to use the
Feynman amplitude approach to explore the entire domain
of longitudinal scatterers recoils. We hope to carry out an
analysis of radiative processes in conjunction with scatterer
recoils within the Feynman amplitude approach in the future.

The present work is based on the high-energy limit which
allows great simplifications of the algebraic structures of
Feynman amplitudes. These simplified structures bring into
clear focus the mechanism of the Bose-Einstein interference
that changes the nature of the distribution function. With the
mechanism of the Bose-Einstein interference well understood,
it may be beneficial in future work to evaluate the Feynman am-
plitudes without resorting to many of the drastic assumptions
and simplifications, in order to make quantitative comparisons
of theoretical predictions with results of the longitudinal
momentum kick quantities extracted from experimental data.
This is particularly important in regions of large longitudinal
momentum transfers for which the high-energy approxima-
tion of having p′ not greatly different from p may not
hold.

Coherence or decoherence in high-energy processes occurs
when the scattering amplitude consists of many contributions,
and these contributing amplitudes interfere. Because of their
general nature, they come in many different processes in
different forms.

The coherence results we present here have been obtained
for a single jet and interacting particles as plane waves. High-
energy collisions have a preference for longitudinal motion
over transverse motion. Therefor, for a single jet, as in the case
of our main interest, the interference of Feynman diagrams
has relevance only with regard to longitudinal coherence
length along the longitudinal direction. For such a config-
uration, the uncertainties of the vertices of boson emission
along the longitudinal direction lead to the coherence in the
collision process. Uncertainties in the transverse direction
come from the transverse positions of the scatterers. Such
uncertainties can be included by treating the scatterers in
terms of wave packets [100], form factors [101], or scatterer
wave functions [94]. In the special case of a purely elastic
scattering of an incident fast particle with medium particles (in
a nucleus), there can be constructive interference of the scat-
tering amplitudes from different particles, leading to a sharp
diffractive elastic peak at the forward angle, as described by
Glauber [101].

However, there are circumstances in which interesting
transverse uncertainties arises, and the amplitudes from dif-
ferent transverse sources interfere. An interesting case of
transverse interference can be found in connection with the
coherent emission of a gluon from a system of a quark jet and
an antiquark jet [92,93]. This case involves the propagation
of two jets with an opening transverse angle θqq̄ and differs
from our present case with the propagation of a single jet.
The amplitude for gluon emission from the quark q interferes
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with the amplitude for gluon emission from the antiquark q̄.
As a consequence, in the absence of a medium, the coherent
interference in the transverse direction leads to the angular
ordering of the emitted gluon in such a way that the emitted
gluon lies within the opening angles of the q-q̄ pair, θqq̄ . In
the presence of a medium, as shown in Ref. [92,93], the quark
and the antiquark are subject to multiple scatterings along
their trajectories that change their momenta, their distributions,
and their propagating phases. These changes of the quark
and antiquark sources of the gluon due to the medium will
diminish the strength of the transverse coherent interference
of the emitted gluon that occurs in the absence of the medium,
leading to a gradual decoherence of the gluon emission as
a function of increasing medium density [92,93]. Recent ex-
perimental findings on reconstructed jets in nuclear collisions
at LHC [102,103] suggest that such medium-induced partial
decoherence may be an important effect.

Conventional model analysis of collision processes [77–81,
91–94] assumes the ladder-type diagrams such as Figs. 1(a)
and 2(a), while the cross Feynman diagrams such as Figs. 1(b)
and 2(b)–2(f) have been ignored. As the derivations in Sec. III
demonstrate, the contributions from different cross diagrams
destructively interfere with the ladder Feynman diagrams
and there is a high degrees of cancellation. In general, the
neglect of this destructive interference by including only
the ladder Feynman diagram cannot be justified from a
mathematical view point. Only in the special and restrictive
case of quasielastic scattering with the fast particle assumed to
be nearly on the mass shell and with the additional assumption
of qi0 = 0 is it justified to include only the ladder diagrams, at
the expenses of precluding the exploration into other regions
of scatterer recoils.

Many models have been proposed to explain the ridge
phenomenon [31–38,40–74]. They include the collision of jets
with medium partons [31–38,60,61], flows and hydrodynamics
with initial state fluctuations [40,41,48,49,57,59,66], color-
glass condensate [47–49,53,58], modeling pQCD [62–65],
parton cascade [67], gluon bremsstrahlung in string formation
[68], strong-coupling AdS/CFT [70], quantum entanglement
[72], and BFKL evolution and beyond [74]. There are
however two difficulties associated with these phenomeno-
logical models. Almost all models deal with fragmented
parts of the data and all models contain implicit and explicit
assumptions.

In the presence of a large number of models and the
above difficulties, progress can proceed on three fronts. First,
the models need to cover an extensive set of experimental
differential data over large phase spaces, centralities, and
energies, from many different collaborations. Second, the
assumptions of the models need further theoretical and
observational investigations from fundamental viewpoints.
Finally, experimental tests need to be proposed to distinguish
different models.

With regard to the first of these three tasks, the momentum
kick model gives reasonable descriptions for an extensive set
of differential data of the ridge yield, over an extended range
of transverse momenta, azimuthal angles, pseudorapidity
angles, centralities, and collision energies, from the STAR
Collaboration [1–5], the PHENIX Collaboration [20–23], the

PHOBOS Collaboration [25], and the CMS Collaboration
[26]. In these momentum kick model analyses, a collec-
tive longitudinal momentum kick on the medium scatterers
along the jet direction is a central ingredient leading to
the successful descriptions of the large set of experimental
data. Additional analyses will be continued to extend the
momentum kick model to include the effects of collective
flows and to cover a larger set of new data as they become
available.

With regard to the second of the three tasks, the momentum
kick model contains the basic assumption that the �η ridge
arises mainly from the initial rapidity distribution of partons
prior to the jet collision. Such a basic assumption has been
examined from the viewpoint of the Wigner function of
produced particles in a fundamental quantum theory of particle
production [36]. Another basic assumption concerning the
longitudinal nature of the momentum kick is now being
examined in the present paper.

With regard to third of the three tasks, the present analysis
for jets interacting with medium partons reveals that the
longitudinal momentum kick is a quantum many-body effect
that contains a threshold, requiring multiple collisions of the
jet with at least two partons. This may be in agreement with the
onset of the ridge yield as a function of the centrality, observed
by the CMS Collaboration for pp and PbPb collisions at
LHC [99], and by the STAR Collaboration at RHIC [2,14–18],
as discussed in Sec. X. Furthermore, in the momentum kick
model with longitudinal momentum kicks, the kicked medium
partons from back-to-back jets possess a (p1T , p2T ) correlation
for both the near side and the away side, as observed by the
STAR Collaboration [18,38].

It would be of interest to see how other proposed models
fare with the three tasks at hand. It will also be of interest to
see whether they contain the features of a rapid rise of the
ridge yield as a function of the centrality, and the (p1T , p2T )
correlation for both the near side and the away side. The search
for tests to distinguish different models will be an ongoing
research activity.

Whatever the theoretical descriptions, jets of order 10 GeV
and below are known to be present in high-energy collisions
[20–24,75]. These jets collide with medium partons. They are
not hydrodynamical flows, but they contribute to the azimuthal
anisotropy and the azimuthal Fourier coefficients [104–106],
as well as to two-particle correlations. They must be taken into
account or be subtracted from experimental data in theoretical
models that do not include the jet effects explicitly.

In summary, Bose-Einstein interference in the passage of
a jet in a dense medium is a quantum many-body effect
that occurs quite generally in a coherent multiple collision
process, with the threshold of more than two scatterers.
The manifestation of the Bose-Einstein interference effect as
collective recoils of the scatterers along the jet direction may
have been experimentally observed in the �φ ∼ 0 correlation
of hadrons associated with a high-pT trigger in high-energy
AuAu collisions at RHIC, and pp and PbPb collisions at
LHC. The experimental observation of ridge thresholds as a
function of centrality may lend support for the occurrence of
the Bose-Einstein interference thresholds in the passage of a
jet in a dense medium.
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