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Meson-charmonium dissociation reactions governed by the quark interchange are studied with temperature-
dependent quark potentials. Quark-antiquark relative-motion wave functions and masses of charmonia and
charmed mesons are determined by the central spin-independent part of the potentials or by the central spin-
independent part and a smeared spin-spin interaction. The prominent temperature dependence of the masses is
found. Based on the potentials, the wave functions, and the meson masses, we obtain temperature-dependent cross
sections for the fifteen dissociation reactions: πJ/ψ → D̄∗D or D̄D∗, πJ/ψ → D̄∗D∗, πψ ′ → D̄∗D or D̄D∗,
πψ ′ → D̄∗D∗, πχc → D̄∗D or D̄D∗, πχc → D̄∗D∗, ρJ/ψ → D̄D, ρJ/ψ → D̄∗D or D̄D∗, ρJ/ψ → D̄∗D∗,
ρψ ′ → D̄D, ρψ ′ → D̄∗D or D̄D∗, ρψ ′ → D̄∗D∗, ρχc → D̄D, ρχc → D̄∗D or D̄D∗, and ρχc → D̄∗D∗. The
numerical cross sections are parametrized for future applications in hadronic matter. The particular temperature
dependence of the J/ψ bound state leads to unusual behavior of the cross sections for endothermic J/ψ

dissociation reactions. The quantum numbers of ψ ′ and χc cannot make their difference in mass in the temperature
region 0.6Tc � T < Tc but can make the ψ ′ dissociation different from the χc dissociation.
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I. INTRODUCTION

From the year when Matsui and Satz [1] originally
suggested the suppressed J/ψ production as a signature for the
formation of a quark-gluon plasma in high-energy heavy-ion
collisions to the last year’s quark matter conference where
preliminary J/ψ data in Pb-Pb collisions at the Large Hadron
Collider were reported by the ALICE Collaboration [2] and the
CMS Collaboration [3], important measurements have been
done. Essential theoretical progress on J/ψ has also been
made. One of the fundamental issues is the dissociation of
charmonia in hadronic matter [4]. To identify J/ψ as a probe of
the quark-gluon plasma in a definite way, hadron-charmonium
dissociation processes must be well understood. Calculations
of dissociation cross sections are thus an important aspect
in studying J/ψ physics. The dissociation is described by
the meson or quark degree of freedom. Corresponding to the
two degrees of freedom, different scattering mechanisms can
be assumed, and different results on the dissociation cross
sections have been reported in the literature.

There are mainly three approaches to the meson-J/ψ

dissociation problem. In the short-distance approach the parton
model of light hadrons, the constituent quark model of J/ψ ,
and the gluon-J/ψ dissociation cross section of Peskin and
Bhanot [5] are employed in Refs. [6,7] to investigate πJ/ψ

and NJ/ψ dissociation. The portion of hard gluons inside
the nucleon or pion at low energies is not large enough to
induce millibarn-scale cross sections. In the meson-exchange
approach J/ψ dissociation has been studied with effective
meson Lagrangians. Since the discovery of J/ψ reveals the
charm quark, J/ψ is first described by QCD. The meson-field
description of J/ψ and charmed mesons began to appear with
the work of Matinyan and Müller [8], who first discussed
the t-channel exchange of the D meson in inelastic πJ/ψ

and ρJ/ψ scattering. They obtained millibarn-scale cross
sections for πJ/ψ → D∗D̄ + DD̄∗ and ρJ/ψ → DD̄ at
low energies. A similar scale of cross sections has been

obtained in other meson Lagrangians with different symme-
tries and modified vertex functions in Feynman diagrams that
include the effect of finite meson form factors [9–14]. In
the quark-interchange approach J/ψ dissociation has been
studied in nonrelativistic quark potential models [15–18].
The assumption that color-independent confining interaction
acts only between a quark and an antiquark in Ref. [15]
yields that the J/ψ absorption cross section corresponding to
πJ/ψ → D∗D̄ + DD̄∗ + D∗D̄∗ has a peak value of about 7
mb at a kinetic energy Ekin ≡ √

s − (mπ + mJ/ψ ) � 0.8 GeV.
However, by including color generators in the linear confining
potential and allowing the interaction to connect any two
constituents (quarks and antiquarks), Wong, Swanson, and
Barnes [16] gave a peak value of only ∼1 mb at the same
kinetic energy. Usefully, the dissociation cross sections of
ground state, orbitally and radially excited charmonia in
collisions with π and ρ mesons have been presented in
Ref. [18], where all parameters in the color Coulomb, spin-spin
hyperfine, and linear confining interactions are determined by
fits to the experimental meson spectrum.

All the above works only involve charmonium dissociation
reactions in vacuum, and they have been used to evaluate J/ψ

suppression in nucleus-nucleus collisions, but we know that
hadron masses, the quark potential, and so on are affected
by the medium and the QCD phase transition is the most
striking medium effect, so we must study medium effects
on the charmonium dissociation. In this work we calculate
dissociation cross sections of J/ψ , ψ ′, and χc in collisions
with π and ρ at various temperatures. The quark-interchange
mechanism [19], the Born approximation, and a temperature-
dependent quark potential [20] are ingredients in establishing
cross-section formulas.

This paper is organized as follows. In the next section we use
the temperature-dependent potential [20] in the Schrödinger
equation to obtain temperature-dependent masses of charmo-
nia and charmed mesons. In Sec. III we give formulas for
charmonium dissociation cross sections. Numerical results for
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unpolarized cross sections of J/ψ , ψ ′, and χc in collisions
with π and ρ at six temperatures are shown in Sec. IV
and relevant discussions are given. In Sec. V the spin-spin
interaction arising from one-gluon exchange is smeared.
Subsequent results are shown and numerical cross sections
are parametrized. In Sec. VI we present a procedure for how
to obtain unpolarized cross sections at any temperature in the
region 0.65 � T/Tc < 1, where Tc is the critical temperature.
Finally, we summarize the present work in Sec. VII.

II. MASSES OF CHARMONIA AND CHARMED MESONS

As shown in Refs. [21–24], the quark potential containing
flavor-independent confinement, a Coulomb term, and hyper-
fine interactions can consistently reproduce masses from light
to heavy hadrons, and the flavor-independent assumption of
confinement is thus reasonable. Such confinement in hadronic
matter can be estimated by the lattice calculations [25] and
depends on temperature. At large distances the confinement
manifests itself by a plateau that lowers with increasing
temperature. In Ref. [20] we used the confinement at large
distances and the short-distance potential originating from
one-gluon exchange and loop corrections in perturbative
QCD [26] to construct a central spin-independent, flavor-
independent but temperature-dependent potential

Vsi(	r) = −
	λa

2
·
	λb

2

3

4
D

[
1.3 −

(
T

Tc

)4]
tanh(Ar)

+
	λa

2
·
	λb

2

6π

25

v(λr)

r
exp(−Er). (1)

Here D = 0.7 GeV, Tc = 0.175 GeV, A = 1.5[0.75 +
0.25( T

Tc
)10]6 GeV, E = 0.6 GeV, and λ =

√
3b0/16π2α′

in which α′ = 1.04 GeV−2 is the Regge slope and
b0 = 11 − 2

3Nf with the quark flavor number Nf = 4. 	λa

are the Gell-Mann matrices for the color generators of
constituent a. The dimensionless function v(x) is an
integration over the absolute value of gluon momentum 	Q,

v(x) = 4b0

π

∫ ∞

0

dQ

Q

[
ρ( 	Q2) − K

	Q2

]
sin

(
Q

λ
x

)
, (2)

where K = 3/16π2α′. The subtraction of K/ 	Q2 from the
physical running coupling constant ρ( 	Q2) leaves only the
contribution of one-gluon exchange plus perturbative one-
and two-loop corrections. The factor exp(−Er) is a medium
modification factor to the potential of one-gluon exchange plus
perturbative one- and two-loop corrections. The temperature
dependence is completely negligible at very short distances
and obvious at intermediate and large distances. The potential
well fits the lattice gauge results at T/Tc > 0.55 [25], but it
fails to give a long-ranged linear confining potential at T = 0.

Given the charm quark mass mc = 1.51 GeV, the
Schrödinger equation with the potential given in Eq. (1) is
solved to obtain masses and wave functions of J/ψ , ψ ′, and
χc. Here the χc mass corresponds to the center of gravity
of χc0, χc1, and χc2 [27]. At T = 0 the masses of J/ψ , ψ ′,
and χc are 3.10505, 3.67679, and 3.51138 GeV, compared
to the experimental values of 3.096916, 3.68609, and
3.5253 GeV [28], respectively. The temperature dependence
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FIG. 1. Meson masses as functions of T/Tc. The masses of J/ψ ,
ψ ′, χc, D, D∗, Ds , and D∗

s are shown by the solid, dashed, dotted,
lower long dashed, upper long dashed, lower dot-dashed, and upper
dot-dashed curves, respectively.

of the charmonium masses is shown by the solid, dashed, and
dotted curves in Fig. 1. Because J/ψ has a small radius, the
J/ψ mass changes more slowly than the ψ ′ and χc masses.
Even though ψ ′ and χc have different quantum numbers,
both become degenerate in mass in the temperature region in
Fig. 1. Furthermore, at temperatures very close to the critical
temperature J/ψ joins ψ ′ and χc to form a triplet in mass.
This is a medium effect on charmonia!

Given mc = 1.51 GeV, the up and down quark masses mu =
md = 0.32 GeV, and the strange quark mass ms = 0.5 GeV,
the Schrödinger equation with the central spin-independent
potential offers the same quark-antiquark relative-motion wave
functions of π and ρ (D and D∗, Ds and D∗

s ) and the spin-
averaged mass of π and ρ (D and D∗, Ds and D∗

s ). The
spin-averaged mass of a spin-0 meson and a spin-1 meson with
the same isospin is one-fourth of the spin-0 meson mass plus
three-fourths of the spin-1 meson mass. The quark-antiquark
relative-motion wave functions of π and ρ (D and D∗, Ds and
D∗

s ) are used to calculate the mass splitting of π and ρ (D and
D∗, Ds and D∗

s ) with the spin-spin interaction that arises from
one-gluon exchange plus one- and two-loop corrections [29]:

Vss = −
	λa

2
·
	λb

2

16π2

25
δ3(	r)

	sa · 	sb

mamb

+
	λa

2
·
	λb

2

4π

25

1

r

d2v(λr)

dr2

	sa · 	sb

mamb

, (3)

where 	sa (	sb) and ma (mb) are the spin and mass of constituent a
(b), respectively. From the mass splitting and the spin-averaged
mass we get the spin-0 meson mass and the spin-1 meson
mass: the former is the spin-averaged mass minus three-fourths
of the mass splitting; the latter is the spin-averaged mass
plus one-fourth of the mass splitting. At T = 0 the masses
of D, D∗, Ds , and D∗

s are 1.80666, 2.09552, 1.85228,
and 2.18695 GeV, compared to the measured values of
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FIG. 2. Cross sections for πJ/ψ → D̄∗D or D̄D∗ at various
temperatures.

1.86722, 2.00861, 1.96847, and 2.1123 GeV, respectively. The
temperature dependence of the D, D∗, Ds , and D∗

s masses is
plotted in Fig. 1 as two long dashed curves and two dot-dashed
curves. The D and Ds masses stay almost unchanged from
T = 0.6Tc to 0.85Tc and 0.9Tc, respectively, and apparently
fall off in the other temperature regions. The D∗ and D∗

s masses
decrease slowly from T = 0.6Tc, and they apparently start
falling off from T = 0.8Tc and T = 0.85Tc, respectively. The
medium effect on charmed mesons is obvious only in the
region where the masses apparently fall off. The temperature
dependence of π and ρ masses was shown in Fig. 2 of Ref. [20].
With increasing temperature the π mass decreases slowly for
0.6Tc � T < 0.78Tc and rapidly for T � 0.78Tc while the ρ

mass decreases rapidly for 0.6Tc � T < Tc. From T = 0.6Tc

to 0.99Tc the masses of π , ρ, J/ψ , ψ ′, χc, D, D∗, Ds , and D∗
s

are reduced by 100%, 99%, 7%, 16%, 16%, 20%, 27%, 12%,
and 23%, respectively. Therefore, the medium effect on the
two light mesons is more obvious. Either D and D∗ or Ds and
D∗

s become a doublet in mass at T → Tc, but the four mesons
do not become degenerate, unlike J/ψ , ψ ′, and χc.

The meson masses in units of GeV in the region 0.6 �
T/Tc < 1 are parametrized as

mJ/ψ = 3.07

[
1 −

(
T

1.01Tc

)3.76 ]0.03

, (4)

mψ ′ = 3.48

[
1 −

(
T

2.19Tc

)4.63 ]7.74

, (5)

mχc
= 3.42

[
1 −

(
T

1.89Tc

)5.65 ]6.96

, (6)

mD = 1.795

[
1 −

(
T

1.16Tc

)9.67 ]0.92

, (7)

mD∗ = 2.02

[
1 −

(
T

1.42Tc

)5.38 ]2.18

, (8)

mDs
= 1.94

[
1 −

(
T

1.02Tc

)3.3 ]0.08

, (9)

mD∗
s

= 2.133

[
1 −

(
T

1.29Tc

)6.28 ]1.29

. (10)

III. CROSS-SECTION FORMULAS

In nonrelativistic dynamics for the quark-interchange pro-
cess qq̄ + cc̄ → qc̄ + cq̄, the center-of-mass motion of qq̄

and cc̄ (i.e., qc̄ and cq̄) is separated off. This guarantees
that cross sections are calculated in a way independent of
the center of mass. We then choose the center-of-mass frame
where the cross section can be easily formulated [30]. We
denote the mass and the four-momentum of meson i(i =
qq̄, cc̄, qc̄, cq̄) by mi and Pi = (Ei, 	Pi), respectively. The
Mandelstam variables are s = (Eqq̄ + Ecc̄)2 − ( 	Pqq̄ + 	Pcc̄)2

and t = (Eqq̄ − Eqc̄)2 − ( 	Pqq̄ − 	Pqc̄)2. The cross section for
the meson-charmonium scattering qq̄ + cc̄ → qc̄ + cq̄ in the
center-of-mass frame is

σ (S,mS,
√

s, T ) = 1

32πs

| 	P ′(
√

s)|
| 	P (

√
s)|

∫ π

0
dθ |Mfi(s, t)|2 sin θ,

(11)

where S is the total spin of either the two incoming mesons
or the two outgoing mesons, mS is the magnetic projection
quantum number of S, Mfi is the transition amplitude, and θ

is the angle between qq̄ momentum 	P and qc̄ momentum 	P ′.
	P and 	P ′ are related to the Mandelstam variable s by

	P 2(
√

s) = 1

4s

{[
s − (

m2
qq̄ + m2

cc̄

)]2 − 4m2
qq̄m

2
cc̄

}
, (12)

	P ′2(
√

s) = 1

4s

{[
s − (

m2
qc̄ + m2

cq̄

)]2 − 4m2
qc̄m

2
cq̄

}
. (13)

The interchange of quarks brings about two scattering
forms, the prior form and the post form. The two forms may
lead to different values of the transition amplitude Mfi (and
the subsequent cross section), which is the so-called post-prior
discrepancy [31–33]. Scattering in the prior form means that
gluon exchange takes place prior to the quark interchange, and
the corresponding transition amplitude is

Mprior
fi = 4

√
Eqq̄Ecc̄Eqc̄Ecq̄〈ψqc̄|〈ψcq̄ |

× (Vqc̄ + Vcq̄ + Vqc + Vq̄c̄)|ψqq̄〉|ψcc̄〉, (14)

while scattering in the post form means that the quark inter-
change is followed by gluon exchange, and the corresponding
transition amplitude is

Mpost
fi = 4

√
Eqq̄Ecc̄Eqc̄Ecq̄〈ψqc̄|〈ψcq̄ |

× (Vqq̄ + Vcc̄ + Vqc + Vq̄c̄)|ψqq̄〉|ψcc̄〉, (15)

where ψqc̄ is the product of color, spin, flavor, and momentum-
space wave functions of the relative motion of q and c̄ and sat-

isfies
∫ d3pqc̄

(2π)3 ψ+
qc̄( 	pqc̄)ψqc̄( 	pqc̄) = 1, where 	pqc̄ is the relative

momentum of q and c̄ and similarly for ψcq̄ , ψqq̄ , and ψcc̄.
A relative momentum depends on a linear combination of 	P
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and 	P ′. The momentum-space wave functions are the Fourier
transforms of the coordinate-space wave functions which are
solutions of the Schrödinger equation. In the transition ampli-
tude we use the Fourier transform of the sum of the central
spin-independent potential and the spin-spin interaction:

Vab( 	Q)=−
	λa

2
·
	λb

2

3

4
D

[
1.3 −

(
T

Tc

)4]

×
[

(2π )3δ3( 	Q) − 8π

Q

∫ ∞

0
dr

r sin(Qr)

exp(2Ar) + 1

]

+
	λa

2
·
	λb

2
64πE

∫ ∞

0
dq

ρ(q2) − K
q2

(E2 + Q2 + q2)2 − 4Q2q2

−
	λa

2
·
	λb

2

16π2

25

	sa · 	sb

mamb

+
	λa

2
·
	λb

2

16π2λ

25Q

×
∫ ∞

0
dx

d2v (x)

dx2
sin

(
Q

λ
x

) 	sa · 	sb

mamb

. (16)

Let σ prior and σ post be the cross sections for scattering in
the prior form and in the post form, respectively, and they
are given by Eq. (11). The unpolarized cross section for
qq̄ + cc̄ → qc̄ + cq̄ is

σ unpol(
√

s, T )

= 1

(2Sqq̄ + 1)(2Scc̄ + 1)

∑
S

(2S + 1)

× σ prior(S,mS,
√

s, T ) + σ post(S,mS,
√

s, T )

2
, (17)

where Sqq̄ and Scc̄ are the spins of qq̄ and cc̄, respectively.

IV. NUMERICAL CROSS SECTIONS AND DISCUSSION

Quark-antiquark relative-motion wave functions of mesons
are given by the Schrödinger equation with the central spin-
independent potential Vsi. With the up (down) quark mass
of 0.32 GeV and the experimental π mass, the experimental
data of S-wave I = 2 elastic phase shifts for ππ scattering
in vacuum [34–37] for 0 <

√
s < 2.4 GeV are reproduced

from the potential in Eq. (16) at T = 0 [20]. In the estimates
of charmonium dissociation cross sections at T = 0, the
experimental masses of the pion, the rho, charmonia, and
charmed mesons are employed. For 0.6 < T/Tc < 1 we use
the temperature-dependent meson masses shown in Fig. 1 and
the π and ρ masses in Fig. 2 of Ref. [20]. The temperature
dependence of charmonium dissociation cross sections shown
in the next section seems to be complicated, but it is
understandable.

From T = 0.6Tc to 0.99Tc the masses of π , ρ, J/ψ ,
ψ ′, χc, D, and D∗ are reduced by 0.40955, 0.60936,
0.21908, 0.56022, 0.53639, 0.35318, and 0.53845 GeV,
respectively. The reduced amounts of ψ ′, χc and D∗ masses
are between those of π and ρ masses. Hence, the difference
mqc̄ + mcq̄ − mqq̄ − mcc̄ may be larger or smaller than
zero. Whether or not a reaction is endothermic depends
on temperature. A reaction may be exothermic below a
temperature and endothermic above the temperature.
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FIG. 3. Cross sections for πJ/ψ → D̄∗D∗ at various temperatures.

A. Numerical cross sections

The temperature-dependent potential given in Eq. (16),
the wave functions, and the meson masses in the transition
amplitude make both the meson-charmonium dissociation
cross sections and the relevant threshold energies dependent
on temperature. In Figs. 2–16 we plot cross sections for the
following fifteen meson-charmonium dissociation reactions:
πJ/ψ → D̄∗D or D̄D∗, πJ/ψ → D̄∗D∗, πψ ′ → D̄∗D or
D̄D∗, πψ ′ → D̄∗D∗, πχc → D̄∗D or D̄D∗, πχc → D̄∗D∗,
ρJ/ψ → D̄D, ρJ/ψ → D̄∗D or D̄D∗, ρJ/ψ → D̄∗D∗,
ρψ ′ → D̄D, ρψ ′ → D̄∗D or D̄D∗, ρψ ′ → D̄∗D∗, ρχc →
D̄D, ρχc → D̄∗D or D̄D∗, and ρχc → D̄∗D∗. Here D stands
for D+ or D0, D̄ for D− or D̄0, D∗ for D

∗+ or D∗0, and
D̄∗ for D∗− or D̄∗0. For the reaction that produces D̄∗D or
D̄D∗, the cross section for the production of D̄D∗ equals that
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FIG. 4. Cross sections for πψ ′ → D̄∗D or D̄D∗ at various
temperatures.
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FIG. 5. Cross sections for πψ ′ → D̄∗D∗ at various temperatures.

of D̄∗D. No matter what the temperature is, the reactions
πJ/ψ → D̄∗D, πJ/ψ → D̄∗D∗, πψ ′ → D̄∗D∗, πχc →
D̄∗D∗, ρJ/ψ → D̄∗D, and ρJ/ψ → D̄∗D∗ are endothermic.
No reactions are all exothermic from T = 0.6Tc to Tc. To
display in-medium modification of dissociation, we plot the
cross sections at T = 0 for reference even though they differ
from the results obtained in Ref. [18] from the potential that
includes the color Coulomb, spin-spin hyperfine, and linear
confinement terms.

B. Endothermic reactions of πψ ′, πχc, ρψ ′, and ρχc

The cross sections for endothermic πψ ′ and πχc reactions
in Figs. 4–7 show that peak cross sections increase from
T/Tc = 0 to 0.75 and decrease from T/Tc = 0.75 to 0.95
except for the increasing peak cross section from T/Tc = 0.9
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FIG. 6. Cross sections for πχc → D̄∗D or D̄D∗ at various
temperatures.
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FIG. 7. Cross sections for πχc → D̄∗D∗ at various temperatures.

to 0.95 in Fig. 5 for πψ ′ → D̄∗D∗. While temperature
increases from zero, the large-distance potential given by the
first term in Eq. (1) becomes smaller and smaller, and the
Schrödinger equation with the potential shown by Eq. (1) pro-
duces increasing meson radius. The increase of initial-meson
radii leads to peak cross sections increasing from T/Tc = 0 to
0.75. With increasing temperature, it becomes more difficult
to combine the interchanged quarks and the antiquarks to
form mesons qc̄ and cq̄ due to weakening confinement. This
leads to peak cross sections decreasing from T/Tc = 0.75 to
0.95. This also explains the decrease of the peak cross section
from T/Tc = 0.85 to 0.9 in Fig. 13 for ρψ ′ → D̄∗D∗, from
T/Tc = 0.9 to 0.95 in Fig. 11 for ρψ ′ → D̄D, in Fig. 12
for ρψ ′ → D̄∗D, in Fig. 14 for ρχc → D̄D, and in Fig. 15
for ρχc → D̄∗D, or from T/Tc = 0.85 to 0.95 in Fig. 16 for
ρχc → D̄∗D∗.
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FIG. 8. Cross sections for ρJ/ψ → D̄D at various temperatures.
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FIG. 9. Cross sections for ρJ/ψ → D̄∗D or D̄D∗ at various
temperatures.

We have already known that ψ ′ and χc have very similar
temperature dependence in mass. The πψ ′ (ρψ ′) and πχc

(ρχc) reactions are almost identical in threshold energy, but
they are different in cross section even though the final mesons
in the πψ ′ (ρψ ′) reactions are the same as those in the
πχc (ρχc) reactions. The difference is clearly attributed to
the different quantum numbers of ψ ′ and χc. Particularly,
when T/Tc goes from 0.9 to 0.95, the increase of the peak
cross section of πψ ′ → D̄∗D∗ in Fig. 5 (ρψ ′ → D̄∗D∗ in
Fig. 13) is against the decrease of the peak cross section
of πχc → D̄∗D∗ in Fig. 7 (ρχc → D̄∗D∗ in Fig. 16). This
relates to the node in the ψ ′ wave function. The node leads to
cancellation between the negative wave function on the left of
the node and the positive wave function on the right of the node
in the integration involved in the transition amplitude. While
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FIG. 10. Cross sections for ρJ/ψ → D̄∗D∗ at various
temperatures.
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FIG. 11. Cross sections for ρψ ′ → D̄D at various temperatures.

the cancellation at T = 0.95Tc is less than at T = 0.9Tc, the
peak cross sections of πψ ′ → D̄∗D∗ and ρψ ′ → D̄∗D∗ rise
from T/Tc = 0.9 to 0.95.

C. Exothermic reactions of πψ ′, πχc, ρψ ′, ρχc, and ρ J/ψ

Since cross sections for exothermic reactions at threshold
energies are infinite, we start calculating the cross sections
at

√
s = mqq̄ + mcc̄ + 
√

s with 
√
s = 10−4 GeV. At the

energies the cross sections correspond to the curve tops, for
example, the top of the curve for T/Tc = 0.65 displayed in
Fig. 4, from Eq. (12) we have

	P 2 ≈ 2 
 √
s

/(
1

mqq̄

+ 1

mcc̄

)
, (18)
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FIG. 12. Cross sections for ρψ ′ → D̄∗D or D̄D∗ at various
temperatures.
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FIG. 13. Cross sections for ρψ ′ → D̄∗D∗ at various temperatures.

which indicates that 	P 2 decreases with decreasing meson
mass. In Sec. II we have obtained that the meson masses
decrease with increasing temperature. Hence, | 	P | decreases
while temperature increases. At T = 0.6Tc, | 	P | is estimated at
about 10−2 GeV. The influence of 	P on the relative momenta
	pab is thus negligible. Finally, 	pab is governed by 	P ′, which
obeys

mqq̄ + mcc̄ + �
√

s =
√

m2
qc̄ + 	P ′2 +

√
m2

cq̄ + 	P ′2. (19)

Since �
√

s is very small, we have

	P ′2 ≈ 2(mqq̄ + mcc̄ − mqc̄ − mcq̄)

/ (
1

mqc̄

+ 1

mcq̄

)
. (20)
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FIG. 14. Cross sections for ρχc → D̄D at various temperatures.
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FIG. 15. Cross sections for ρχc → D̄∗D or D̄D∗ at various
temperatures.

With increasing temperature the value of mqq̄ + mcc̄ −
mqc̄ − mcq̄ decreases in the region where reactions are
exothermic, and it becomes zero at a certain temperature;
meanwhile, | 	P ′| decreases so that the absolute value of
the relative-motion part of ψab( 	pab) gets larger and larger,
and the factor

√
Eqq̄Ecc̄Eqc̄Ecq̄ in the transition amplitude

decreases. Simple calculations show that the factor 1
s

| 	P ′|
| 	P |

generally decreases with increasing temperature in the region
where reactions are exothermic. The product of the increasing
absolute value of the relative-motion part of ψab( 	pab) and the

decreasing 1
s

| 	P ′|
| 	P | Eqq̄Ecc̄Eqc̄Ecq̄ leads to the cross section at√

s = mqq̄ + mcc̄ + �
√

s first increasing and then decreasing,
as shown in Figs. 6, 8, and 16, or first decreasing and then
increasing, as shown in Figs. 4 and 11–15.
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FIG. 16. Cross sections for ρχc → D̄∗D∗ at various temperatures.
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D. Endothermic reactions of π J/ψ and ρ J/ψ

As shown in Figs. 2, 3 and 8–10, the peak cross sections
of the endothermic πJ/ψ and ρJ/ψ reactions decrease
from T = 0 to 0.85Tc and increase from T = 0.85Tc to
0.95Tc. The behavior of the peak cross sections is different
from that of the endothermic reaction πχc → D̄∗D∗, which
exhibits an increase from T = 0 to 0.75Tc and a decrease
from T = 0.75Tc to 0.95Tc. The behavior must come from a
special point, and, as demonstrated below, the special point
is just the temperature dependence of the mass and radius
of J/ψ .

First, we discuss cross sections for πJ/ψ and ρJ/ψ

dissociation in the region 0 � T/Tc � 0.85. In Sec. II we have
obtained the slow decrease of ψ ′, χc, and D∗ masses and the
very slow decrease of J/ψ and D masses when T/Tc increases
from 0 to 0.85. It is shown in Fig. 2 of Ref. [20] that the π mass
decreases slowly for 0.6Tc � T < 0.78Tc and the ρ mass does

so rapidly. Then, 1
s

| 	P ′|
| 	P | stays roughly unchanged or decreases.

Since the J/ψ radius changes very slowly in comparison to the
increase of the π or ρ radius, only one increasing initial-meson
radius causes the increase of |Mfi|2, and the increase cannot
overcome the amount reduced by the weakening confinement
with increasing temperature, i.e., |Mfi|2 decreases. Finally, the

product of 1
s

| 	P ′|
| 	P | and |Mfi|2 leads to the decrease of the peak

cross sections of the endothermic πJ/ψ and ρJ/ψ reactions
when T/Tc increases from 0 to 0.85.

Next, we discuss cross sections for πJ/ψ and ρJ/ψ

dissociation in the region 0.85 � T/Tc < 1. The factor 1
s

| 	P ′|
| 	P |

increases by about 50% from T = 0.85Tc to 0.9Tc and by
about 100% from T = 0.9Tc to 0.95Tc. When temperature
increases from T = 0.85Tc to 0.95Tc, not only do the π and
ρ radii increase but so does the J/ψ radius apparently. Now
the increase of |Mfi|2 caused by the increasing radii of the
two initial mesons overcomes the amount reduced by the
weakening confinement with increasing temperature. Finally,
the peak cross sections of the endothermic πJ/ψ and ρJ/ψ

reactions increase from T/Tc = 0.85 to 0.95.

E. Comparison of π + charmonium reactions
and ρ + charmonium reactions

We make a comparison of peak cross sections of endother-
mic π + charmonium reactions with ones of endothermic
ρ + charmonium reactions. We find that the peak cross
section of πJ/ψ → D̄∗D (πχc → D̄∗D) is larger than that
of ρJ/ψ → D̄∗D (ρχc → D̄∗D) at the same temperature
while the peak cross section of π + charmonium → D̄∗ + D∗
(πψ ′ → D̄∗D) is smaller than that of ρ + charmonium →
D̄∗ + D∗ (ρψ ′ → D̄∗D). Exothermic π + charmonium reac-
tions and exothermic ρ + charmonium reactions are compared
about their cross sections at

√
s = mqq̄ + mcc̄ + 10−4 GeV

(the largest cross section shown in each curve). It is shown
in Figs. 4, 6, 12, and 15 that the cross section of π +
charmonium → D̄∗ + D at T/Tc = 0.65 or 0.75 is larger than
that of ρ + charmonium → D̄∗ + D at the same temperature.
It is meaningless to compare endothermic π + charmonium
reactions (e.g., πψ ′ → D̄∗D at T/Tc = 0.85) with exothermic

ρ + charmonium reactions (e.g., ρψ ′ → D̄∗D at the same
temperature).

Regarding endothermic reactions, we examine 	P and 	P ′
at

√
s = mqc̄ + mcq̄ + d0 at which the peak cross sections are

given and d0 � mqc̄ + mcq̄ . Equation (13) yields

	P ′2 ≈ 2d0

/ (
1

mqc̄

+ 1

mcq̄

)
. (21)

From an endothermic π + charmonium reaction to an en-
dothermic ρ + charmonium reaction at the same temperature,
mqc̄ and mcq̄ do not change, and d0 decreases or does not

change. Accordingly, 	P ′2 is reduced or unchanged.
√

s is
related to initial-meson energies by

mqc̄ + mcq̄ + d0 =
√

m2
qq̄ + 	P 2 +

√
m2

cc̄ + 	P 2, (22)

which let 	P 2 decrease from the endothermic π + charmonium
reaction to the endothermic ρ + charmonium reaction. As
a result, the absolute value of the relative-motion part of
ψab( 	pab) in the transition amplitude increases.

In the transition amplitude ψab is the product of color, spin,
flavor, and momentum-space wave functions of the relative
motion of constituents a and b. The transition amplitude
involves the spin factor: the matrix elements of 	sa · 	sb of the
spin-spin interaction and the overlap of the spin wave function
of final mesons and that of initial mesons. The difference
of the transition amplitudes for π + charmonium → D̄∗ + D

and for ρ + charmonium → D̄∗ + D is caused by not only the
difference of the π and ρ masses [the subsequent changes
of

√
Eqq̄Ecc̄Eqc̄Ecq̄ , ψab( 	pab), and | 	P ′|/s| 	P |] but also the

difference of the spin factors for the two reactions. Particularly,
π and ρ become almost degenerate in mass at T/Tc � 0.9.
Then, only the spin factors made the peak cross section of
π + charmonium → D̄∗ + D larger or smaller than that of
ρ + charmonium → D̄∗ + D. In case the final mesons are D̄∗
and D∗, the total spin of π and charmonium is 1, which differs
from the total spins 0, 1, and 2 of ρ and charmonium. The
spin factors plus the additional contribution of the channels
of the total spins 0 and 2 of ρ and charmonium make the
peak cross section of π + charmonium → D̄∗ + D∗ smaller
than that of ρ + charmonium → D̄∗ + D∗ at T/Tc = 0.9
and 0.95. The difference between the cross sections at

√
s =

mqq̄ + mcc̄ + 10−4 GeV for exothermic π + charmonium →
D̄∗ + D and for exothermic ρ + charmonium → D̄∗ + D can
be understood similarly with Eqs. (18) and (19).

V. RESULTS PERTINENT TO SMEARING
IN THE SPIN-SPIN INTERACTION

We have solved the Schrödinger equation with the central
spin-independent potential Vsi in Sec. II. If we use the spin-spin
interaction given in Eq. (3) in the Schrödinger equation,
the delta function in the first term of the Vss expression
cannot be correctly dealt with. However, in the present
section we include smearing in the spin-spin interaction by
the regularization δ3(	r) → d3

π3/2 exp(−d2r2), and the smeared
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spin-spin interaction

Vss = −
	λa

2
·
	λb

2

16π2

25

d3

π3/2
exp(−d2r2)

	sa · 	sb

mamb

+
	λa

2
·
	λb

2

4π

25

1

r

d2v(λr)

dr2

	sa · 	sb

mamb

(23)

can be used in the Schrödinger equation. Such smearing
actually includes relativistic effects [17,19,38]. The quantity
d is related to quark masses by

d2 = σ 2
0

[
1

2
+ 1

2

(
4mamb

(ma + mb)2

)4 ]
+ σ 2

1

(
2mamb

ma + mb

)2

,

where σ0 = 0.15 GeV and σ1 = 0.705. By solving the
Schrödinger equation with the central spin-independent po-
tential and the smeared spin-spin interaction, we obtain meson
masses and quark-antiquark relative-motion wave functions
that differ by different mesons. The ρ wave function is near
that obtained by the Schrödinger equation with only Vsi, but the
π wave function is not. Since the smeared spin-spin interaction
is used, the pion becomes a tight bound state of a quark and
an antiquark. Then, the π radius increases slowly from 0.6 to
0.9 of T/Tc and quickly from 0.9 to 1 of T/Tc.

The mass splittings at T = 0 are mρ − mπ = 0.6294 GeV
and mK∗ − mK = 0.39865 GeV, which are closer to the
experimental data of 0.6304 and 0.3963 GeV than the results
(0.5989 and 0.3833 GeV) [20] of the Schrödinger equation
with only the central spin-independent potential. At T = 0 we
also get 3.13509, 3.69248, 3.50578, 1.90578, 2.05274, 1.9614,
and 2.13804 GeV as the masses of J/ψ , ψ ′, χc, D, D∗,
Ds , and D∗

s , respectively, compared to the measured values
of 3.096916, 3.68609, 3.5253, 1.86722, 2.00861, 1.96847,
and 2.1123 GeV [28]. For 0.6 � T/Tc < 1 the temperature
dependence of the ρ, K∗, J/ψ , ψ ′, χc, D, D∗, Ds , and D∗

s

masses obtained with the potential Vsi + Vss is very close to that
obtained with only Vsi. Therefore, the parametrizations given
in Eqs. (4)–(10) are also valid in the present section, and the ρ

and K∗ masses in units of GeV in the region 0.6 � T/Tc < 1
are parametrized as

mρ = 0.73

[
1 −

(
T

0.992Tc

)3.67 ]0.989

, (24)

mK∗ = 0.84

[
1 −

(
T

1.05Tc

)4.16 ]
. (25)

However, the π , K , and η masses obtained with Vsi + Vss

are smaller than those obtained with only Vsi. They are
plotted in Fig. 17 for 0.6 � T/Tc < 1 and are parametrized
as

mπ = 0.24

[
1 −

(
T

0.97Tc

)3.81 ]0.51

, (26)

mK = 0.46

[
1 −

(
T

1.04Tc

)8.58 ]0.88

, (27)

mη = 0.55

[
1 −

(
T

1.01Tc

)3.11 ]0.29

, (28)

in units of GeV.
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FIG. 17. π , K , and η masses as functions of T/Tc.

Corresponding to the π mass, the reactions πJ/ψ → D̄∗D,
πJ/ψ → D̄∗D∗, πψ ′ → D̄∗D, πψ ′ → D̄∗D∗, πχc →
D̄∗D, and πχc → D̄∗D∗ are all endothermic. Cross sections
for the reactions are calculated with the experimental meson
masses at T = 0, the temperature-dependent meson masses
for 0.6 � T/Tc < 1, the quark-antiquark relative-motion wave
functions, and the Fourier transform of the sum of the
central spin-independent potential and the smeared spin-spin
interaction,

Vab( 	Q)=−
	λa

2
·
	λb

2

3

4
D

[
1.3 −

(
T

Tc

)4]

×
[

(2π )3δ3( 	Q) − 8π

Q

∫ ∞

0
dr

r sin(Qr)

exp(2Ar) + 1

]

+
	λa

2
·
	λb

2
64πE

∫ ∞

0
dq

ρ(q2) − K
q2

(E2 + Q2 + q2)2 − 4Q2q2

−
	λa

2
·
	λb

2

16π2

25
exp

(
− Q2

4d2

) 	sa · 	sb

mamb

+
	λa

2
·
	λb

2

16π2λ

25Q

∫ ∞

0
dx

d2v(x)

dx2
sin

(
Q

λ
x

)	sa · 	sb

mamb

.

(29)

We plot the cross sections for the reactions in Figs. 18–23.
The cross sections differ from those shown in Figs. 2–7.
For example, the reactions πψ ′ → D̄∗D and πχc → D̄∗D
at T/Tc = 0.65 and 0.75 are exothermic in Figs. 4 and 6 but
endothermic in Figs. 20 and 22. One feature for each reaction
is that the peak cross section at T/Tc = 0.95 is always larger
than those at the other five temperatures T/Tc = 0, 0.65, 0.75,
0.85, and 0.9. This is caused by the π and J/ψ radii, which
increase faster from T/Tc = 0.9 to 1 than from T/Tc = 0.6
to 0.9. The numerical cross sections for endothermic reactions
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FIG. 18. Cross sections for πJ/ψ → D̄∗D or D̄D∗ at various
temperatures.

are parametrized as

σ unpol(
√

s, T )

= a1

(√
s − √

s0

b1

)c1

exp

[
c1

(
1 −

√
s − √

s0

b1

)]

+ a2

(√
s − √

s0

b2

)c2

exp

[
c2

(
1 −

√
s − √

s0

b2

)]
,

(30)

where
√

s0 is the threshold energy, and a1, b1, c1, a2, b2, and
c2 are parameters. Determination of parameter values needs
time-consuming computations, and the values are listed in
Tables I–III.

Since the ρ, J/ψ , ψ ′, χc, D, and D∗ masses determined
by the Schrödinger equation in the case of Vsi + Vss are very
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FIG. 19. Cross sections for πJ/ψ → D̄∗D∗ at various
temperatures.
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FIG. 20. Cross sections for πψ ′ → D̄∗D or D̄D∗ at various
temperatures.

close to the masses determined by the Schrödinger equation
in the case of only Vsi, a ρ-charmonium dissociation reaction
which is endothermic (exothermic) in the former case is also
endothermic (exothermic) in the latter case, and 1

s

| 	P ′|
| 	P | in the

two cases are quite close. Since the
√

s dependence of the cross
section for a quark-interchange-induced reaction is mainly de-

termined by 1
s

| 	P ′|
| 	P | [30], the

√
s dependence of the cross section

for a ρ-charmonium reaction in the former case is similar to
one in the latter case. Hence, we do not plot ρ-charmonium
dissociation cross sections in the case of Vsi + Vss, but we
present parametrizations of these cross sections. The cross sec-
tion for the exothermic reaction qq̄(Sqq̄ ; 	P ) + cc̄(Scc̄; − 	P ) →
qc̄(Sqc̄; 	P ′) + cq̄(Scq̄ ; − 	P ′) can be related to the endothermic
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FIG. 21. Cross sections for πψ ′ → D̄∗D∗ at various temperatures.
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FIG. 22. Cross sections for πχc → D̄∗D or D̄D∗ at various
temperatures.

reaction qc̄ + cq̄ → qq̄ + cc̄ by the detailed balance

σ
unpol
qq̄+cc̄→qc̄+cq̄ = (2Sqc̄ + 1)(2Scq̄ + 1)

(2Sqq̄ + 1)(2Scc̄ + 1)

	P ′2

	P 2
σ

unpol
qc̄+cq̄→qq̄+cc̄,

(31)

where Sqc̄ and Scq̄ are the spins of qc̄ and cq̄, respectively. It
is then correct to choose the following parametrization for the
exothermic reaction:

σ unpol(
√

s, T )

=
	P ′2

	P 2

{
a1

(√
s − √

s0

b1

)c1

exp

[
c1

(
1 −

√
s − √

s0

b1

)]

+ a2

(√
s − √

s0

b2

)c2

exp

[
c2

(
1 −

√
s − √

s0

b2

)]}
.

(32)

Parameter values are listed in Tables IV–VI.
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FIG. 23. Cross sections for πχc → D̄∗D∗ at various temperatures.

VI. PROCEDURE

The curves shown in Figs. 2–16 and 18–23 correspond to
the zero-temperature case and the five nonzero temperatures
T1 = 0.65Tc, T2 = 0.75Tc, T3 = 0.85Tc, T4 = 0.9Tc, and T5 =
0.95Tc. We now present a procedure on how to obtain
the unpolarized cross section for qq̄ + cc̄ → qc̄ + cq̄ for
0.65Tc � T < Tc from the curves.

First, we state the procedure when a reaction at Ti and
Ti+1 is endothermic. We denote by

√
sp the square root of the

Mandelstam variable corresponding to the peak cross section.
d0 = √

sp − √
s0 is the difference of

√
sp with respect to the

threshold energy
√

s0. Let
√

sz be the square root of the
Mandelstam variable at which the cross section is 1/100 of
the peak cross section, and

√
sz >

√
sp >

√
s0. d0,

√
sz,

√
s0,

and
√

sp at Ti are indicated by d0i ,
√

szi ,
√

s0i , and
√

spi ,
respectively. d0i and

√
szi can be found in Tables I–VI.

√
s0i

can be obtained from the mass parametrizations in Sec. II, and√
spi = √

s0i + d0i . For Ti � T � Ti+1 (i = 1, 2, 3, or 4) we

TABLE I. Values of the parameters in Eq. (30) for the πJ/ψ dissociation. a1 and a2 are in units of millibarns; b1, b2, d0, and
√

sz are in
units of GeV; c1 and c2 are dimensionless.

Reactions T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

πJ/ψ → D̄∗D 0 0.16 0.03 0.53 0.05 0.08 2.42 0.04 4.556
0.65 0.2 0.021 0.51 0.1 0.069 1.8 0.03 4.279

or D̄D∗ 0.75 0.27 0.025 0.47 0.1 0.044 0.87 0.03 4.089
0.85 0.21 0.021 0.5 0.09 0.073 1.87 0.03 3.847
0.9 0.18 0.015 0.51 0.08 0.069 1.75 0.02 3.649
0.95 1.05 0.006 0.49 1 0.025 1.27 0.01 3.291

πJ/ψ → D̄∗D∗ 0 0.026 0.26 4.54 0.006 0.35 0.59 0.25 5.072
0.65 0.022 0.2 2.14 0.005 0.14 0.56 0.23 4.864
0.75 0.026 0.2 3.29 0.003 0.52 0.2 0.22 4.666
0.85 0.01 0.016 0.5 0.006 0.27 5.09 0.02 4.287
0.9 0.006 0.039 1 0.003 0.005 0.45 0.03 4.066
0.95 1.61 0.007 0.54 0.45 0.026 2.78 0.01 3.187
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TABLE II. The same as Table I except for πψ ′.

Reactions T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

πψ ′ → D̄∗D 0 1.78 0.02 0.5 1.15 0.06 1.69 0.035 4.567
0.65 2.89 0.01 0.68 1.37 0.01 0.34 0.01 4.021

or D̄D∗ 0.75 3.18 0.01 1.11 0.61 0.01 0.01 0.01 3.871
0.85 1.46 0.005 0.49 0.89 0.009 0.55 0.01 3.606
0.9 1.38 0.01 5.59 0.68 0.03 0.01 0.01 3.431
0.95 5.04 0.002 0.32 3.34 0.01 6.61 0.01 3.215

πψ ′ → D̄∗D∗ 0 1.6 0.025 0.5 0.3 0.042 1.66 0.03 4.78
0.65 1.6 0.005 0.51 0.78 0.018 1.64 0.01 4.103
0.75 1.3 0.005 0.49 0.37 0.014 1.42 0.01 3.916
0.85 0.13 0.008 2.36 0.08 0.003 0.12 0.01 3.64
0.9 0.35 0.005 2.23 0.36 0.002 0.28 0.01 3.349
0.95 6.4 0.009 5.08 5 0.001 0.15 0.01 3.176

TABLE III. The same as Table I except for πχc.

Reactions T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

πχc → D̄∗D 0 0.95 0.13 3.17 0.18 0.07 0.84 0.15 4.577
0.65 1.13 0.07 1.78 0.5 0.04 0.71 0.06 4.135

or D̄D∗ 0.75 1.39 0.04 1.32 0.32 0.05 0.46 0.04 3.955
0.85 1.04 0.02 1.04 0.16 0.01 0.25 0.02 3.636
0.9 1.14 0.01 0.83 0.4 0.03 3.67 0.015 3.438
0.95 4.51 0.017 2.03 1.32 0.01 1.05 0.02 3.167

πχc → D̄∗D∗ 0 0.29 0.08 2.53 0.08 0.05 1.12 0.08 5.069
0.65 0.39 0.04 1.45 0.1 0.05 3.86 0.045 4.58
0.75 0.45 0.03 1.6 0.11 0.05 1.17 0.03 4.293
0.85 0.08 0.016 1.48 0.03 0.028 1.65 0.02 3.724
0.9 0.17 0.003 2.22 0.25 0.012 1.98 0.01 3.405
0.95 6.36 0.003 2.43 7.48 0.015 2.16 0.015 3.159

TABLE IV. Values of the parameters in Eqs. (30) and (32) for the ρJ/ψ dissociation. a1 and a2 are in units of millibarns; b1, b2, d0, and√
sz are in units of GeV; c1 and c2 are dimensionless.

Reactions T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

ρJ/ψ → D̄D 0 0.073 0.04 0.51 0.049 0.45 5.01 0.05 4.747
0.65 0.24 0.008 0.47 0.16 0.03 0.79 0.01 4.29
0.75 0.22 0.01 0.41 0.11 0.01 0.54 0.007 3.676
0.85 0.16 0.007 0.52 0.049 0.02 0.45 0.007 3.887
0.9 0.25 0.005 0.37 0.15 0.01 1.99 0.01 3.423
0.95 0.83 0.005 0.5 0.7 0.02 1.57 0.01 3.179

ρJ/ψ → D̄∗D 0 0.71 0.03 0.39 0.56 0.42 6.42 0.03 5.011
0.65 0.28 0.013 0.5 0.067 0.3 2.63 0.02 4.648

or D̄D∗ 0.75 0.15 0.012 0.47 0.044 0.27 3.06 0.01 4.541
0.85 0.091 0.009 0.44 0.045 0.18 3.92 0.01 4.196
0.9 0.28 0.005 0.38 0.15 0.006 1.49 0.01 3.6
0.95 2.03 0.007 0.53 0.68 0.024 2.18 0.01 3.181

ρJ/ψ → D̄∗D∗ 0 0.63 0.05 0.47 0.43 0.36 5.79 0.04 5.043
0.65 0.086 0.06 0.46 0.043 0.28 4.05 0.04 4.901
0.75 0.043 0.03 0.46 0.033 0.24 2.39 0.03 4.765
0.85 0.0061 0.012 0.46 0.0031 0.14 1.6 0.01 4.291
0.9 0.27 0.007 0.84 0.091 0.002 0.18 0.01 3.607
0.95 5.51 0.005 0.51 4.47 0.02 1.63 0.01 3.189
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TABLE V. The same as Table IV except for ρψ ′.

Reactions T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

ρψ ′ → D̄D 0 0.02 0.13 0.72 0.02 0.05 0.45 0.1 5.355
0.65 0.0019 0.04 0.53 0.0012 0.25 2.74 0.03 4.848
0.75 0.0022 0.022 0.54 0.00079 0.27 4.83 0.03 4.37
0.85 0.049 0.01 0.52 0.047 0.021 2.76 0.01 3.575
0.9 3.1 0.006 0.9 5.57 0.002 0.38 0.01 3.373
0.95 1.07 0.005 0.62 0.26 0.01 0.1 0.01 3.171

ρψ ′ → D̄∗D 0 0.083 0.05 0.5 0.045 0.23 1.8 0.1 5.354
0.65 0.017 0.03 0.53 0.0043 0.3 8.68 0.03 4.818

or D̄D∗ 0.75 0.027 0.008 0.46 0.021 0.04 0.74 0.01 4.44
0.85 3.6 0.0008 0.49 4.54 0.0046 1.27 0.005 3.568
0.9 2.09 0.006 1.8 2.09 0.003 0.17 0.01 3.385
0.95 0.99 0.006 0.77 0.62 0.007 0.23 0.01 3.173

ρψ ′ → D̄∗D∗ 0 0.2 0.03 0.51 0.14 0.19 1.37 0.05 5.337
0.65 0.78 0.05 3.08 0.04 0.0013 0.68 0.05 4.535
0.75 10.86 0.0009 0.44 13.39 0.005 1.05 0.005 3.832
0.85 4.79 0.005 0.82 6.23 0.002 0.48 0.01 3.597
0.9 2.07 0.003 0.49 0.72 0.012 0.78 0.004 3.394
0.95 2.76 0.005 0.47 1.08 0.015 0.8 0.006 3.185

take the linear interpolation between the two peaks at Ti and
Ti+1 to estimate d0 and

√
sz of the cross section at T :

d0 = d0i+1 − d0i

Ti+1 − Ti

(T − Ti) + d0i , (33)

√
sz =

√
szi+1 − √

szi

Ti+1 − Ti

(T − Ti) + √
szi . (34)

√
s0 is the sum of final-meson masses, and parametrizations

of the masses have been given by Eqs. (7) and (8). The
square root of the Mandelstam variable corresponding to
the peak cross section is

√
sp = √

s0 + d0. We define a

ratio

ζ =
⎧⎨
⎩

√
s−√

sp√
s0−√

sp
if

√
s0 � √

s � √
sp,

√
s−√

sp√
sz−√

sp
if

√
sp <

√
s � √

sz.

(35)

The ratio ζ is on the closed interval [0, 1], and it corresponds
to

√
s and T . In the cross section curve at Ti , we can find a

point (
√

si, σ
unpol
i (

√
si, Ti)) which gives the same ratio,

ζ =
⎧⎨
⎩

√
si−√

spi√
s0i−√

spi
if

√
s0i � √

si � √
spi ,

√
si−√

spi√
szi−√

spi
if

√
spi <

√
si � √

szi ,
(36)

TABLE VI. The same as Table IV except for ρχc.

Reactions T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

ρχc → D̄D 0 0.029 0.07 0.5 0.0073 0.21 1.24 0.1 5.173
0.65 0.007 0.21 3.1 0.0003 0.005 0.51 0.2 4.815
0.75 0.001 0.007 0.51 0.0008 0.24 3.59 0.01 4.306
0.85 0.03 0.003 0.63 0.0062 0.01 0.2 0.005 3.666
0.9 2.98 0.007 1.42 1.94 0.017 2.98 0.01 3.397
0.95 0.52 0.009 1.54 0.32 0.019 3.15 0.01 3.203

ρχc → D̄∗D 0 0.1 0.16 1.16 0.045 0.02 0.49 0.15 5.172
0.65 0.0029 0.008 0.44 0.018 0.23 2.7 0.25 4.806

or D̄D∗ 0.75 0.0034 0.007 0.5 0.0044 0.2 3.09 0.15 4.302
0.85 1.75 0.003 0.5 1.41 0.011 1.63 0.005 3.606
0.9 1.58 0.01 1.4 0.81 0.015 2.03 0.01 3.433
0.95 0.34 0.014 1.33 0.11 0.013 4.84 0.01 3.222

ρχc → D̄∗D∗ 0 0.31 0.27 3.43 0.29 0.04 0.54 0.25 5.172
0.65 1.91 0.005 0.52 1.87 0.024 1.55 0.01 4.44
0.75 8.57 0.006 0.58 8.57 0.018 1.82 0.01 3.879
0.85 2.21 0.007 1.58 1.96 0.018 3.48 0.01 3.632
0.9 0.29 0.012 1.66 0.13 0.013 1.02 0.01 3.459
0.95 0.11 0.013 1.99 0.041 0.025 0.76 0.01 3.231
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and in the cross section curve at Ti+1, we find a point (
√

si+1, σ
unpol
i+1 (

√
si+1, Ti+1)) which also gives the ratio

ζ =
⎧⎨
⎩

√
si+1−√

spi+1√
s0i+1−√

spi+1
if

√
s0i+1 � √

si+1 � √
spi+1,

√
si+1−√

spi+1√
szi+1−√

spi+1
if

√
spi+1 <

√
si+1 � √

szi+1.
(37)

The regions
√

s0i � √
si � √

spi and
√

s0i+1 � √
si+1 � √

spi+1 (
√

spi <
√

si � √
szi and

√
spi+1 <

√
si+1 � √

szi+1) corre-
spond to

√
s0 � √

s � √
sp (

√
sp <

√
s � √

sz). In terms of the ratio,
√

si and
√

si+1 are expressed as

√
si =

{√
spi + ζ (

√
s0i − √

spi) if
√

s0 � √
s � √

sp,√
spi + ζ (

√
szi − √

spi) if
√

sp <
√

s � √
sz,

(38)

√
si+1 =

{√
spi+1 + ζ (

√
s0i+1 − √

spi+1) if
√

s0 � √
s � √

sp,√
spi+1 + ζ (

√
szi+1 − √

spi+1) if
√

sp <
√

s � √
sz.

(39)

The linear interpolation between the two points provides the unpolarized cross section at
√

s for Ti � T � Ti+1,

σ unpol(
√

s, T ) =
{

σ
unpol
i+1 (

√
si+1,Ti+1)−σ

unpol
i (

√
si ,Ti )

Ti+1−Ti
(T − Ti) + σ

unpol
i (

√
si, Ti) if

√
s0 � √

s � √
sz,

0 if
√

s >
√

sz,
(40)

where σ
unpol
i and σ

unpol
i+1 are shown in Figs. 2–16 and 18–23

and are given by Eq. (30) together with the parameters listed
in Tables I–VI. For 0.95Tc < T < Tc Eqs. (33)–(40) still apply
to obtaining the unpolarized cross section as long as Ti = T4

and Ti+1 = T5 are set.
Second, we state the procedure when a reaction at Ti

and Ti+1 is exothermic. Equations (33)–(40) are suited to
endothermic reactions of which each has a zero cross section
at the threshold energy or at the infinite total energy of
initial mesons and has one maximum cross section in its

√
s

dependence. The cross section for the exothermic reaction is
infinite at the threshold energy. But the quantity enclosed by
the curly braces in Eq. (32) has the general

√
s dependence

of endothermic reactions. Hence, Eqs. (33)–(39) apply to the
quantity enclosed by the braces. d0i and

√
szi of the quantity

are listed in Tables IV–VI.
√

s0 equals the sum of initial-meson
masses, and parametrizations of the masses have been given by
Eqs. (4)–(6), and (24). Equation (40) now gives the unpolarized
cross section for the exothermic reaction at T while σ

unpol
i and

σ
unpol
i+1 are the cross sections shown in Figs. 8 and 11–16, and

these are given by Eq. (32) together with the parameters listed
in Tables IV–VI. Since the infinity of the cross section at the
threshold energy is intractable, one cannot let

√
s equal

√
s0

while constructing the FORTRAN code.
Third, we state the procedure when a reaction is exothermic

at Ti and endothermic at Ti+1. Equations (33)–(39) apply to
the endothermic reaction at Ti+1 or the quantity enclosed by
the curly braces in Eq. (32) at Ti . The relevant d0i ,

√
szi ,

d0i+1, and
√

szi+1 can be found in Tables IV–VI.
√

s0i and√
s0i+1 equal the sum of initial-meson masses and the sum

of final-meson masses, respectively.
√

s0 at T is the sum of
final-meson masses for mqc̄ + mcq̄ − mqq̄ − mcc̄ > 0 or the
sum of initial-meson masses for mqc̄ + mcq̄ − mqq̄ − mcc̄ <

0. After
√

si and
√

si+1 are estimated, Eq. (40) is used to
get the unpolarized cross section at

√
s for Ti � T � Ti+1

while σ
unpol
i (

√
si, Ti) is the cross section for the exothermic

reaction and σ
unpol
i+1 (

√
si+1, Ti+1) is that for the endothermic

reaction.

VII. SUMMARY

The central spin-independent and temperature-dependent
potential has been used in the Schrödinger equation to obtain
the temperature-dependent masses of J/ψ , ψ ′, χc, D, D∗,
Ds , and D∗

s as well as the wave functions of quark-antiquark
relative motion inside these mesons. The experimental masses
of the mesons are reproduced by the potential at T = 0.
While temperature increases, the temperature dependence of
the theoretical masses is as follows: the ψ ′ and χc masses
decrease slowly, and the J/ψ mass decreases more slowly;
each of the D and Ds masses stays almost unchanged in a
certain temperature region, and apparently falls off near Tc; the
D∗ and D∗

s masses first decrease slowly, and then apparently
fall off. The prominent medium effects are as follows: ψ ′ and
χc are degenerate in mass for 0.6Tc < T < Tc; very near the
critical temperature J/ψ , ψ ′, and χc become a mass triplet,
and D and D∗ (Ds and D∗

s ) become degenerate in mass.
These findings also hold when the central spin-independent
potential and the smeared spin-spin interaction are used in
the Schrödinger equation to obtain temperature-dependent
masses and quark-antiquark relative-motion wave functions.
The particular temperature dependence of the J/ψ mass and
radius causes the peak cross sections of the endothermic πJ/ψ

and ρJ/ψ reactions to increase rapidly when temperature
approaches the critical temperature. Even though ψ ′ and χc

are degenerate in mass, the cross sections of ψ ′ and χc in
collisions with a light meson are different, as a result of the
node of the ψ ′ wave function. The temperature dependence
of the potential, the quark-antiquark relative-motion wave
functions, and the meson masses leads to the tempera-
ture dependence of all dissociation cross sections by the

three factors, the difference mqc̄ + mcq̄ − mqq̄ − mcc̄, 1
s

| 	P ′|
| 	P | ,
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and the transition amplitude. Some reactions are purely en-
dothermic while others become exothermic below certain tem-
peratures. Parametrizations of unpolarized cross sections are
given for πJ/ψ → D̄∗D or D̄D∗, πJ/ψ → D̄∗D∗, πψ ′ →
D̄∗D or D̄D∗, πψ ′ → D̄∗D∗, πχc → D̄∗D or D̄D∗, πχc →
D̄∗D∗, ρJ/ψ → D̄D, ρJ/ψ → D̄∗D or D̄D∗, ρJ/ψ →
D̄∗D∗, ρψ ′ → D̄D, ρψ ′ → D̄∗D or D̄D∗, ρψ ′ → D̄∗D∗,
ρχc → D̄D, ρχc → D̄∗D or D̄D∗, and ρχc → D̄∗D∗. The

parametrizations at the five temperatures T/Tc = 0.65, 0.75,
0.85, 0.9, and 0.95 can be used in the procedure to yield cross
sections at any temperature between 0.65Tc and Tc.
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