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Temperature dependence of the repulsive core potential in heavy-ion fusion reactions
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In this work, we expand upon our previous study, the effect of hot nuclear matter on the calculation of
the internuclear potential [Phys. Rev. C 84, 024612 (2011)], to the 28Si + 40Ca, 35Cl + 48Ti, and 40Ar + 74Ge
collision systems. For this purpose, we have employed the equation of state of hot nuclear matter, which is based
on density-dependent Seyler-Blanchard formalism at finite temperature, to discuss the energy dependence of a
repulsive core potential in the nucleon-nucleon interaction. The obtained values for strength of this potential
show a linear dependence as a function of excitation energy E∗ (or temperature T ) of the compound nucleus.
Indeed, it is predictable that the effect of hot nuclear matter on heavy-ion reactions can be formulated by an
additional energy-dependent function in the nucleon-nucleon potential.
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I. INTRODUCTION

The effect of nuclear matter incompressibility on the
heavy-ion fusion process has always been one of the interesting
subjects which is attracted much attention in recent years [1–9].
It has been shown that some observed discrepancies between
theoretical and experimental fusion cross section data can be
explained by this effect. Some of these recent investigations
are presented in the following

Jiang and collaborators identified an unexpected behavior
of fusion data for heavy- and medium-mass collision systems
at deep sub-barrier energies [10]. They demonstrated that the
experimental fusion cross section data in comparison with the
theoretical cross sections, which are based on the coupled-
channels (CC) calculations, are suddenly suppressed at these
energy ranges. In another theoretical study it was suggested
that the fusion hindrance, which prevents the overlapping of
the wave functions of two systems of fermions, can explain
this unexpected phenomenon [8] and one can simulate it by
an additional repulsive force in the nucleon-nucleon (NN)
interaction [8,11]. It is illustrated that the implementation
of this corrective effect on an M3Y-type NN interaction
(M3Y + repulsion) can reproduce the fusion cross section data
with high accuracy. This modification also exhibits a shallow
pocket in the inner regions of the Coulomb barrier.

In another study, it is shown that the anomalous increase of
the diffuseness parameter of the Woods-Saxon (WS) potential
in fusion reactions [12–16] could be due to the effect of
the fusion hindrance on the calculation of the internuclear
potential [7]. Investigations performed on the fusion reactions
of 12C, 16O, 28Si, and 35Cl with 92Zr reveal that accounting
for the effect of the nuclear matter equation of state (EOS)
in the calculation of the internuclear potential can explain the
increase of the diffuseness parameter up to 0.73 fm.

The corrective effect of the nuclear matter EOS has
been even used for light-ion fusion reactions. By using the
M3Y + repulsion potential accompanied by CC calculations,
the effect of the mutual excitations on the fusion cross sections
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have been examined for 12C + 12C, 12C + 13C, and 13C + 13C
isotopic systems [5]. The results obtained reveal that this effect
has an important role in calculation of fusion cross sections
for reactions with carbon isotopes.

In previous work, we have considered the thermal effects
of a compound nucleus in the modeling of a repulsive core [6].
For this purpose, the EOS of hot nuclear matter (HNM) is
employed to compute the energy per particle of finite nuclear
matter within the complete overlapping region of density
distributions of colliding nuclei. The investigation, which
was performed on the 40Ar + 40Ca system, indicated that the
temperature of the compound nucleus plays an important role
in the predictions of fusion data. In the present study, we shall
expand upon our investigations of these effects to three other
systems, namely, 28Si + 40Ca, 35Cl + 48Ti, and 40Ar + 74Ge.

Section II introduces the theoretical formalism which is
employed to calculate the nuclear potential. A description of
the thermal conditions for the considered reactions is given in
Sec. III. In Sec. IV, we describe the employed procedure for
calculating fusion cross sections. Section V is devoted to some
concluding remarks.

II. CALCULATION OF the NUCLEAR POTENTIAL

During the last four decades, many theoretical models have
been introduced to calculate the heavy-ion interaction poten-
tial. The Skyrme energy density formalism [17], proximity
potentials [18], and double folding (DF) model [19,20] are
examples of these models. In the first model, the difference
between the energy expectation value E of the interacting
system at finite separation distance r = R and infinity, r = ∞,
is defined as the interaction potential:

V (R) = E(R) − E(∞), (1)

where the energy expectation value E of a nucleus can be
expressed as the integral of the energy density functional [17],

E =
∫

H (r) dr, (2)
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where H (r) is the energy density function. So far different
aspects of heavy-ion reactions have studied using this formal-
ism [21–24].

When two surfaces approach each other within a distance
of 2–3 fm, an additional force due to the proximity of the
surfaces will appear; this is called the proximity potential.
All versions of this model are based on the proximity force
theorem [18]. According to this theory, the nuclear potential is
defined as the product of a geometrical factor and a universal
function, which are, respectively, dependent on the mean
curvature of the interaction surface and the separation distance.
Furthermore, this model is independent of the masses of
colliding nuclei. Different versions of the proximity model
have been introduced in Refs. [18,25–28]

To calculate the nucleus-nucleus potential, we have used
the DF model [19,20]. In this model, the nuclear potential
between two colliding nuclei can be calculated by

VDF(R) =
∫

dr1

∫
dr2 ρ1(r1)ρ2(r2)υNN(r12 = R + r2 − r1),

(3)

where υNN is the NN interaction. In this calculation, we have
used the M3Y-Paris [29] effective interaction with a zero-
range approximation for its exchange part. One of the main
inputs in the DF model is the density distribution, ρi(ri), of
the interacting nuclei. Here, we have used a two-parameter
Fermi-Dirac (2PF) distribution function,

ρ2PF(r) = ρ0

1 + exp [(r − R0)/a0]
, (4)

and a three-parameter Fermi-Dirac (3PF) distribution function,

ρ3PF(r) = ρ0(1 + ωr2/R2
0)

1 + exp [(r − R0)/a0]
, (5)

for parametrization of the density in the participant nuclei.
For 28Si, 40Ar, and 48Ti nuclei, we have used the 2PF profile
whereas the nuclear distribution density in 35Cl and 40Ca is
parametrized based on the 3PF profile. The parameters of
these profiles are evaluated experimentally [30]. For the 74Ge
nucleus, we have used the Hartree-Fock-Bogoliubov (HFB)
calculations [31]. The values of R0, a0, and ω parameters
based on the 2PF and 3PF profiles for selected nuclei are listed
in Table I. Additional details of the calculation of the DF model
are presented in Ref. [32].

It is well known that the DF formalism is based on the
sudden approximation. Indeed, the density distribution of

TABLE I. The parameters of density distribution for different
nuclei. The parameters of 2PF and 3PF profiles are taken from
Refs. [30,31].

Nucleus Profile R0 (fm) a0 (fm) ω

28Si 2PF 3.14(6) 0.537(32)
35Cl 3PF 3.476(32) 0.559(5) − 0.10(2)
40Ar 2PF 3.53(4) 0.542(15)
40Ca 3PF 3.766(23) 0.586(5) − 0.161(23)
48Ti 2PF 3.843(15) 0.588(5)
74Ge 2PF 4.5631 0.5184

interacting nuclei is assumed to be frozen during the fusion
process. This causes the density of nuclear matter in the
overlapping region to increase to twice the saturation density
of nuclear matter, namely, 0.16 fm−3. This unusual physical
effect can be modified by adding a repulsive core term to the
nuclear attractive potential in the DF calculation. As noted in
Sec. I, one can employ the proposed procedure in Ref. [8] to
calculate this corrective term. The strength of the repulsive
core potential is defined by

Vrep(R = 0) = νrep

∫
dr1

∫
dr2 δ(r2 − r1)ρ1(r1)ρ2(r2),

(6)

where its central part is parametrized by a zero-range inter-
action and it is evaluated within the complete overlapping
region of density distributions. We should point out that when
considering surface diffuseness effects of interacting nuclei
during overlapping of density distributions, the diffuseness
parameters of the target and the projectile in Eqs. (4) and (5)
are defined as a0 = arep. Therefore, we consider two adjustable
parameters, arep and νrep, for calculating the repulsive core
potential.

When two interacting nuclei approach each other, the
overlapping of their density distributions begins at a distance of
R < R1 + R2, where R1 and R2 are the nuclear radii of target
and projectile, respectively. Because the energy per nucleon
of finite nuclear matter is directly dependent on density, it
is predictable that increasing the density in the overlapping
region enhances the energy of the system. This increase of
energy can be formulated for cold nuclear matter as the
difference between the initial E(ρ ≈ ρ0) and final E(ρ ≈ 2ρ0)
states,

�U |T =0 ≈ 2AP [E(2ρo) − E(ρo)], (7)

where ρo is the saturation density of nuclear matter. In this
formalism, the number of nucleons in the overlapping region of
an asymmetric system is considered twice those in the smaller
nucleus, AP .

III. DESCRIPTION OF THE THERMAL CONDITIONS
OF THE FUSION PROCESS

By eliminating thermal effects of the compound nucleus
during the fusion process, one can use the cold nuclear matter
EOS based on the Thomas-Fermi (TF) model [33] for calculat-
ing the energy per nucleon, E(ρ), in Eq. (7). In fusion reactions
with T � 2 MeV, the EOS predicted by theoretical models
such as TF may be unsuitable owing to the disappearance of
shell effects. Therefore, we have employed the hot EOS, which
has been generalized using the modified density-dependent
terms in the Seyler-Blanchard (SB) formalism [34], to compute
the energy per nucleon of HNM. In recent years, the hot
EOS has been used for various studies such as calculation
of the hot G-matrix using an extension of the Pauli operator
[35], collective flow and multifragmentation [36], and entropy
production and thermalization in medium-energy heavy-ion
collisions [37].
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TABLE II. The parameters of the WS potential for considered reactions which are determined by fitting to the M3Y + repulsion potential
at each bombarding energy (or temperature T ). The χ 2 vales are the corresponding relative errors.

Reaction Ec.m. (MeV) T (MeV) V0 r0 a χ 2

28Si + 40Ca 175.2 4.85 71.6 1.16 0.719 6.801(65) × 10−8

181.7 4.94 71.4 1.16 0.722 5.883(07) × 10−8

192.3 5.08 66.9 1.17 0.721 5.462(98) × 10−8

233.5 5.60 73.0 1.16 0.723 5.948(36) × 10−8

265.8 5.97 64.5 1.77 0.719 5.396(47) × 10−8

35Cl + 48Ti 57.5 2.43 31.9 1.25 0.759 9.462(96) × 10−10

69.1 2.68 38.5 1.25 0.754 1.124(19) × 10−9

80.6 2.91 56.5 1.20 0.745 1.113(34) × 10−9

92.2 3.12 59.3 1.19 0.738 1.125(33) × 10−9

40Ar + 74Ge 108.4 2.71 53.2 1.18 0.718 1.105(06) × 10−8

127.8 2.98 59.4 1.18 0.717 1.014(97) × 10−8

147.3 3.23 63.8 1.17 0.717 1.181(33) × 10−8

By implementing thermal effects of the compound nucleus,
the increasing energy of the system based on Eq. (7) can be
modified as

�U (T ) ≈ 2AP [EH (2ρo, T ) − EC(ρo)], (8)

where the subscripts H and C, respectively, refer to the hot
and the cold nuclear matter. In order to calculate EH (ρ, T ),
we have used the following relation [34]:

EH (ρ, T ) = E0(ρ, T = 0) + ET (ρ, T ), (9)

where E0(ρ, T = 0) and ET (ρ, T ) are the energy per nucleon
of nuclear matter at zero (T = 0) and finite (T ) temperatures,
which are introduced in Ref. [34]. T is related to the excitation
energy E∗ of the compound nucleus or the energy of the
projectile nucleus in the center-of-mass frame, Ec.m., via the
entrance channel Qin value, as

E∗ = Ec.m. + Qin = 1

a
AT 2 − T , (10)

with a = 9 or 10 for intermediate-mass or superheavy systems,
respectively [38,39]. Using this equation, we have computed
the corresponding values of compound nucleus temperature
for each considered reaction, namely, 28Si + 40Ca, 35Cl + 48Ti,
and 40Ar + 74Ge; these are listed in Table II.

One can see that the temperature of the compound nucleus
for some systems increases to values of about 6 MeV. This can
be attributed to the high excitation energies of the compound
nucleus. Note that all selected reactions are medium-mass
systems with negative Q values.

In order to obtain the parameters of the repulsive core
modeling, we have used the following relation:

�U (T ) = VNN(0) = Vatr(0) + Vrep(0). (11)

In this relation the nucleus-nucleus potential VNN(R) is defined
as the sum of attractive, Vatr(R), and repulsive, Vrep(R), parts,
which are estimated within complete overlapping region of
density distributions, R = 0. To compute the last term, one
should minimize the chi-squared value (χ2) for fusion cross
sections σfus at each energy by adjusting the repulsive param-
eters arep and νrep. The theoretical approach for calculating the
values of σfus is described in Sec. IV.

The calculated total potentials based on the M3Y and
M3Y + repulsion models at specified bombarding energy are
shown in Fig. 1. The influence of the repulsive core potential
on the inner regions of the Coulomb barrier is quite evident.
This extra repulsive force increases the barrier thickness and
exhibits a shallow pocket in the R < RB region. As a result
of Fig. 1, one can find out that the M3Y potential is an
unphysical form of interaction potential in the inner regions
of the Coulomb barrier, because it is much deeper than the
ground-state energy of the compound nucleus.

Now let us study the temperature dependence of the two
introduced quantities �U and Vrep for 28Si + 40Ca, 35Cl +
48Ti, and 40Ar + 74Ge fusion reactions. By using Eq. (8),
the trend of variations �U (T ) at each temperature T can
be analyzed. In Fig. 2, the variations of �U (T ) versus the
bombarding energy in the center-of-mass frame for the chosen
systems are shown. It can be seen that the values of �U (T )
increase with increasing energy (or temperature T ). Moreover,
these trends show a linear dependence on T .

For each set of selected parameters of arep and νrep, we
have calculated the values of Vrep at R = 0 using Eq. (6), and
these results are illustrated in Fig. 3. The obtained results show
that there is a linear dependence between the strength of the
repulsive core and the bombarding energy or temperature of
the compound nucleus.

IV. CALCULATION OF FUSION CROSS SECTIONS

We have analyzed the fusion cross sections for the chosen
systems 28Si + 40Ca, 35Cl + 48Ti, and 40Ar + 74Ge, [40–42],
using the CCFULL code [43]. In general, the coupling between
the relative motions and the intrinsic degrees of freedom of
the interacting nuclei plays an important role in the analytical
calculations of fusion cross sections. The CCFULL code takes
into account the effects of nonlinear couplings to full order. On
the other hand, in this code, the nuclear interaction potential
has been assumed to be in WS form. The obtained results for
WS parameters, which have been achieved from the fitting to
the M3Y + repulsion potentials at each bombarding energy,
are listed in Table II. The corresponding values of the relative
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FIG. 1. Comparison of total interaction potentials based on the
M3Y and M3Y + repulsion models for reactions of (a) 28Si + 40Ca,
(b) 35Cl + 48Ti, and (c) 40Ar + 74Ge. In each panel, the values of the
energy for which the M3Y + repulsion potential has been calculated
and the ground-state energies of the compound nuclei for each
reaction are also shown.

errors of fitting, χ2, have also been reported in this table.
It is quite evident that the parameters of the WS potential
are obtained with high accuracy. In the present work, the
coupled channels calculations are based on the low-lying
excited states 2+ and 3− in the participant nuclei. The nuclear
structure inputs of these states for 40Ar, 40Ca, 48Ti, and 74Ge

FIG. 2. The values of �U at different bombarding energy,
calculated by Eq. (8) for (a) 28Si + 40Ca, (b) 35Cl + 48Ti, and
(c) 40Ar + 74Ge fusion reactions. In each panel, the corresponding
temperature values of the compound nucleus, T (in MeV), have also
been displayed.

nuclei are given in Table III. For excited states of 28Si and
35Cl, we have used phonon states reported in Ref. [12].
Therefore, we have employed the phonon states 2+ with
βN

2 = 0.25 for 28Si and 3− with βN
2 = 0.252 and excitation

energy E∗ = 1.763 MeV for 35Cl. The calculated values of
fusion cross sections based on the M3Y + repulsion potential
corresponding to each bombarding energy, Ec.m., are listed in
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FIG. 3. Repulsive core strength Vrep (in MeV) as a function of
Ec.m. for (a) 28Si + 40Ca, (b) 35Cl + 48Ti, and (c) 40Ar + 74Ge fusion
reactions. In each panel, the corresponding temperature values T (in
MeV) are also shown. The solid lines have been drown to represent
the linear dependence of Vrep values.

Table IV. In this table, the experimental fusion cross section
data are also listed for selected reactions.

To achieve further understanding, we have compared our
obtained results for the interaction potential and fusion cross
section with some proximity potentials, namely, AW 95 [44],
Bass 80 [45], and Prox. 2010 [26]. In recent years, these
potentials have been applied to more than 400 fusion reactions
and compared with experimental data [26–28]. The obtained
results of these studies show that among various versions of

TABLE III. The values of the excitation energies E∗, reduced
transition probabilities B(Eλ), and corresponding deformation pa-
rameters βλ of low-lying 2+ and 3− states for chosen nuclei. These
values are extracted from Refs. [48,49].

Nucleus λπ E∗ (MeV) B(Eλ) (e2 bλ) βλ

40Ar 2+ 1.460 0.0330 0.251
3− 3.681 0.0087 0.314

40Ca 2+ 3.904 0.0099 0.123
3− 3.737 0.0204 0.432

48Ti 2+ 0.983 0.0720 0.269
3− 3.359 0.0067 0.197

74Ge 2+ 0.596 0.3000 0.282
3− 2.536 0.0200 0.145

proximity potentials, the AW 95, Bass 80, and Prox. 2010
potentials have the best agreement with experimental data (for
instance, see Fig. 3 of both Refs. [26,28]).

The original proximity formalism, i.e., Prox. 77 [18], has
been generalized by using the thermal effects of the compound
nucleus [46,47]. In the proposed formalism, the effective
sharp radius R0i and the nuclear surface thickness b are
modified as R0i(T ) = R0i(T = 0)(1 + 0.0007T 2) and b(T ) =
0.99(1 + 0.009T 2), respectively. In the present study, we have
applied temperature effects of the compound nucleus on the
selected proximity potentials. In Fig. 4, we have compared
the temperature-dependent potentials, which are based on the
M3Y + repulsion and various versions of proximity models,
at specified energy for fusion systems of 28Si + 40Ca, 35Cl +
48Ti, and 40Ar + 74Ge. This figure shows that the shallow
pockets caused by the Prox. 2010 potential are deeper than
in other models.

The percentage difference between theoretical and experi-
mental fusion cross sections,

�σfus(%) =
(

σtheor − σexp

σexp

)
× 100, (12)

TABLE IV. The calculated results of fusion cross sections σtheor

based on the M3Y + repulsion potential for selected reactions 28Si +
40Ca, 35Cl + 48Ti, and 40Ar + 74Ge. In this table, the experimental
fusion cross sections σexp and their corresponding errors ±δσ are
also listed [40–42].

Reaction Ec.m. (MeV) σtheor (mb) σexp ± δσ (mb)

28Si + 40Ca 175.2 658.4 646 ± 100
181.7 635.4 631 ± 126
192.3 556.5 548 ± 130
233.5 512.8 519 ± 104
265.8 372.4 379 ± 76

35Cl + 48Ti 57.5 337.3 324 ± 17
69.1 667.4 668 ± 33
80.6 947.3 948 ± 47
92.2 1121.2 1140 ± 106

40Ar + 74Ge 108.4 832.5 830 ± 80
127.8 931.3 930 ± 100
147.3 906.5 910 ± 100
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FIG. 4. Comparison of temperature-dependent potentials based
on the M3Y + repulsion, AW 95, Bass 80, and Prox. 2010 models
for (a) 28Si + 40Ca (at Ec.m. = 192.3 MeV), (b) 35Cl + 48Ti (at
Ec.m. = 80.6 MeV), and (c) 40Ar + 74Ge (at Ec.m. = 147.3 MeV)
fusion reactions.

for 28Si + 40Ca, 35Cl + 48Ti, and 40Ar + 74Ge collision sys-
tems has been illustrated in Fig. 5. One can see that our
calculated fusion cross sections are consistent with those
evaluated experimentally. In this figure, the predictions of
selected proximity potentials for Eq. (12) are also shown. It
is clear that the results which are obtained by the Prox. 2010
potential in comparison to the other proximity models are in
better agreement with empirical fusion cross section data.

FIG. 5. Ratio of the measured [40–42] and calculated values of
the fusion cross section resulting from M3Y, M3Y + repulsion, AW
95, Bass 80, and Prox. 2010 potentials for reactions of (a) 28Si + 40Ca,
(b) 35Cl + 48Ti, and (c) 40Ar + 74Ge.

V. CONCLUSIONS

In this study, we have analyzed the thermal effects of
a compound nucleus on the entrance channel potentials
and fusion excitation functions for reactions of 28Si + 40Ca,
35Cl + 48Ti, and 40Ar + 74Ge. To calculate the interaction
potential and fusion cross sections the modified DF model
and CC formalism are employed, respectively. The obtained
results of the present work can be calibrated to the following
cases:
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(i) It is indicated that the thermal effects of a com-
pound nucleus play a significant role in the calculation of
the nuclear potential and the cross section. Furthermore,
this effect considerably improves the agreement between
calculated and measured fusion cross section data (see
Fig. 5).

(ii) The values of the repulsive core strength within
complete overlapping region of density distributions (R = 0)
increase with increasing bombarding energy. The analysis
of the 28Si + 40Ca, 35Cl + 48Ti, and 40Ar + 74Ge systems
reveals that this behavior is true for all of these selected
reactions.

(iii) The obtained results show that the repulsive core
potential Vrep at R = 0 has a linear dependence as a function
of the energy (or temperature T ) of the compound nucleus for
fusion reactions with a thermal condition of T � 2 MeV.

(iv) In this study, we have compared the predictions of
temperature-dependent models for interaction potentials and
fusion cross sections (see Figs. 4 and 5). At our selected energy
ranges, it is shown that the M3Y + repulsion potential can
explain the experimental fusion cross sections within ±3%,
on average. This relative error is smaller than the obtained
values from other considered models, namely, M3Y double
folding and proximity potentials.

(v) Using the obtained thermal predictions for the interac-
tion potentials and fusion cross sections based on the proximity
models, one can estimate that more research is needed for
the proposed form of R0i(T ) and b(T ) at our selected energy
ranges.

(vi) The modeling of thermal effects of the compound
nucleus using the suggested form υrep(r, E) may be an
interesting subject to study in further work.
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