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Four-dimensional Langevin dynamics of heavy-ion-induced fission
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A four-dimensional dynamical model based on Langevin equations was developed and applied to calculate
a wide set of experimental observables for the reactions 16O + 208Pb → 224Th and 16O + 232Th → 248Cf over
a wide range of excitation energy. The fusion-fission and evaporation residue cross sections, fission fragment
mass-energy distribution parameters, prescission neutron multiplicities, and anisotropy of angular distribution
of fission fragments could be reasonably reproduced using a modified one-body mechanism for nuclear friction
with a reduction coefficient of the contribution from a wall formula ks � 0.25 and a dissipation coefficient for
the orientation degree of freedom (K coordinate) γK � 0.077 (MeV zs)−1/2. Inclusion of the K coordinate
into calculation of potential energy changes the stiffness of the nucleus with respect to mass asymmetry
coordinate for the values of K �= 0 and results in a shift of the Businaro-Gallone point towards larger Z2/A

values. The experimental data on the fission fragment mass-energy distribution parameters together with mean
prescission neutron multiplicity for heavy fissioning nuclei are reproduced through the four-dimensional Langevin
calculations more accurately than through three-dimensional calculations.
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I. INTRODUCTION

The dissipative properties of nuclear matter are still a
popular subject in experimental and theoretical investigations
of the large-amplitude collective motions in nuclei, such as
heavy-ion fusion and nuclear fission. Many recent studies
have been performed on the basis of one-dimensional [1–4]
and multidimensional [5–16] Langevin equations to analyze
experimental data on the different features of fusion-fission
reactions. All of the above-mentioned applications of Langevin
dynamics are used for compound nuclei with zero spin about
a symmetry axis, because it was always assumed that angular
momentum is not only perpendicular to the reaction plane, but
also to the fission direction.

As first pointed out by Lestone in Ref. [17], this assumption
is not consistent with statistical model as well as with
dynamical treatment of the orientation degree of freedom
[18]. Subsequently, Lestone and McCalla introduced the
overdamped Langevin equation to describe the dynamical
evolution of orientation degree of freedom (K coordinate)
and stressed that a large volume of heavy-ion-induced fission
data needs to be reanalyzed with dynamical treatment of the
orientation degree of freedom [19]. Clearly, consideration of
the K coordinate as an independent collective coordinate in
multidimensional Langevin dynamics is necessary for dynam-
ical treatment of the fission fragment angular distribution.
Yet, in almost all cases, the analysis of the latter is restricted
only by the framework of statistical transition-state model.
An alternative dynamical description of the evolution of the
orientation degree of freedom on the basis of a Metropolis
algorithm and an algorithm of Kubo-Anderson process
was previously developed in Refs. [20–22]. This approach
was successfully applied to describe fragment angular distri-
butions from excited compound nuclei fission.

In the present study, we have performed the extension of the
three-dimensional (3D) Langevin dynamical model [23–25]
by adding the orientation degree of freedom (K coordinate) to
three collective coordinates that describe the shape evolution

of the fissioning nucleus. In other words, we are led with a
four-dimensional (4D) Langevin model. We have studied the
impact of the new additional degree of freedom on observable
features of the fission process, such as the parameters of
the fission fragment mass-energy distribution (MED), the
mean prescission neutron multiplicity, and fusion-fission (FF)
and evaporation residue (ER) cross sections. We have also
dynamically treated and calculated the angular distribution of
fission fragments.

The paper is organized as follows. Section II describes
the 4D Langevin model, including its basic equations, input
parameters, and details of calculations. Section III presents
and discusses the results obtained from the application of the
developed model. Finally, Sec. IV contains closing remarks.

II. MODEL

The 4D dynamical model has been constructed on the basis
of the 3D model [23–25]. Three collective coordinates are
used to describe the shape of the compound nucleus. The
fourth collective coordinate is the projection K of the total
spin I to the symmetry (elongation) axis of the nucleus. We
applied a {c, h, α} parametrization [26] of the nuclear shape
in the dynamical calculations. The surface of the nucleus in
cylindrical coordinates is given by

ρ2
s (z) =

{
(c2 − z2)

(
As + Bz2/c2 + αz

c

)
, B � 0;

(c2 − z2)
(
As + αz

c

)
exp(Bcz2), B < 0,

(1)

where z is the coordinate along the symmetry axis and ρs is
the radial coordinate of the nuclear surface. In Eq. (1) the
quantities B and As are defined as

B = 2h + c − 1

2
;

(2)

As =
⎧⎨
⎩

c−3 − B
5 , B � 0;

− 4
3

B

exp(Bc3)+
(

1+ 1
2Bc3

)√−πBc3erf(
√−Bc3)

, B < 0.
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In Eqs. (1) and (2), c denotes the elongation parameter, the
parameter h describes the variation in the thickness of the
neck for a given elongation of the nucleus, and the the mass
asymmetry parameter α determines the ratio of the nascent
fission fragments volumes.

In the stochastic approach [27–30], evolution of the collec-
tive coordinates is considered as motion of Brownian particles
which interact stochastically with a large number of internal
degrees of freedom, constituting the surrounding “heat bath.”
The hydrodynamical friction force is assumed to be derived
from the random force averaged over a time larger than the
collision time scale between collective and internal degrees of
freedom. The random part is modeled as a Gaussian white
noise which causes fluctuations of the collective variables
resulting in fluctuations of the physical observables in fission
process. The coupled Langevin equations have the form

dqi

dt
= μijpj ,

(3)
dpi

dt
= −1

2
pjpk

∂μjk

∂qi

−
(

∂F

∂qi

)
T

− γijμjkpk + θij ξj (t),

where q is the vector of collective coordinates, p is the vector
of conjugate momenta, F (q,K) = V (q,K) − a(q)T 2 is the
Helmholtz free energy, V (q) is the potential energy, mij (q)
(‖μij‖ = ‖mij‖−1) is the tensor of inertia, and γij (q) is the
friction tensor. The ξj (t) is a random variable satisfying the
relations

〈ξi〉 = 0, 〈ξi(t1)ξj (t2)〉 = 2δij δ(t1 − t2). (4)

Thus, the Markovian approximation is assumed to be valid.
The strength of the random force θij is given by the Einstein
relation

∑
θikθkj = T γij . The temperature of the “heat bath”

T has been determined by the Fermi-gas model formula
T = (Eint/a)1/2, where Eint is the internal excitation energy of
the nucleus and a(q) is the level-density parameter with the co-
efficients taken from the work of Ignatyuk and coauthors [31].
It should be stressed that the driving force in an excited system
is not simply the negative gradient of the conservative potential
V (q) but should contain a thermodynamical correction:

Qi = −
(

∂F

∂qi

)
T

= −∂V (q)

∂qi

+ ∂a(q)

∂qi

T 2. (5)

Thus in the present study, the Helmholtz free energy is
the thermodynamical driving potential [11,24,25,30]. The
repeated indices in the equations above imply summation over
the collective coordinates.

The three collective coordinates q = (q1, q2, q3) are related
to the shape parameters c, h, and α by q1 = c, q2 = (h +
3/2)/( 5

2c3 + 1−c
4 + 3/2), and q3 = α/(As + B), if B � 0, or

q3 = α/As , if B < 0. The advantage of using the collective
coordinates q instead of the {c, h, α} parameters is discussed
in Refs. [25,32].

During a random walk along the Langevin trajectory in the
space of the collective coordinates, the energy conservation
law is used in the form E∗ = Eint + Ecoll + V + Eevap(t). Here
E∗ is the total excitation energy of the nucleus, and Ecoll =
0.5

∑
μijpipj is the kinetic energy of the collective degrees of

freedom. The value Eevap(t) is the energy carried away by the

evaporated particles by the time t . The potential energy of the
nucleus was calculated within the framework of a macroscopic
model with finite range of the nuclear forces [33] using
parameters from Ref. [34]. The potential energy was obtained
as a sum of the Coulomb energy, the generalized surface energy
(the nuclear interaction energy), and the rotational energy. The
inertia tensor was calculated by applying the Werner-Wheeler
approximation for incompressible irrotational flow [35].

A modified one-body mechanism of nuclear dissipation
[36,37] similar to that proposed in Refs. [38,39] with the
use of the center-of-mass motion for the drift velocity and
inclusion of the so-called completed “wall-and-window” term
introduced by Randrup and Swiatecki [40] was employed to
determine the dissipative part of the driving forces. The friction
tensor was calculated using the “wall-plus-window” formula
for strongly necked-in shapes, while only the “wall” formula
contribution was used for compact mononuclear shapes. In the
intermediate case for the shapes that are neither compact nor
strongly necked-in, a smooth interpolation [41,42] between the
“wall” and “wall-plus-window” formula was used with a form
factor ranging from 1 for mononuclear-like shapes to 0 for the
shapes with zero neck radius. Reduction coefficients ks = 0.25
and ks = 0.5 of contribution from the “wall” formula are
used in the present calculations. An explicit expression for
the friction tensor is given in Refs. [21,23,42]. The value
ks = 1.0 corresponds to the standard “wall” and “wall-plus-
window” formulas [36,37,43], whereas values 0.2 < ks < 0.5
allow the reproduction of different features of the mass-
energy distribution, particle multiplicities in multidimensional
Langevin calculations [5,6,11,24,25,42,44], and the widths
of isoscalar giant resonances over a broad range of nuclear
masses [38]. Furthermore, the necessity of the ks reduction
factor is compatible with other theoretical predictions [45–48].

The description of evolution of the K collective coordinate
using the Langevin equation for overdamped motion has been
recently proposed in Ref. [19]. Such description is more
consistent than the application of the Metropolis algorithm
[20,21,49]. The Langevin equation for the K coordinate allows
the modeling of the relaxation process of K states depending
on the instantaneous physical properties of fissioning system
such as temperature and moment of inertia instead of treating
the corresponding relaxation time τK as a free parameter
[20–22]. However, the main drawback of this approach is
the lack of detailed description of the coupling between
the orientation degree of freedom and the “heat bath.”
Successful application of the transition-state model of angular
distributions to the large number of fusion-fission reactions
suggests that K can be treated as an overdamped collective
coordinate [19]. This means that the stochastic dynamics of
the orientation degree of freedom does not include the inertia
parameter and could be described by the overdamped Langevin
equation:

dK = −γ 2
KI 2

2

∂V

∂K
dt + γKI

√
T

2
ξ (t), (6)

where ξ (t) has the same meaning as in Eq. (3) and γK is
a parameter controlling the coupling between the orientation
degree of freedom K and the “heat bath.” As the level density
parameter a(q) does not depend on K , the conservative force
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in the Langevin Eq. (6) is calculated as a derivative of the
potential energy.

The Langevin equations for the shape parameters (3) and
the Langevin equation for the K coordinate (6) are connected
through the potential energy. The Langevin dynamics of the
K coordinate is influenced by the actual value of potential
energy V (q, I,K). At the same time, the rotational part of the
potential energy is dependent on the actual K value at time
t , and this way it influences the dynamical evolution of shape
parameters.

The rotational part of the potential energy is determined by
the expression

Erot(q, I,K) = h̄2K2

2J‖(q)
+ h̄2[I (I + 1) − K2]

2J⊥(q)

= h̄2I (I + 1)

2J⊥(q)
+ h̄2K2

2Jeff(q)
. (7)

The functionals J‖ and J⊥ are the rigid body moments of
inertia, about and perpendicular to the symmetry axis. To
account for the diffuseness of the nuclear surface, moments
of inertia should be calculated as follows [50]:

J⊥(‖)(q) = J
(sharp)
⊥(‖) (q) + 4M0a

2
M, (8)

where aM = 0.704 fm is the diffuseness parameter of the
nuclear surface, M0 is the compound nucleus mass, and
J

(sharp)
⊥(‖) are the moments of inertia for a sharp-edged nuclear

density distribution. The effective moment of inertia is J−1
eff =

J−1
‖ − J−1

⊥ . The expressions for the J
(sharp)
⊥(‖) in the {c, h, α}

parametrization could be found in Ref. [51].
Based on the works of Døssing and Randrup [52,53],

Lestone and McCalla [18,19] have shown that in the case
of a dinucleus γK can be expressed as

γK = 1

RNRc.m.

√
2π3n0

√
J‖|Jeff|JR

J 3
⊥

, (9)

where RN is the neck radius, Rc.m. is the distance between
the centers of mass of the nascent fragments, n0 is the bulk
flux in standard nuclear matter (0.0263 MeV zs fm−4) [53],
and JR = M0R

2
c.m./4 for a reflection-symmetric shape. In a

limiting case γK → 0 and with an initial K value equal to
zero, the present 4D Langevin model is reduced to the 3D
model [23–25].

The deformation dependence of the dissipation coefficient
γK given by Eq. (9) should be used with caution as is
stated in Ref. [19], because Eq. (9) was obtained assuming
nuclear shapes featuring a well-defined neck. Therefore,
following Ref. [19], we choose γK to be a constant equal to
0.077 (MeV zs)−1/2. This estimation has been obtained using
Eq. (9) for elongated nuclear shapes featuring a neck, which
corresponds to the deformations typical for the descent from
saddle to scission point. The above-mentioned value of the
friction parameter γK used in Refs. [17,19] was obtained
by Lestone and coauthors in their early study [54] from an
analysis of fission fragment angular distribution measured for
a number of fusion-fission reactions. This value was further
used in Refs. [17,19] in calculations of the mean fission time of
compound excited nuclei. Since this estimate may be incorrect

by a factor of 2 or more [19], we also performed calculations
with different γK values, trying to explore the sensitivity of
observables to the ks and γK parameters.

Evaporation of prescission light particles (n, p, α, γ ) along
Langevin fission trajectories was taken into account using a
Monte Carlo simulation technique [55]. The angular momen-
tum L for each Langevin trajectory has been sampled from the
spin distribution function

σ (L) = 2π

k2

2L + 1

1 + exp[(L − Lc)/δL]
, (10)

where k, Lc, and δL are the wave number, critical angular
momentum for fusion, and diffuseness, respectively. In the
first approximation, Lc and δL values were defined according
to the scaled prescription [30], which reproduces to a certain
extent the dynamical results of the surface friction model [56]
for fusion of two heavy ions. Finally, the quantities Lc and δL

were constrained from the experimental fusion cross section
and 〈L2〉. In the present study, we neglected the spins of
projectile and target nuclei and assumed that the spin of the
compound nucleus I � L. The initial K value was generated
using the Monte Carlo method from uniform distribution
in the interval (−L,L) [19,20]. The initial conditions for
the shape coordinates were chosen as follows. We started
modeling fission dynamics from the spherical compound
nucleus, i.e., q0 = (q10 = 1.0, q20 = 0.375, q30 = 0.0), with
thermalized internal degrees of freedom. It was supposed that
the scission occurred when the neck radius of the fissioning
nucleus was equal to 0.3R0 [26,57] (R0 is the radius of the
initial spherical nucleus). This scission condition determines
the scission surface in the multidimensional space of collective
coordinates. The Langevin trajectory determines the shape of
the fissioning nucleus at the moment of scission into fragments
by crossing the scission surface. The dynamical trajectory will
either reach the scission surface, in which case it is counted as
a fission event, or if the excitation energy for a trajectory which
is still inside the saddle reaches the value Eint + Ecoll(q, p) <

min(Bj , Bf ), the event is counted as an evaporation residue
(Bj is the binding energy of the particle j = n, p, α, γ ). The
dynamical Eqs. (3) and (6) were integrated simultaneously
with the same time step until the scission or evaporation
residue condition occurs. Correspondingly, the ensemble of
sampled Langevin trajectories determines the ensemble of
fission fragments and evaporation residue nuclei, and one
can obtain the observables of interest, typical for FF or
ER channels, such as masses and kinetic energies of fission
fragments, K values, and temperatures.

In the standard theoretical approach, fission fragments are
assumed to be emitted along the direction of the nuclear
symmetry axis at the transition state configuration. The angular
distribution in this case is given by Refs. [58,59]

W (θ, I,K) = (I + 1/2)|DI
M,K (θ )|2, (11)

where quantum number M is the projection of the total spin I

on the space-fixed axis, θ is the angle with respect to the space-
fixed axis, and DI

M,K (θ ) is the symmetric-top wave function.
In case of zero spin target and projectile nuclei, M is zero,
and the angular distribution of fission fragments is determined
by averaging the expression (11) over ensemble of Langevin

064619-3



P. N. NADTOCHY et al. PHYSICAL REVIEW C 85, 064619 (2012)

trajectories

W (θ ) = 1

Nf

Nf∑
j=1

(I j + 1/2)
∣∣DIj

0,Kj (θ )
∣∣2

, (12)

where upper index j determines the value of corresponding
quantity at the scission point for the j th Langevin trajectory
and Nf is the number of trajectories reaching the scission
surface. Applying Eq. (12) within the present 4D calculations
we determine the angular distribution at the scission surface.
This procedure does not use the assumptions of the standard
transition-state model, as the K distribution is determined
dynamically at every time step. Thus, there is no need of any
assumption of its distribution at any arbitrary transition point.

Additionally, the standard transition-state model has been
used to analyze fission fragment angular distributions. These
calculations have been performed to compare the predictions
of widely used transition-state models with the present dy-
namical model. In the transition-state model, the equilibrium
distribution over the K degree of freedom is assumed to
be established at the transition state. Usually two limiting
assumptions on the position of the transition state and,
correspondingly, two versions of the transition-state theory
exist: the saddle-point transition-state (SPTS) [58] and the
scission-point transition-state (SCTS) [60] models. We use the
last passage of the saddle point by the fissioning system [13]
in the case of the SPTS model to find observables of interest.
In the case of the multidimensional model, a set of relevant
conditional saddle or scission points plays the role of transition
states. A frequently used approximation to the fission fragment
angular distributions involves a computation of the following
expression:

W (θ, I ) = (2I + 1) exp[−p sin2 θ ]J0[−p sin2 θ ]

erf [
√

2p ]
, (13)

where J0 is the zeroth-order Bessel function, p = (I +
1
2 )2/(4K2

0 ), and the variance of the equilibrium K distribution
K0 is

K2
0 = JeffT/h̄2. (14)

Here T and Jeff are taken at the transition state. We explicitly
take into account the dependence of transition-state deforma-
tion on the I value. One must sum the expression (13) over I

to obtain the angular distribution:

W (θ ) =
∞∑

I=0

σ (I )W (θ, I ). (15)

The anisotropy of the fission fragment angular distribution is
then given by

A = W (0◦)

W (90◦)
, (16)

where angular distribution W (θ ) could be found either from
4D calculations using Eq. (12) or from the equilibrium K

distribution at transition state using Eqs. (13)–(15).
Three quantities determine the angular distribution in

the transition-state model: the initial spin distribution of
compound nuclei, the effective moment of inertia, and the

nuclear temperature at the transition state. In the case of p  1
[see Eq. (13)], the anisotropy of the angular distribution is
given by the approximate relation

W (0◦)

W (90◦)
� 1 + 〈I 2〉

4K2
0

. (17)

Note that the K distribution obtained from 4D dynamical
calculations will be identical to the equilibrium K distribution
at the saddle point for the case in which the relaxation time
of the K degree of freedom τK is shorter than the time spent
by the nucleus near the saddle point and larger than the time
of descent from saddle to scission point. If, on the contrary,
the τK is much shorter than the descent time from saddle
to scission point, the dynamically calculated K distribution
will be similar to the equilibrium K distribution at the scission
point. In the present dynamical calculations, we do not use any
approximation about the relaxation time for the K coordinate.
Instead, we directly treat the relaxation process of the K

coordinate using Eq. (6) and take into account the influence
of the actual evolution of the K value on the dynamics of the
shape parameters (q1, q2, q3).

The analysis of the ensemble-averaged Eq. (6) leads to the
expression for the K-state relaxation time

d〈K〉
dt

= −γ 2
KI 2

2

〈
∂V

∂K

〉
. (18)

From the expression for the rotational energy, it follows that

d〈K〉
dt

= −γ 2
KI 2

2

h̄2

Jeff
〈K〉. (19)

Assuming a constant γK , as we do in the present study, the
solution of this equation has the form

〈K(t)〉K0 = K0 exp

[
−γ 2

KI 2h̄2

2Jeff
(t − t0)

]
, (20)

which gives the following expression for the relaxation time:

τK = 2Jeff

γ 2
KI 2h̄2 . (21)

Another estimate for τK can be found in Ref. [61]:

τK = CKJ 2
⊥

t[I (I + 1) − K2]h̄2 . (22)

It is based on the ideas of Randrup and Døssing [62]. Here CK

is a coefficient that was varied to describe experimental data
more precisely.

III. RESULTS AND DISCUSSION

We performed calculations for the compound nuclei 224Th
and 248Cf formed in the following heavy-ion reactions:

(i) 16O + 208Pb → 224Th (Elab = 90, 110, 130, 148, and
215 MeV) [63–72];

(ii) 16O + 232Th → 248Cf (Elab = 90, 95, 120, 140, and
160 MeV) [72–76].

These reactions have been studied experimentally and exten-
sive experimental observables are available for the comparison
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FIG. 1. The Helmholtz free energy along the mean fission
trajectory for the 224Th compound nucleus as the function of the
elongation parameter q1, and corresponding fission barriers (Bf ) for
different combinations of L and K values.

with theoretical predictions. In the present analysis, we
consider only two compound nuclei and do not attempt to get
the best fit of all available experimental data as we mainly
explore the effects related to the extension of our model
from 3D to 4D, by the explicit dynamical treatment of the
K orientation degree of freedom.

A. Influence of the K coordinate on the driving potential

We will start our analysis with static influence of the K

coordinate on the driving potential landscape and then briefly
discuss dynamic aspects. The crucial changes of potential
energy come from rotational energy. The latter increases the
fission barrier height for the values K �= 0 [19,77]. The ex-
ample of the Helmholtz free energy potential along the fission
path for 224Th is shown in Fig. 1 for different combinations
of L and K values. A substantial increase of fission barrier
could be obtained at large angular momenta, whenever K is
different from zero. Such increase of fission barrier will reduce
the fission rate (increase the mean fission time) and increase
the number of evaporated prescission particles. This effect
is qualitatively equivalent to the increase of the dissipation
strength in 3D calculations. Therefore, it is expected that
in 4D calculations a lower value of dissipation strength will
result in similar fission probabilities and prescission particles
multiplicities as does a larger dissipation coefficient in 3D
calculations. Specifically, the inclusion of the K coordinate
changes not only the fission barrier height, but it affects also
the saddle-point configuration as seen in Figs. 1 and 2.

The landscape of the Helmholtz free energy as a function
of collective coordinates q1 and K is presented in Fig. 2,
which also shows the change of the saddle-point deformations
with increase of K value. In addition the figure illustrates
the range of K values potentially available to the fissioning
nucleus. We further present in Fig. 3 the dependence of saddle-
point quadrupole moments on the K coordinate for a wide set

FIG. 2. (Color online) The Helmholtz free energy for the com-
pound nucleus 224Th in the collective coordinates q1 and K at
T = 1.5 MeV. The parameters h and α are fixed and equal to zero. The
numbers at the contour lines indicate the Helmholtz free energy values
in MeV. The dashed curve shows the dependence of saddle-point
deformations on K .

of beta-stable nuclei. Large K values affect the saddle-point
quadrupole moments of light and heavy nuclei in opposite
directions.

The rotational energy decreases the stiffness (stability)
of nuclei with respect to the mass asymmetry deformations
d2F/dη2 for the values K �= 0. Here η = 2(M1 − M2)/(M1 +
M2) is the mass asymmetry coordinate introduced by Strutin-
sky [78], where M1 and M2 are the fission fragment masses.
The coordinate η is key in analysis of fission fragment mass
distribution [79]. The d2F/dη2 values along the mean fission
trajectory are shown in Fig. 4 for the nucleus 224Th. The
stiffness of the nucleus with respect to the mass asymmetry

FIG. 3. Quadrupole moments of the saddle-point configurations
Qsd (in barns) as a function of the parameter Z2/A for beta-stable
nuclei at nuclear temperature Tsd = 1.5 MeV. The solid curve
corresponds to the polynomial approximation of the calculated data
for a nonrotating nucleus (L = 0). Dash and dash-dotted curves are
polynomial approximations of the results obtained for L = 40 with
K = 0 and K = L = 40, respectively.
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FIG. 4. The stiffness of the free energy landscape for the 224Th
compound nucleus with respect to the mass asymmetry coordinate
η along the mean fission trajectory as a function of the elongation
parameter q1. Different combinations of L and K are considered as
indicated.

d2F (K �= 0)/dη2 is lower than d2F (K = 0)/dη2 for all
deformations with q1 > 1.55, which correspond to the descent
from saddle to scission point. This lowering directly comes
from the inclusion of the K coordinate, as d2F (L = 0,K =
0)/dη2 and d2F (L = 40,K = 0)/dη2 are substantially higher
than d2F (L = 40,K = 40)/dη2. The difference between
d2F (L = 0,K = 0)/dη2 and d2F (L = 40,K = 40)/dη2 in-
creases with deformation, and the difference reaches 10%
for the compound nucleus 248Cf and 12% for 224Th at the
scission point configurations respectively. The increase of
angular momentum L only slightly increases the stiffness
of the nucleus with respect to mass asymmetry, whereas
increase of K decreases it more notably. This decreasing of
compound nucleus stability with respect to mass asymmetry
coordinate after inclusion of K coordinate should make the
mass distribution of fission fragments broader with respect
to the 3D calculations, where K = 0 is supposed during the
fission process.

In the present analysis, we investigated the behavior of
d2F (L,K)/dη2 at saddle and scission points for a wide set of
beta-stable nuclei and the results are presented in Fig. 5. The
main changes of stiffness at both saddle and scission points
[d2F (L,K)/dη2]sd,sc are caused by the inclusion of the K

coordinate for all considered nuclei in the range 20 < Z2/A <

42. The increase of K qualitatively results in a parallel shift of
the [d2F (L,K)/dη2]sd,sc curves presented in Fig. 5 towards
larger Z2/A values. Hence, the Businaro-Gallone point moves
from approximately Z2/A � 20 for the case of K = 0 to
the Z2/A � 25 for the case of L = K = 40. Another sizable
effect is the substantial decrease of mass asymmetry stiffness
[d2F (L,K)/dη2]sd at the saddle point for the heavy nuclei
with Z2/A � 40. The value of [d2F (L = 40,K = 40)/dη2]sd

is around 5 times smaller than [d2F (L = 40,K = 0)/dη2]sd.
Therefore, for the heavy compound nuclei considered in the
present paper the inclusion of the K coordinate should increase
the width of the mass distribution.

FIG. 5. (Color online) The stiffness of the beta-stable nuclei
with respect to mass asymmetry coordinate at the saddle (black
symbols and curves) and scission (red symbols and curves) points,
d2F/dη2 (in MeV), for nuclei along the beta-stability line at
temperature T = 1.5 MeV. The solid curves correspond to the
polynomial approximation for the calculated data for the non-rotating
nucleus (L = 0). Dashed and dash-dotted curves are polynomial
approximations for the L = 40 and K = 0 and K = L = 40 cases
respectively. The arrows with the numbers indicate the corresponding
Businaro-Gallone point for each pair of L and K .

The impact of K state on the shape degrees of freedom
can be estimated based on the expressions for the Helmholtz
free energy and rotational energy (7). The difference between
driving forces for the ith shape collective coordinate in 4D and
3D cases can be expressed as

Q
(4D)
i − Q

(3D)
i = − ∂

∂qi

h̄2K2

2Jeff
= h̄2K2

2J 2
eff

∂Jeff

∂qi

. (23)

Considering the one-dimensional case of elongation coor-
dinate q1, the effective moment of inertia decreases as the
nucleus elongates from the ground state to scission; thus the
derivative in the expression above is negative. This means that
the driving force in fission direction in 4D is weaker than the
one in 3D, which in turn leads to smaller fission rates and,
correspondingly, to larger mean fission times [80–82].

Despite the well-determined static influence of the K

coordinate, these effects will provide complicated interplay
between each other in dynamical calculations with varying K

value. Thus the quantitative influence of the K coordinate
dynamics on the results of 4D calculations for different
observables with respect to the 3D case is difficult to predict.

B. Dynamical observables

1. Cross sections, parameters of the fission fragment MED, and
the mean prescission neutron multiplicity

Different fission characteristics of the heavy compound
nuclei 224Th and 248Cf produced, respectively, in the reactions
16O + 208Pb and 16O + 232Th have been intensively investi-
gated experimentally [63–76] and theoretically [20,23,24,44,
71,83]. The results of 3D Langevin calculations [23,24,44]
demonstrated that a simultaneous reproduction of the width
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of fission fragment mass distribution and mean prescission
neutron multiplicity for heavy fissioning nuclei is difficult.
To reproduce the fission fragment MED parameters, ks � 0.1
should be used. On the contrary, to reproduce the mean
prescission neutron multiplicity, large dissipation coefficient
ks � 1 needs to be employed. This inconsistency was partic-
ularly strong for the heavy fissioning nucleus 260Rf [23]. A
similar result for the mean prescission neutron multiplicity
was obtained in Ref. [84], where it was shown that the ks

value should range from 4 to 12 to reproduce the data for the
compound nuclei with ACN > 260.

The present 4D calculations will illustrate that the inclusion
of the K coordinate in the dynamical treatment solves
this discrepancy and helps reproduce the mean prescission
neutron multiplicity and the width of the fission fragment
mass distribution with a unified ks value. The K coordinate
increases the fission barrier height and decreases the stiffness
of the nucleus with respect to the mass asymmetry coordinate
d2F/dη2. The higher fission barrier will increase the fission

FIG. 6. (Color online) The fusion-fission σFF (a) and evaporation
residues σER (b) cross sections for the compound nucleus 224Th
as a function of center-of-mass energy. The open symbols are
experimental data: Ref. [67] (triangles), Ref. [72] (circles), Ref. [64]
(diamonds), and Ref. [63] (inverted triangles). The filled symbols are
the calculated results with ks = 0.25 and γK = 0.077 (MeV zs)−1/2

(circles), with ks = 0.25 and γK = 0.06 (MeV zs)−1/2 (diamonds),
and with ks = 0.5 and γK = 0.077 (MeV zs)−1/2 (triangles).

time and, as a result, increase the number of evaporated
particles during the fission process. On the other hand, the
decrease of the mass asymmetry stiffness of the nucleus should
increase the width of mass distribution.

Our results calculated through the 4D model are sum-
marized in Figs. 6–13 together with the experimental data.
In Fig. 6, the fusion-fission and evaporation residue cross
sections are presented for the 224Th compound nucleus. The
comparison between the results of 4D calculations with
experimental data demonstrates that both cross sections could
be reproduced quite reasonably at high excitation energy. An
overestimation (underestimation) of ER (FF) cross section is
obtained at Ec.m. = 80–120 MeV. This discrepancy at low
energies is even higher than in the 3D calculations reported
in Ref. [24]. The growth of σER in 4D in comparison with 3D
is contingent upon the growth of fission barrier height after
the inclusion of the K coordinate. The level density parameter
could further be adjusted to fit experimental σFF and σER.
This could suppress evaporation of the particles favoring the
FF channel with respect to the ER one. This will decrease
σER and increase σFF leading to a more accurate reproduction
of experimental cross sections at low excitation energies.
However, we did not endeavor to get a better quantitative
description of σER in our 4D calculations, because a reasonable
agreement between theoretical results and experimental data
for more complete set of observables could be achieved within
the explored ranges of ks and γK (see further below).

The growth of prescission neutron multiplicity is another
consequence of extending our model from 3D to 4D. Figure 7
shows that the lower limit of experimental data could be
approached even with ks = 0.25, whereas the results of 3D
calculations [24] required values of ks � 1 for the best
reproduction of npre for this nucleus.

In Fig. 8, the variances of the fission fragment mass σ 2
M and

kinetic energy σ 2
EK

distributions are presented in comparison
with experimental data. The σ 2

M values calculated in the 4D
model are around 50% larger than in 3D case [24]. This

FIG. 7. (Color online) The prescission neutron multiplicity for
the compound nucleus 224Th as a function of center-of-mass energy.
The open symbols are experimental data from Ref. [71]. The filled
symbols are the calculated results with different values of ks and γK ,
which are marked with the same symbols as in Fig. 6.
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FIG. 8. (Color online) The σ 2
M (a) and σ 2

EK
(b) for the compound

nucleus 224Th as a function of center-of-mass energy. The open
symbols are experimental data from Ref. [70]. The filled symbols
are the calculated results with different values of ks and γK , as in
Fig. 6.

increase is mainly the result of the K coordinate impact on the
stiffness of the nucleus d2F/dη2. The calculated σ 2

M values in
4D with ks = 0.25 and 0.5 overestimate the data by about 50%
and 20%, respectively. At the same time, 3D calculations with
ks = 0.5 were about 20% lower than experimental values [24].
The agreement between experiment and 4D calculations for
the mass width can be further improved by the inclusion of a
curvature term in the calculation of the potential energy, as
shown in Ref. [85]. Accounting for curvature effects increases
the stiffness of the nucleus with respect to mass asymmetry
coordinate d2F/dη2 and reduces the width of the mass
distribution.

The calculated σ 2
EK

values stay approximately the same
in 3D and 4D calculations. The underestimation of σ 2

EK
in

dynamical calculations is apparently due to a poor ensemble of
scission configurations generated by the {c, h, α} parametriza-
tion [86,87] that does not contain the nuclear shapes with
elongated and thick neck, as parametrizations used in Refs
[88–90].

In Fig. 9, the σ 2
M , σ 2

EK
, and prescission neutron multiplicity

are presented for the compound nucleus 248Cf. Similar
conclusions could be drawn from the present 4D results for

FIG. 9. (Color online) The prescission neutron multiplicity (a),
σ 2

M (b), and σ 2
EK

(c) for the compound nucleus 248Cf as a function
of center-of-mass energy. The open symbols are experimental data
from Refs. [73,74]. The filled symbols are the calculated results with
ks = 0.25 and γK = 0.077 (MeV zs)−1/2 (circles), with ks = 0.25 and
γK = 0.308 (MeV zs)−1/2 (diamonds), and with ks = 0.5 and γK =
0.077 (MeV zs)−1/2 (triangles).

248Cf in comparison with the 3D results [24], as could be for
the 224Th compound nucleus. The lower values of ks in the
4D calculations allow the reproduction of the experimental
prescission neutron multiplicities, that meets a more complete
description of experimental observables in 4D calculations
than in 3D. The predicted values of σ 2

M are larger in 4D
calculations than in 3D ones, and the calculated values of
σ 2

EK
underestimate the experimental data.

Figs. 6–9 demonstrate that the dissipation coefficient γK

influences only slightly the σFF and σER cross sections, MED
parameters, and prescission neutron multiplicity. This could be
explained by the fact that the K coordinate affects the evolution
of the collective shape coordinates through the sole rotational
energy.

2. The angular distribution of fission fragments

The observable determined by the dynamical evolution
of the K coordinate is the angular distribution. The calcu-
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FIG. 10. The fission fragment angular distributions for the com-
pound nucleus 248Cf at Elab = 120 (a), 140 (b), and 160 (c) MeV.
The open symbols are experimental data from Ref. [72] and the
solid circles are results of 4D calculations with ks = 0.25 and
γK = 0.077 (MeV zs)−1/2.

lated angular distributions for the nucleus 248Cf at different
excitation energies are presented in Fig. 10 together with
experimental data. This figure illustrates that calculated results
adequately fit the experimental data. As mentioned earlier,
traditionally the angular distribution is characterized by an
anisotropy A = W (0◦)/W (90◦). The calculated A values for
the compound nuclei 248Cf and 224Th are presented in Figs. 11
and 12. In these figures, the results of 4D calculations with
different ks and γK values are shown together with the results
of the transition-state model implemented at either the saddle
or the scission point following Eqs. (13)–(16). The Jeff and T

at the transition state (saddle or scission point) obtained from
the calculations with ks = 0.25 and γK = 0.077 (MeV zs)−1/2

were used in order to find the variance K2
0 of the equilibrium

K distribution. The increase of ks results in an increase of
angular anisotropy, as found in 3D calculations [11,24], where
a detailed analysis of the influence of ks and dimensionality
on the anisotropy was given. The dissipation coefficient γK

influences the anisotropy A in the same manner as ks : The
increase of γK results in increase of A. This could be explained
by using Eq. (21) for the relaxation time of K collective
coordinate. The large γK value will result in faster relaxation

FIG. 11. (Color online) The anisotropy of the fission fragment
angular distribution as a function of the center-of-mass energy for the
reaction 16O + 232Th → 248Cf. The calculated points are connected
by lines to guide the eye. The open symbols are the experimental
data: Ref. [72] (circles), Ref. [75] (squares). The filled symbols are the
calculated results with different values of ks and γK , which are marked
in the same order as in Fig. 9. The dotted and dashed curves present
the results predicted by the SCTS and SPTS models, respectively.

of the K coordinate and more narrow K distribution, which
will correspond to the large A values as seen from Eq. (17).

The satisfactory description of the experimental A val-
ues for both reactions could be obtained with ks = 0.25
and γK = 0.077(MeV zs)−1/2. The value ks = 0.25 provides
also a reasonable description for the fission fragment MED
parameters and prescission particles multiplicities, as seen
in previous section. The value γK = 0.077 (MeV zs)−1/2 has
been obtained in Ref. [19] from estimates of K-coordinate
dissipation strength for elongated shapes on the descent from

FIG. 12. (Color online) The anisotropy of the fission fragment
angular distribution as a function of the center-of-mass energy for the
reaction 16O + 208Pb → 224Th. The calculated points are connected
by lines to guide the eye. The open symbols are the experimental data
[72,103]. The filled symbols are the calculated results with different
values of ks and γK , as in Fig. 6. The dotted and dashed curves present
the results predicted by the SCTS and SPTS models, respectively.
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FIG. 13. The anisotropy of the angular distribution as a function
of the fission fragment mass for the reaction 16O + 232Th → 248Cf.
The open squares are experimental data at Elab = 96 MeV from
Ref. [76], and the circles are calculated results at Elab = 95 MeV
with ks = 0.25 and γK = 0.077 (MeV zs)−1/2.

saddle to scission point. Presently, we found that a value
γK � 0.05 (MeV zs)−1/2 would be best suited for 224Th at
Elab = 110 and 130 MeV, and γK � 0.2(MeV zs)−1/2 for 248Cf
at Elab = 90 and 95 MeV. We made these estimations from the
calculations presented in Figs. 11 and 12 assuming a smooth
dependence of calculated anisotropy on the γK value. All these
γK values are reasonable, as the estimation of γK = 0.077
(MeV zs)−1/2 is quite rough [19]. The need for different γK

values to reproduce experimental anisotropies could indicate
the possible dependence of γK on the nuclear shape, as shown
by Eq. (9) for a strongly necked in shapes. Another possible
extension of the model would consist of taking into account
the fission fragment spins at the scission point as discussed
in Refs. [60,91–95]. Careful consideration of these effects in
dynamical calculations may change the estimations of the γK

value obtained in the present paper.
Available experimental data on the fission-fragment mass

dependence of the anisotropy exist for the 248Cf at Elab =
96 MeV [76]. The experimental data and theoretical esti-
mations [96] both exhibit an independence of the anisotropy
on the fission fragment mass as shown in Fig. 13. Although
experimental values of the anisotropy are underestimated by
about 25%, the qualitative independence of A on the fragment
mass is reproduced in 4D calculations.

The relaxation time of the K coordinate τK is an important
property of nuclear dynamics, which could be extracted
from the present 4D calculations. Many investigations of the
relaxation time in fusion-fission and quasifission reactions
[20,22,52,61,62,97–102] predict a value of τK ranging from
∼10−21 s to ∼10−20 s depending on the spin, transition-state
deformation, and type of the investigated reaction. The γK and
I influence τK in a different way. The increase of γK increases
the τK values. On the contrary, the increase of I decreases
τK . The τK dependence on deformation and spin of compound
nucleus predicted by Eq. (21) is presented in Fig. 14 for the nu-
cleus 224Th at different values of γK and I . The obtained τK val-
ues are in general agreement with previous estimations of τK ∼

FIG. 14. The relaxation time of K coordinate τK as a function of
the elongation parameter for the nucleus 224Th obtained with Eq. (21).
The solid curve is calculated at γK = 0.077 (MeV zs)−1/2 and I = 40,
the dashed curve at γK = 0.077 (MeV zs)−1/2 and I = 60, and the
dotted curve at γK = 0.06 (MeV zs)−1/2 and I = 60.

10−20 s. The strong dependence of τK on deformation reflects
the dependence of Jeff on the shape of the compound nucleus.

The typical values for the saddle to scission time τss in our
calculations are about (3–9) zs for 248Cf and (1–5) zs for 224Th,
and they mostly depend on the friction parameter ks . The τss

values become greater with increasing friction strength. As
τK is comparable to τss, the transition state would be located
somewhere in between saddle and scission points. Moreover,
in some cases the equilibrium K distribution may even not be
achieved [104,105]. Qualitatively the dependence of calculated
anisotropies on the excitation energy and friction parameters
γK and ks presented in Figs. 11 and 12 can be explained
as follows. The increase of γK decreases the relaxation time
of the K coordinate. Therefore, the effective transition state
of K-distribution formation will be closer to the scission
point, where larger values of fission fragment anisotropy
are predicted. The increase of friction strength parameter ks

increases the number of evaporated prescission particles and,
as a result, decreases the nuclear temperature. The decrease of
temperature leads to a more narrow K distribution and larger
A values as seen from Eqs. (14) and (17).

Comparing the present results of 4D calculations with 3D
calculations [23,24], one can conclude that the additional
collective coordinate K has substantial influence on the
calculated MED characteristics and angular distribution of
fission fragments. This coordinate increases the width of
the mass distribution and prescission neutron multiplicity.
Both effects help reproduce the experimental data on the
fission fragment MED parameters together with the mean
prescission neutron multiplicity for heavy fissioning nuclei
more accurately.

IV. SUMMARY AND CONCLUSIONS

The four-dimensional dynamical model has been developed
on the basis of the three-dimensional model [23–25] by adding

064619-10



FOUR-DIMENSIONAL LANGEVIN DYNAMICS OF HEAVY- . . . PHYSICAL REVIEW C 85, 064619 (2012)

the orientation degree of freedom K to the three collective
coordinates which describe the shape of the fissioning nucleus.
It was found that the K degree of freedom not only increases
fission barrier height, as reported before [19,77], but also
changes the stiffness of the nucleus with respect to mass
asymmetry coordinate d2F/dη2. The change of the stiffness
results in a shift of the Businaro-Gallone point towards
larger Z2/A values. The Businaro-Gallone point moves from
approximately Z2/A � 20 for the case of K = 0 to the
Z2/A � 25 for the case of L = K = 40. The mass asymmetry
stiffness [d2F (L,K)/dη2]sd at the saddle point is significantly
reduced with increase of K for the heavy nuclei with Z2/A �
40. The value of [d2F (L = 40,K = 40)/dη2]sd is around 5
times lower than [d2F (L = 40,K = 0)/dη2]sd at Z2/A = 40.

The wide set of experimental data available for the reactions
16O + 208Pb → 224Th and 16O + 232Th → 248Cf has been
analyzed using the new 4D dynamical model. The prescission
neutron multiplicities, fission fragment MED parameters,
and anisotropy of angular distribution could be reasonably
reproduced for heavy nuclei with the dissipation coefficients
ks � 0.25 and γK � 0.077 (MeV zs)−1/2 in contrast with 3D
calculations [23,24], where a self-consistent description of all
observables with the same ks value was impossible for heavy
nuclei. Reproduction of MED parameters in 3D calculations
required small values of ks � 0.1, whereas ks � 1 values are
needed to reproduce prescission neutron multiplicities. Careful

accounting of the influence of the K coordinate on the potential
energy surface and on the dynamics of shape coordinates
allows one to get a consistent picture of the fission process
in 4D calculations. The present results show that taking the
K coordinate into consideration would be preferable not only
in statistical model calculations [17,19], but also in recent 5D
dynamical studies [89,106,107].

The present 4D calculations demonstrate that the estimation
of the dissipation coefficient for the K coordinate γK �
0.077(MeV zs)−1/2 made in Refs. [19,54] is reasonable and
allows the reproduction of the anisotropy of the angular dis-
tribution for heavy fissioning nuclei. The obtained relaxation
time of the K coordinate τK ∼ 10−20 s is in agreement with
previous studies.
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33, 560 (1986).
[94] B. John and S. K. Kataria, Phys. Rev. C 57, 1337 (1998).
[95] A. Y. Rusanov, G. D. Adeev, M. G. Itkis, A. V. Karpov, P. N.

Nadtochy, V. V. Pashkevich, I. V. Pokrovsky, V. S. Salamatin,
and G. G. Chubarian, Phys. At. Nucl. 70, 1679 (2007).

[96] D. De Frenne, The Nuclear Fission Process, edited by
C. Wagemans (CRC Press, Boca Raton, FL, 1991), Chap. 9,
pp. 475–491.

[97] T. Døssing and J. Randrup, Nucl. Phys. A 433, 280 (1985).
[98] T. Døssing and J. Randrup, Phys. Lett. B 155, 333 (1985).
[99] K. Lützenkirchen, J. V. Kratz, G. Wirth, W. Brüchle,
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