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Deformations of Ne isotopes in the island of inversion are determined by the folding model description of
the interaction cross sections measured for 28−32Ne isotopes incident on a 12C target at 240 MeV/nucleon, using
the Melbourne g-matrix interaction and the nuclear densities calculated by antisymmetrized molecular dynamics
(AMD). The double folding model with the AMD density well reproduces the measured interaction cross sections,
if the tail correction is made to the AMD density for 31Ne. The quadrupole deformation determined is around 0.4
in the island of inversion and 31Ne is a halo nucleus with large deformation. We propose the Woods-Saxon model
with the AMD deformation and a suitably chosen parametrization set as an approximate but simple method to
reproduce the AMD density with the tail correction. The angular momentum projection is essential to obtain the
large deformation in the island of inversion. Effects of the pairing correlation are investigated.

DOI: 10.1103/PhysRevC.85.064613 PACS number(s): 21.10.Gv, 21.60.Ev, 21.60.Gx, 25.60.Dz

I. INTRODUCTION

Exploring the so-called “island of inversion” is one of the
most important current subjects in nuclear physics. The term
“island of inversion” was first introduced by Warburton [1]
to the region of unstable nuclei from 30Ne to 34Mg. In the
region, the low excitation energies and the large B(E2) values
of the first excited states suggest strong deformations [2–6].
This indicates that the N = 20 magic number is no longer
valid. This novel quantum property has triggered extensive
experimental and theoretical studies on the island of inversion.

Another important progress of research on unstable nuclei
is the discovery of halo nucleus [7–9]. Very recently, the
interaction cross section σI was measured by Takechi et al.
[10] for the scattering of 28−32Ne at 240 MeV/nucleon and
the cross section was found to be quite large for 31Ne. A
halo structure of 31Ne was reported by Nakamura et al.
[11] through the measurement of the one-neutron removal
reaction. This is the heaviest halo nucleus in the present
stage suggested experimentally. The nucleus resides in the
island of inversion. The interaction cross section and the
nucleon-removal cross section with radioactive beams are
thus important experimental tools of exploring unstable nuclei
[7–12]. For the scattering of unstable nuclei at intermediate
energies, σI agrees with the reaction cross section σR exactly
or nearly, since projectile excitations to its discrete excited
states do not exist or small even if they exist. This is discussed
in this paper.

A useful theoretical tool of analyzing measured reaction
cross sections is the microscopic optical potential constructed
by the double-folding model (DFM) with the g-matrix ef-
fective nucleon-nucleon interaction [13–22], when the pro-
jectile breakup is weak. For the nucleon-nucleus scattering,
the single-folding model with the Melbourne g-matrix well
reproduces the measured σR and elastic cross sections system-
atically [20]. For the scattering of 31Ne from a 12C target at
240 MeV/nucleon, the breakup cross section is about 1% of

σR [23]. This indicates that the DFM is reliable for all the
scattering of 20−32Ne, since 31Ne is the most weakly bound
system among them.

In the DFM, the microscopic optical potential is constructed
by folding the g-matrix with projectile and target densities.
The density profile changes, if it is deformed. The elongation
makes the surface diffuseness and the root-mean-square (rms)
radius effectively larger and eventually enhances σR. The
amount of deformation is thus important. Nuclei in the
island of inversion are spherical or only weakly deformed
in Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB)
calculations with the Skyrme and the Gogny interaction; see for
example Refs. [24,25]. It is even pointed out that the observed
large B(E2; 2+ → 0+) values can be understood as a large
amplitude vibration around the spherical shape [26]. In such a
situation, the additional correlations by the angular momentum
projection (AMP) often lead to possible deformed shapes; see
Ref. [27] for Ne isotopes.

Recently a systematic analysis was made by antisym-
metrized molecular dynamics (AMD) with the Gogny-D1S
interaction for both even- and odd-N nuclei in the island
of inversion [28,29]. The AMP-AMD calculations, i.e., the
AMD calculation with the AMP, yield large deformations.
This is consistent with the result of AMP-HFB calculations
[25,27]. A consistent picture of even and odd isotopes has
been obtained by the AMP-AMD approach, where n-particle
m-hole excitations of the Nilsson orbits play important roles
to determine deformed configurations. Although it is difficult
to distinguish the dynamic shape-fluctuation from the static
deformation in these light mass nuclei, one may use the
deformed shape suggested by the AMD calculation to see its
effect on σR. Very recently the Woods-Saxon mean-field model
with the deformation obtained by the AMP-AMD calculation
was applied to 28−32Ne and the DFM with the density of the
mean-field model was successful in reproducing the data on
σR in virtue of the large deformation [30].
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In principle, one can calculate the double-folding potential
directly by using the nucleon density calculated with AMD.
The nucleon density is, however, inaccurate in the asymptotic
region, since each nucleon is described by a Gaussian wave
packet in AMD. Very lately we proposed a way of making
a tail correction to the AMD density [31]. Although the
calculation based on the resonating group method is quite
time-consuming, it has been applied to 31Ne [31] that is
the most weakly bound system among 20−32Ne. The tail
correction to σR is about 3% for 31Ne. The DFM with the
tail-corrected density reproduces the measured σI for 31Ne,
whereas the DFM without the tail correction underestimates
the data considerably.

In this paper, we determine deformations of 20−32Ne
systematically by using AMD. The theoretical prediction
on the deformation is verified by analyzing the measured
interaction cross sections for 20,28−32Ne with the DFM with
the Melbourne g-matrix. In the DFM, the projectile density
is constructed either (I) by the AMP-AMD calculation with
the Gogny-D1S interaction or (II) by the Woods-Saxon model
with the deformation obtained by the AMP-AMD calculation.
Model I has no adjustable parameter, but the density is
inaccurate in the asymptotic region. Model II provides the
nucleon density with the proper asymptotic form, but the model
includes potential parameters. As the potential parameter set,
we use the parameter set recently proposed by Wyss [32]. This
set is intended to reproduce the spectroscopic properties of
high-spin states from light to heavy deformed nuclei, e.g., the
quadrupole moments and the moments of inertia and at the
same time the rms radii crucial for the present analysis.

Models I and II yield almost the same σR for 24−29Ne
that have large one-neutron separation energies. Furthermore,
this agreement is seen for 31Ne, when the tail correction is
made in Model I. This indicates that Model II is a handy
way of simulating results of Model I with the tail correction.
Model II is quite practical compared with Model I with the tail
correction that requires time-consuming calculations. Model I
with the tail correction and Model II reproduce the measured
σI of 20,28−32Ne. Deformations of 28−32Ne are thus definitely
determined through this analysis. This analysis also yields a
reasonable prediction for deformations of 21−27Ne. We also
confirm that 31Ne is a halo nucleus with large deformation.
Furthermore, we analyze the AMP effect and the pairing effect
on σR by using Model II.

We describe the theoretical framework of the present
analysis in Sec. II. Namely, we explain the DFM, AMD with
the AMP and the Woods-Saxon mean-field model with the
AMP. We also present a handy way of making a center-of-mass
(c.m.) correction and show that the dynamical deformation
effect and the reorientation effect are small. This indicates that
σI ≈ σR. Numerical results are shown in Sec. III. Section IV
is devoted to summary.

II. THEORETICAL FRAMEWORK

A. Double folding model

We consider the scattering of a projectile (P) on a target
(T). The scattering is described by the many-body Schrödinger

equation with the realistic nucleon-nucleon interaction vij ,

(
TR + hP + hT +

∑
i∈P,j∈T

vij − E

)
�(+) = 0 , (1)

where E is the energy of the total system, TR is the kinetic
energy of relative motion between P and T, and hP (hT) is
the internal Hamiltonian of P (T). The multiple-scattering
theory [33,34] for nucleon-nucleus scattering was extended
to nucleus-nucleus scattering [35]. According to the theory,
Eq. (1) is approximated into

(
TR + hP + hT +

∑
i∈P,j∈T

τij − E

)
�̂(+) = 0 , (2)

where τij is the effective nucleon-nucleon interaction in the
nuclear medium. The Brueckner g-matrix has often been
used as such τij in many applications; see, for example,
Refs. [13–22]. The g-matrix interaction includes the nuclear-
medium effect, but not the effect of collective excitations
induced by the surface vibration and the rotation of finite
nucleus, since the interaction is evaluated in the nuclear matter.

In the scattering analyzed here, effects of the collective
excitations and the projectile breakup are small, since the target
is light and E is large; see Sec. II E for the collective excitation
and Sec. III B for the projectile breakup. In this situation the
DFM becomes reliable. In the model, the potential U consists
of the direct part (UDR) and the exchange part (UEX) defined
by [36,37]

UDR(R) =
∑
μ,ν

∫
ρ

μ

P (rP)ρν
T(rT)gDR

μν (s; ρμν)d rPd rT, (3)

UEX(R) =
∑
μ,ν

∫
ρ

μ

P (rP, rP − s)ρν
T(rT, rT + s)

× gEX
μν (s; ρμν) exp [−i K (R) · s/M]d rPd rT, (4)

where s = rP − rT + R for the coordinate R between P and T.
The coordinate rP (rT) denotes the location for the interacting
nucleon measured from the center of mass of the projectile
(target). Each of μ and ν stands for the z-component of isospin;
1/2 means neutron and −1/2 does proton. The original form
of UEX is a nonlocal function of R, but it has been localized
in Eq. (4) with the local semiclassical approximation [15] in
which P is assumed to propagate as a plane wave with the
local momentum h̄K (R) within a short range of the nucleon-
nucleon interaction, where M = AAT/(A + AT) for the mass
number A (AT) of P (T). The validity of this localization is
shown in Ref. [38].

The direct and exchange parts, gDR
μν and gEX

μν , of the effective
nucleon-nucleon interaction (g-matrix) are assumed to depend
on the local density

ρμν = ρ
μ

P (rP − s/2) + ρν
T(rT + s/2) (5)
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at the midpoint of the interacting nucleon pair. The direct and
exchange parts are described by

gDR
μν (s; ρμν)

=
{

1
4

∑
S Ŝ2gS1

μν(s; ρμν); for μ + ν = ±1
1
8

∑
S,T Ŝ2gST

μν (s; ρμν); for μ + ν = 0
, (6)

gEX
μν (s; ρμν)

=
{

1
4

∑
S(−1)S+1Ŝ2gS1

μν(s; ρμν); for μ + ν = ±1
1
8

∑
S,T (−1)S+T Ŝ2gST

μν (s; ρμν); for μ + ν = 0
,

(7)

where Ŝ = √
2S + 1 and gST

μν are the spin-isospin components
of the g-matrix interaction. As for the g-matrix interaction,
we take the Melbourne interaction [20] constructed from the
Bonn-B nucleon-nucleon potential [39].

In the DFM, the total wave function with the total angular
momentum J and its z-component M is described by

�
(+)
JM =

∑
L

[
�I

P(ξP) ⊗ YL(R̂)
]
JM

�0
T(ξT)χ (+)

LJ (R)/R, (8)

where �I
P (�0

T) represents the ground state wave function of P
(T) with spin I (0) as a function of the internal coordinate
ξP (ξT). Here the target spin is assumed to be zero for
simplicity. Inserting Eq. (8) into Eq. (2) and left-multiplying
the resulting equation by 〈[�I

P(ξP) ⊗ YL(R̂)]JM�0
T(ξT)| lead

to the coupled-channel equations,[
− h̄2

2μR

d2

dR2
+ h̄2L(L + 1)

2μRR2
+ ULL(R) − Ein

]
χ

(+)
LJ (R)

= −
∑
L′ 	=L

ULL′(R)χ (+)
L′J (R), (9)

for the relative wave function χ
(+)
LJ with the relative angular

momentum L. Here μR is the reduced mass between P and T,
and the incident energy Ein is related to the total energy E as
Ein = E − ε0

P − ε0
T for the ground-state energies ε0

P and ε0
T of

P and T, respectively. In actual calculations, the relativistic
kinematics is taken for Ein and μR in Eq. (9). It yields
about a 2% reduction of reaction cross sections at the present
intermediate energies.

The coupling potentials ULL′ are defined by

ULL′(R) =
∑

mML,m′ML′

(ImLML|JM)(Im′L′ML′ |JM)

×
∫

d
RY ∗
LML

(
R)U (R)YL′ML′ (
R), (10)

where m (ML) is the z-component of I (L). When the projectile
spin I is not zero, the folding potential U (R) is nonspherical in
general. Effects of the nonspherical part of U (R) on the elastic
scattering are called the reorientation effect. If the nonspherical
part of U (R) is neglected, the ULL′ become diagonal, i.e.,
ULL′ = U0(R)δLL′ for the spherical part U0(R) of U (R). This
approximation corresponds to the standard optical model for
elastic scattering. As shown in Sec. II E, this is a really good

approximation for scattering at intermediate energies such as
240 MeV/nucleon. We then take this approximation in this
paper.

B. AMD framework and inputs for the reaction calculations

The framework and the calculational procedure of AMD
are common to those of Ref. [29], and the reader is directed to
it for more detail. The Hamiltonian of AMD is obtained by

H = T +
∑
i<j

v̄ij − Tc.m.. (11)

As an effective nucleon-nucleon interaction v̄ij , we take the
Gogny-D1S interaction [40], where the Coulomb part of v̄ij is
approximated by a sum of 12 Gaussians. T and Tc.m. represent
the kinetic energies of nucleons and center-of-mass motion,
respectively.

The variational wave function is a parity-projected wave
function and the intrinsic wave function is a Slater determinant
of nucleon wave packets,

�π = P πA {ϕ1, ϕ2, ..., ϕA} , (12)

where P π is the parity projector. The nucleon wave packet
ϕi is a direct product of spatial φi , spin χi and isospin ξi

parts,

ϕi = φi(r)χiξi, (13)

φi(r) =
∏

σ=x,y,z

(
2νσ

π

)1/4

exp

{
−νσ

(
rσ − Ziσ√

νσ

)2
}

, (14)

χi = αi,↑χ↑ + αi,↓χ↓, ξi = p or n, (15)

where the centroids Zi , the width νσ and the spin directions
αi,↑ and αi,↓ of Gaussian wave packets are the parameters
determined variationally as explained below. The center-of-
mass wave function can be analytically separated from the
variational wave function Eq. (12):

�π = �c.m.�int, (16)

�c.m. =
∏

σ=x,y,z

(
2Aνσ

π

)1/4

× exp

{
−Aνσ

(
Xσ − Zc.m.,σ√

Aνσ

)2
}

, (17)

Zc.m. = 1√
A

A∑
i=1

Zi , (18)

where X represents the center-of-mass coordinate and Zc.m.

defined by Eq. (18) can be set to zero without loss of generality.
This is common to the AMP and calculations of the generator
coordinate method (GCM), and hence all quantities used as
inputs of reaction calculations are free from the spurious
center-of-mass motion.

The parameters in Eq. (12) are determined by using the
frictional cooling method to minimize the total energy under
the constraint on the matter quadrupole deformation parameter
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β̄. Here the quadrupole deformation parameters are defined as

〈x2〉1/2

[〈x2〉〈y2〉〈z2〉]1/6
= exp

[√
5

4π
β̄ cos

(
γ̄ + 2π

3

)]
, (19)

〈y2〉1/2

[〈x2〉〈y2〉〈z2〉]1/6
= exp

[√
5

4π
β̄ cos

(
γ̄ − 2π

3

)]
, (20)

〈z2〉1/2

[〈x2〉〈y2〉〈z2〉]1/6
= exp

[√
5

4π
β̄ cos γ̄

]
. (21)

Here, 〈x2〉, 〈y2〉, and 〈z2〉 are calculated from �int in the
intrinsic frame that is so chosen to satisfy the relation 〈x2〉 �
〈y2〉 � 〈z2〉. The constraint is imposed on the value of β̄ from
0 to 1.0 with the interval of 0.025. Since we do not make any
assumption on the spatial symmetry of the wave function and
do not impose any constraint on γ̄ , it has an optimal value for
each given value of β̄.

After the variation, we perform the AMP for each value of β̄,

�Iπ
mK (β̄) = P I

mK�π
int(β̄), (22)

P I
mK = 2I + 1

8π2

∫
d
DI∗

mK (
)R(
), (23)

where DI
mK (
) and R(
) are Wigner’s D function and

rotation operator, respectively. The integrals over three Euler
angles 
 in Eq. (23) are performed numerically.

The AMD calculation is completed by performing GCM.
The wave functions that have the same parity and angular
momentum (I,m) are superposed as

�Imπ
n =

I∑
K=−I

∑
β̄

cnK (β̄)�Iπ
mK (β̄). (24)

In other words, K and β̄ are the generator coordinates in this
calculation. The coefficients cnK (β̄) are determined by solving
the Hill-Wheeler equation:∑

β̄ ′K ′
HKK ′ (β̄, β̄ ′)cnK ′(β̄ ′) = En

∑
β̄ ′K ′

NKK ′ (β̄, β̄ ′)cnK ′ (β̄ ′),

(25){
NKK ′ (β̄, β̄ ′)
HKK ′(β̄, β̄ ′)

}
= 〈

�Iπ
mK (β̄)

∣∣ { 1

H

} ∣∣�Iπ
mK ′ (β̄ ′)

〉
.

(26)

The ground state wave function �Imπ
g.s. obtained by this

procedure is used in the discussion of Sec. III.
For the reaction calculation, two types of applications are

performed. One is to use the deformation parameters β̄ and γ̄

as inputs of deformed Woods-Saxon potential. We assign the
deformation of the AMD wave function by picking up a GCM
basis wave function that has the maximum overlap with the
ground state wave function, |〈�Imπ

g.s. |�Iπ
mK (β̄)〉|2, and taking β̄

of the GCM basis function and the corresponding γ̄ . The other
is the direct use of the nucleon density calculated from the
ground state wave function as an input of the double-folding

potential,

ρImIm′(r) = 〈
�Imπ

g.s.

∣∣∑
i

δ(r i − X − r)
∣∣�Im′π

g.s.

〉
, (27)

=
2I∑

λ=0

ρ
(λ)
II (r)(Im′λμ|Im)Y ∗

λμ(r̂), (28)

where the summation of λ in Eq. (28) runs for even numbers.
When only ρ

(λ=0)
II is taken in the double-folding potential, the

resultant folding potential becomes spherical. This approxima-
tion is often used as a standard manner in the DFM, since this
reduces the coupled-channel equations (9) to a single-channel
one. The validity of this approximation is shown in Sec. II E.

C. Woods-Saxon mean-field model

We also calculate the double-folding potential with the
density calculated by the Woods-Saxon mean-field model.
Sophisticated AMD calculation is a powerful tool but it costs
much time to obtain reliable information. We then take the
deformed Woods-Saxon model as an alternative approach and
also for further investigation.

The deformed Woods-Saxon potential is composed of the
central and spin-orbit parts, which have the following forms:

Vc(r) = V0

1 + exp [dist�(r)/a]
, (29)

Vso(r) = λso

(
h̄

2mredc

)2

∇Vc(r) ·
(

σ × 1

i
∇

)
, (30)

where mred = m(A − 1)/A and dist�(r) represents a distance
between a given point r and the deformed surface � specified
by the radius,

R(θ, φ; α) = R0cv(α)

[
1 +

∑
λμ

α∗
λμYλμ(θ, φ)

]
, (31)

with the deformation parameters α ≡ {αλμ}. The constant
cv(α) is introduced to guarantee the volume conservation of
nucleus. A set of deformation parameters used in the present
work is (β2, γ, β4) [41], which are related to (α2μ, α4μ) by

α20 = β2 cos γ,

α22 = α2−2 = − 1√
2
β2 sin γ,

α40 = 1
6 β4(5 cos2 γ + 1),

(32)
α42 = α4−2 = −

√
5
6 β4 cos γ sin γ,

α44 = α4−4 =
√

35
72 β4 sin2 γ,

where the other αλμ are zero.
As for the parameter set of the Woods-Saxon potential,

i.e., the potential depth V0, the nuclear radius R0 and the
diffuseness parameter a of the central potential, as well as those
for the spin-orbit potential, we take the one provided recently
by Wyss [32]; see Ref. [42] for actual values of the parameters.
For proton, the Coulomb potential created by charge (Z − 1)e
that has a uniform distribution inside the surface � is added to
Eq. (29); more detailed description is explained elsewhere [43].
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The deformation parameters in the Woods-Saxon potential
can be determined by the standard Strutinsky (microscopic-
macroscopic) method [44,45], where the pairing correlation
is included within the BCS approximation. The monopole
pairing interaction is used and its strength is determined
according to the smoothed pairing gap method. As for the
macroscopic part, the liquid-drop model of Ref. [46] is
employed. The Ne isotopes in the island of inversion are sitting
near the drip line. For such a case, the standard Strutinsky
method has problems related to the continuum single-particle
states. Recently the problems have been solved by using the
so-called Kruppa prescription [47]. We use this improved
method (the Kruppa-BCS method) to treat both the shell and
pairing correlations.

As discussed in the following sections, we utilize different
models for the analyses of reaction cross sections. In order
to compare the deformation between different models, it
is necessary to make a transformation between individual
parameter sets, e.g., between (β̄, γ̄ ) in AMD and (β2, γ, β4) in
the Woods-Saxon model. This is made in the following way.
The deformed surface in Eq. (31) determines the deformation
parameters in the Woods-Saxon potential. We can define a
uniform density with the sharp cut surface � determined by
R(θ, φ; α) as

ρuni(r) ≡ ρ0θ (R(θ, φ; α) − r), (33)

where ρ0 is the average density and θ (x) is a step function, and
we can calculate the expectation value of x2 as

〈x2〉uni =
∫

x2ρuni(r)d r. (34)

For given AMD deformation parameters (β̄, γ̄ ), the ratio
of the AMD expectation values 〈x2〉 : 〈y2〉 : 〈z2〉 is fixed
by Eqs. (19)−(21). Since the corresponding Woods-Saxon
parameters (β2, γ, β4) should be determined so as to give
the same shape, one can impose the condition 〈x2〉 : 〈y2〉 :
〈z2〉 = 〈x2〉uni : 〈y2〉uni : 〈z2〉uni. This condition gives only two
independent equations, so that the (β2, γ ) is determined under
some fixed value of β4. We set β4 = 0 for simplicity in order to
define (β2, γ ) values corresponding to the AMD calculation.
The two pairs (β̄, γ̄ ) and (β2, γ ) take similar values to each
other, as shown in Table V of Sec. III. We have also confirmed
that the final reaction cross sections change very little (order
of mb), even if β4 is varied in the range −0.1 < β4 < 0.1.

In the actual calculation, the Woods-Saxon potential is
diagonalized with the anisotropic harmonic oscillator basis,
where the three frequencies, ωa (a = x, y, z), are taken to be
proportional to 1/

√
〈a2〉uni. This is close to the optimal choice.

As for the basis size, we have used the oscillator shells Nosc =
nx + ny + nz = 18, and Nosc = 18 gives converged results
in all calculated cases. To check convergence of calculated
results, we have increased Nosc up to 20 for nuclei near the
drip line, since the density distribution extends considerably
there.

As in the Hartree-Fock (HF) or the Hartree-Fock-
Bogoliubov (HFB) approach, the occurrence of deformation in
the Woods-Saxon model is a symmetry-breaking phenomenon.
The many-body wave function � is then considered to be that
in the intrinsic (body-fixed) frame [48], and so is the nucleon

density calculated with �,

ρ(in)(r) = 〈�|
∑

i

δ(r i − r)|�〉 =
∑

α

|ϕα(r)|2v2
α, (35)

where ϕα(r) is the Woods-Saxon single-particle wave function
and vα is the BCS occupation probability. In the BCS
calculation, the free contributions should be subtracted when
the Kruppa prescription is employed; see Refs. [47,49] for the
details. Therefore the deformed density ρ(in)(r) = ρ(in)(r, θ, φ)
cannot be directly used in the reaction theory such as the DFM
that is formulated in the laboratory (space-fixed) frame.

One way to recover the spherical symmetry and transform
the density in the intrinsic frame to that in the laboratory
frame is to perform the AMP, as already explained in
Eqs. (27) and (28) in the AMD framework. We have performed
the projection calculation (without the c.m. correction, which
is discussed in the next subsection) by using the method of
Ref. [50] for the Woods-Saxon model with the BCS pairing
correlation. It is found that the projected density ρ

(0)
II (r)/

√
4π ,

where ρ
(λ=0)
II (r) is defined in the same way as in Eq. (28)

and used in the DFM, is very similar to the following
angle-averaged intrinsic density:

ρ(in)
av (r) = 1

4π

∫
ρ(in)(r, θ, φ) sin θdθdφ. (36)

In Fig. 1, they are compared for 30Ne. As it is clear, for both
neutron and proton, the projected and angle-averaged densities
are almost identical particularly in the tail region, while slight
differences are observed in the inner region for large I values.
This is rather general trend, and therefore we use ρ(in)

av (r)
in place of ρ

(0)
II (r)/

√
4π in the Woods-Saxon model for the

ground state of Ne isotopes.
In the view of static behavior of deformed nuclei,

using spherical part of deformed Woods-Saxon density,
ρ

(0)
II (r)/

√
4π ≈ ρav(r), is well justified, but this procedure

does not justify that dynamical aspect of deformation is also
negligible. As already mentioned above, this point is argued
in Sec. II E.
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FIG. 1. (Color online) Comparison of the projected density,
ρ

(0)
II (r)/

√
4π with I = 0, 2, . . . , 10, and the angle-averaged intrinsic

density, ρ(in)
av (r) in Eq. (36), for the Woods-Saxon model in 30Ne.

The deformation parameters are β2 = 0.4 and γ = β4 = 0, and the
pairing gaps �n = �p = 1 MeV. The results are very similar also in
the case with no pairing correlation.

064613-5



TAKENORI SUMI et al. PHYSICAL REVIEW C 85, 064613 (2012)

D. Center-of-mass correction to nucleon density of the
Woods-Saxon mean-field model

The projectile density is constructed with either AMD or the
Woods-Saxon model for Ne isotopes. In contrast to AMD, the
center-of-mass (c.m.) motion is not excluded in the many-body
wave function � in the Woods-Saxon model. We thus extract
the c.m. motion from � in the standard manner [51,52] and
propose a simple extraction prescription consistent with the
standard manner.

The wave function � is approximated by a product of the
c.m. part �c.m. and the intrinsic part �int:

� = �c.m.�int (37)

with

�c.m. =
( A

πb2

)3/4
exp

[
− A

2b2
X2

]
(38)

for the c.m. coordinate X and the size parameter b. The mean
squared radii of � and �int are obtained by

〈r2〉 ≡ 〈�|
∑

i

r2
i |�〉, (39)

〈r2〉int ≡ 〈�int|
∑

i

(r i − X)2|�int〉 (40)

for a single-particle coordinate r i , and hence these are related
to b as

〈r2〉 = 〈r2〉int + 3

2

b2

A
. (41)

The c.m. correction to 〈r2〉 is small (order 1/A), so it can be
estimated with � instead of �int:

〈r2〉int ≈ 〈�|
∑

i

(r i − X)2|�〉. (42)

The correction is a combination of the one-body and two-body
corrections. Inserting Eq. (42) into Eq. (41), one can determine
the size parameter b and hence �int from �.

The proton and neutron densities without and with the c.m.
correction are respectively obtained by

ρ(r) = 〈�|
∑

i

δ(r i − r)Pi |�〉, (43)

ρint(r) = 〈�int|
∑

i

δ(r i − X − r)Pi |�int〉, (44)

where Pi is a projector for proton or neutron. These densities
satisfy

ρ(r) =
∫

d r ′|�c.m.(r − r ′)|2ρint(r ′). (45)

The density ρint with the c.m. correction is thus obtained by
unfolding ρ with |�c.m.|2.

Instead of the complicated unfolding procedure [51], one
can take the following simple prescription. As shown in
Eq. (41), the difference between 〈r2〉 and 〈r2〉int is small,
because it is of order 1/A. This indicates that r dependence
of ρint(r) is similar to that of ρ(r). We can thus approximate
ρint(r) by

ρint(r) = 1

α3
ρ(r/α) (46)

with a scaling factor

α =
√

〈r2〉int

〈r2〉 =
√

1 − 3

2A

b2

〈r2〉 , (47)

where α has been determined to reproduce 〈r2〉int of Eq. (42).
The error of this simple prescription to the unfolding procedure
is only 0.1% in σR for Ne isotopes. The simple prescription is
used in this paper, whenever ρint(r) is evaluated in the mean-
field model. The rms radii,

√
〈r2〉 and

√
〈r2〉int, without and

with the c.m. correction are estimated with the spherical HF
model, and the parameter b is evaluated with Eq. (41) from
the rms radii. For each of Ne isotopes, we use a common
b among the HF calculation and the spherical and deformed
WS calculations, since the difference of

√
〈r2〉 among these

mean-field models are at most 6%, and the 6% error to the
1.5% c.m. correction is negligible.

E. Dynamical deformation and reorientation effects

When the projectile is deformed in the intrinsic frame, the
deformation increases the radius of the projectile density in
the space-fixed frame and eventually enhances the reaction
cross section. This static deformation effect has already been
included in the DFM through the AMP. Another effect to
be considered is the dynamical deformation effect, that is,
an effect of the rotational motion of the deformed projectile
during the scattering. This effect on the reaction cross section
is found to be small for intermediate-energy nucleus-nucleus
scattering [30]. This was confirmed with the adiabatic approx-
imation to the rotational motion of projectile and the eikonal
approximation to the relative motion between a projectile and
a target. In this subsection, the effect is investigated with no
approximation.

In order to test the dynamical deformation effect, we
consider the scattering of 30Ne from 12C at 240 MeV/nucleon
and do a coupled-channel calculation between the 0+ ground
state and the first 2+ state of 30Ne. The projectile density is
calculated by the deformed Woods-Saxon (DWS) model with
the deformation evaluated by AMD. The coupling potentials in
the coupled-channel calculation are obtained by the so-called
single-folding model; namely, the nucleon-12C potential is
first evaluated by folding the Melbourne g-matrix interaction
with the target density of 12C and the coupling potentials
are obtained by folding the nucleon-12C potential with the
projectile transition densities.

In the single-channel calculation with no dynamical defor-
mation effect, the resultant reaction cross section is 1469 mb.
This result overestimates the corresponding result of the DFM
by about 10%, but it is accurate enough for the present
test. In the coupled-channel calculation with the dynamical
deformation effect from the first 2+ state, the resulting reaction
cross section is 1468 mb. Thus the dynamical rotation effect
on the reaction cross section is estimated as less than 0.1%
which is consistent with the evaluation shown in Ref. [30].
The integrated inelastic cross section to the first 2+ state is
2.9 mb. This is 0.2 % of σR, indicating that σI ≈ σR.
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TABLE I. Reaction cross sections for 12C + 12C scattering
at Ein = 250.8 MeV/nucleon and 12C + 27Al scattering at Ein =
250.7 MeV/nucleon. Results of three types of effective nucleon-
nucleon interactions are compared with the corresponding data [53].
The cross sections are presented in units of mb.

Target Exp. [53] tLF [58] gMP [20] gMB [20]

12C 782.0 ± 10.0 917.7 793.1 795.9
27Al 1159.0 ± 14.0 1337.5 1164.9 1185.2

The folding potential U is not spherical in general, when the
spin of projectile is not zero. In this situation, one has to solve
the coupled-channel equations (9). Effects of the nonspherical
part of U on the elastic scattering, i.e., the reorientation effect,
is also tested for the scattering of 31Ne(3/2−) from 12C at
240 MeV/nucleon, where the single-folding model is used.
The resultant reaction cross section is 1512 mb, whereas the
corresponding cross section is 1515 mb when the nonspherical
part of U is switched off. The reorientation effect is 0.2%
and hence negligible for intermediate-energy nucleus-nucleus
scattering.

III. RESULTS

A. Reaction cross sections for stable nuclei

We first test the accuracy of the DFM with the Melbourne
g-matrix nucleon-nucleon interaction for 12C scattering at
incident energies (Ein) around 240 MeV/nucleon from stable
targets, 12C, 20Ne, 23Na, and 27Al. Experimental data on σR

are available for a 12C target at Ein = 250.8 MeV/nucleon
and a 27Al target at Ein = 250.7 MeV/nucleon [53]. For 20Ne
and 23Na targets, σI at Ein = 240 MeV/nucleon were recently
deduced from measured σI at around 1 GeV/nucleon [54,55]
with the Glauber model [10].

For these stable nuclei, we take the phenomenological
proton-density [56] deduced from the electron scattering by
unfolding the finite-size effect of the proton charge in the
standard manner [57], and the neutron density is assumed to
have the same geometry as the corresponding proton one, since
the proton rms radius deviates from the neutron one only by
less than 1% in the Hartree-Fock (HF) calculation.

The DFM calculations are done with three types of effective
nucleon-nucleon interactions: the Love-Franey t-matrix inter-
action (tLF) [58], the Melbourne g-matrix interaction (gMP)
[20] evaluated from the Paris realistic nucleon-nucleon interac-
tion [59] and the Melbourne interaction (gMB) [20] constructed
from the Bonn-B realistic nucleon-nucleon interaction [39].

Table I shows experimental and theoretical reaction cross
sections for a 12C target at Ein = 250.8 MeV/nucleon and
a 27Al target at Ein = 250.7 MeV/nucleon. The effective
interaction tLF has no nuclear medium effect. In this case,
the theoretical reaction cross sections overestimate the mean
values of data [53] by 17% for 12C and by 15% for 27Al.
As for gMP and gMB with the medium effect, meanwhile, the
overestimation is only a few percent for both 12C and 27Al. The
medium effect is thus significant, and the amount of the effect
is almost independent of the bare nucleon-nucleon interaction
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FIG. 2. (Color online) Reaction cross sections for scatter-
ing of 12C on stable nuclei from A = 12 to 27. The data at
250.8 MeV/nucleon for 12C and 27Al are taken from Ref. [53].
The data at 240 MeV/nucleon for 20Ne and 23Na are deduced from
measured σI at around 1 GeV/nucleon [54,55] with the Glauber model
[10]. The solid (dotted) line stands for the results of DFM calculations
with gMB after (before) the normalization with F = 0.978, whereas
the dashed line corresponds to results of tLF.

taken. As for 27Al, the reaction cross section calculated with
gMB agrees with the mean value of data, when the theoretical
σR is multiplied by the factor F = 0.978.

In Fig. 2, the reaction cross sections are plotted for 12C,
20Ne, 23Na, and 27Al targets. The dotted and solid lines
represent results of DFM calculations with gMB before and
after the normalization with F = 0.978, respectively. Before
the normalization procedure, the DFM results (dotted line)
slightly overestimate the mean values of data for A = 20–27.
After the normalization procedure, the DFM results (solid
line) agree with the mean values of data for all the targets.
The normalization procedure is thus reliable. The dashed line
corresponds to the results of DFM calculations with tLF and
no normalization. The medium effect reduces the theoretical
reaction cross sections by about 15% for all the targets.

Figure 3 shows the results of DFM calculations for the
angular distribution of 12C + 12C elastic scattering at (a)
135 MeV/nucleon and (b) 74.25 MeV. In panel (a) where the
incident energy is close to 250 MeV/nucleon of our interest,
the DFM calculation with gMB (solid line) well reproduces the
data [60], whereas that with tLF (dashed line) does not. Also
for the low incident energy in panel (b), the DFM calculation
with gMB (solid line) yields better agreement with the data [61]
than that with tLF (dashed line). For scattering angles larger
than 50 degrees, the solid line does not reproduce the data
perfectly. The deviation may come from effects of collective
projectile and target excitations that are not included in the
g-matrix. Thus the DFM with gMB is quite reliable particularly
for intermediate incident energies.

As for the scattering of Ne isotopes on 12C at
240 MeV/nucleon, we have done DFM calculations with gMB

and the normalization factor F . The DFM calculation with
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FIG. 3. (Color online) Angular distribution of 12C + 12C elastic
cross section at (a) 135 MeV/nucleon and (b) 74.25 MeV. The solid
(dashed) line stands for the results of DFM calculations with gMB

(tLF). The data are taken from Ref. [60] in (a) and from Ref. [61]
in (b).

gMB has numerical ambiguity due to the parametrization of
gMB; the imaginary part of the folding potential has a small
positive value in the tail region. If the positive imaginary part
is cut, it increases the reaction cross section by 2% for a 12C
projectile and by 1% for Ne isotopes. This cut is used in this
paper. If the cut is not taken, F becomes 1.0 and hence the
resultant reaction cross sections for Ne isotopes are increased
by 1% from the present results. This numerical ambiguity does
not change any conclusion in this paper, since the ambiguity
is tiny.

B. AMD analysis for Ne isotopes

Table II shows AMD results for the ground-state properties
of Ne isotopes, i.e., the spin-parity (Iπ ), the one-neutron
separation energy S−1n, and the values of deformation pa-
rameters (β̄, γ̄ ). The AMD calculation yields the same Iπ as

TABLE II. Ground-state properties of Ne isotopes predicted by
AMD. For 28Ne, the oblate state with β̄ = 0.28 is the main component
of the ground state, but it is strongly mixed by the prolate state with
β̄ = 0.5.

Nuclide Iπ (exp) Iπ (AMD) S−1n [MeV] β̄ γ̄

20Ne 0+ 0+ 0.46 0◦
21Ne 3/2+ 3/2+ 7.111 0.44 0◦
22Ne 0+ 0+ 9.779 0.39 0◦
23Ne 5/2+ 5/2+ 6.021 0.32 0◦
24Ne 0+ 0+ 8.231 0.25 60◦
25Ne 1/2+ 1/2+ 4.339 0.20 31◦
26Ne 0+ 0+ 5.153 0.22 0.1◦
27Ne (3/2+) 3/2+ 1.767 0.27 13.6◦
28Ne 0+ 0+ 3.123 0.28(0.50) 60◦(0◦)
29Ne (3/2+) 1/2+ 1.321 0.43 0◦
30Ne 0+ 0+ 2.025 0.39 0◦
31Ne 3/2− 0.248 0.41 0◦
32Ne 0+ 0+ 1.012 0.33 0◦

the data displayed on the web site [62], although they are not
established experimentally for 27,29,31Ne. Particularly for 31Ne
in the island of inversion, the ground state has Iπ = 3/2− and
small S−1n consistent with the data 0.290 ±1.640 MeV [63].
For 28Ne corresponding to the boundary of the island of
inversion, the main component of the ground state is the oblate
state with β̄ = 0.28, but it is strongly mixed by the prolate state
with β̄ = 0.50. The deformation parameter β̄ decreases as A

increases from 20 to 25 and increases as A increases from 25
to 32. The deformation becomes smallest at A = 25.

Figure 4 plots (a) the total binding energy and (b) S−1n as
a function of A; here the data are taken from Refs. [63,64]. In
the HF and HFB calculations, the spherical shape is imposed
with the filling approximation, and the nuclei with A > 30
are unbound. For the total binding energy shown in panel
(a), the Gogny-HF calculation (dotted line) underestimates the
data systematically. This situation is improved by the Gogny-
HFB calculation (dashed line). The Gogny-AMD calculation
(solid line) yields even better agreement with the data. For
S−1n shown in panel (b), the Gogny-HF calculation cannot
reproduce the even-odd difference well, but this problem is
resolved by the Gogny-HFB calculation. The pairing correla-
tion is thus important for S−1n. The Gogny-AMD calculation
almost reproduces the measured even-odd difference for all Ne
isotopes from A = 21 to 32. This may indicate that the pairing
correlation is included, at least partly, in the Gogny-AMD
calculation. The deformation parameter β̄ is 0.33 for 32Ne and
0.41 for 31Ne. The reduction of β̄ from 0.41 to 0.33 may come
from the pairing effect.

Figure 5 represents σR for scattering of Ne isotopes on 12C at
240 MeV/nucleon. The AMD calculation (solid line) succeeds
in reproducing the data [10], while the spherical Gogny-HF
calculation (dotted line) undershoots the data; note that the
spherical Gogny-HFB calculation yields the same result as the
spherical Gogny-HF calculation within the thickness of line.
The enhancement from the dotted line to the solid line comes
from the deformation of the ground state, since the deformation
is the main difference between the two calculations. The
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FIG. 4. (Color online) Results of the AMD, the spherical Gogny-
HF and the spherical Gogny-HFB calculation for (a) the total binding
energy and (b) the one-neutron separation energy of Ne isotopes.
The dotted, dashed and solid lines represent results of the Gogny-HF,
Gogny-HFB, and AMD calculations. In the spherical HF calculations,
the nuclei with A > 30 are unbound. The experimental data are taken
from Refs. [63,64].

AMD results are consistent with all the data except 31Ne. The
underestimation of the AMD result for 31Ne comes from the
inaccuracy of the AMD density in its tail region.

The tail problem is solved by the following resonating
group method (RGM) [31]. In principle the ground state
�(31Ne; 3/2−

1 ) of 31Ne can be expanded in terms of the ground
and excited states �(30Ne; Iπ

i ) of 30Ne. This means that the
ground state of 31Ne is described by the 30Ne + n cluster model
with core (30Ne) excitations. The cluster-model calculation can
be done with the RGM in which the ground and excited states
of 30Ne are constructed by AMD:

�(31Ne; 3/2−
1 )

=
∑
iljIπ

A
{
Rilj (r)

[
[Yl(r̂)χn]j�

(30
Ne; Iπ

i

)](−)
3/2

}
, (48)
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FIG. 5. (Color online) Reaction cross sections for the scattering
of Ne isotopes on 12C at 240 MeV/nucleon. The solid (dotted) line
represents the results of the AMD (spherical Gogny-HF) calculations.
The dashed line with a closed square is the AMD calculation with
the tail and breakup corrections. The experimental data for A =
28–32 are taken from Ref. [10]. The data for 20Ne are deduced
from measured σI at around 1 GeV/nucleon [54] with the Glauber
model [10].

where χn is the spin wave function of last neutron and
Rilj (r)Ylm(r̂) is the relative wave function between the last
neutron and the core (30Ne). As the excitation of 30Ne, we
consider the excited states �(30Ne; Iπ

i ) with positive- and
negative-parity below 10 MeV in excitation energy. This
AMD-RGM calculation is quite time consuming, but it has
been performed for 31Ne. The tail correction to σR is 35 mb.

For weakly bound systems such as 31Ne, furthermore, the
projectile breakup is not perfectly negligible. This effect is
simply estimated by assuming the potential model for the
30Ne + n system and solving the three-body dynamics of
the 30Ne + n+ 12C system with the method of continuum
discretized coupled channels (CDCC) [65,66]. CDCC is an
accurate method for treating exclusive reactions such as
elastic scattering and elastic-breakup reactions. The theoretical
foundation of CDCC is shown in Refs. [67–69]. CDCC has
succeeded in reproducing data on the scattering of stable and
unstable projectiles [65,66,70–83]. In the present calculation
the interactions between 30Ne and 12C and between n and 12C
are constructed by the DFM calculation with the Melbourne
g-matrix, and the potential between 30Ne and n is made with
the well-depth method; see Refs. [23,84] for the potential
parameters. The correction is 10 mb corresponding to 0.7%
of σR. In Fig. 5, the dashed line stands for the AMD result
with the tail and breakup corrections for 31Ne. The result is
consistent with the data for 31Ne.

The reaction cross section σR is sensitive to the rms radii,√
〈r2〉P and

√
〈r2〉T, of projectile and target, respectively.

Actually, the DFM calculations for 20−32Ne projectiles show
that

σR = Cπ [
√

〈r2〉P +
√

〈r2〉T]2, (49)
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FIG. 6. (Color online) A dependence of the coefficient C. Opened
triangles show the results of the AMD calculations, whereas an
opened square corresponds to the result of the AMD-RGM calculation
for 31Ne.

where C is a slowly varying function of A around C = 12.4 ∼
13.5 mb/fm2, as shown in Fig. 6. If the volume conservation is
imposed with the general shape in Eq. (31), the matter squared
radius 〈r2〉P of projectile is described by

〈r2〉P = 〈r2〉0

[
1 + 5

4π

∑
λμ

|αλμ|2
]

(50)

= 〈r2〉0

[
1 + 5

4π

(
β2

2 + β2
4 + · · · )] (51)

up to the second order in the deformation parameters {αλμ},
where 〈r2〉0 is the matter squared radius in the spherical
limit. Here the projectile density has been assumed to have
a deformed well shape. The triaxial parameter γ does not
appear in Eq. (51). This means that the triaxial deformation
little affects the rms radius and hence σR. This can be tested
by varying γ in the Woods-Saxon model. The reaction cross
section changes only by 0.2% for 27Ne, when γ is varied from
0◦ to 60◦ with fixing β2 = 0.273 and β4 = 0.

Figure 7 shows the rms radii of spherical-HF, AMD, AMD-
RGM calculations. Differences among the three calculations
are similar to those for σR shown in Fig. 5. The difference
between AMD and AMD-RGM calculations for 31Ne is
appreciable, indicating that the tail correction is significant
for this very weakly bound system.

Next we compare the neutron rms radius
√〈r2

n〉 with the
proton one

√〈r2
p〉 in order to see the isovector components of

the Ne-isotope densities. Figure 8 shows the A dependence of√〈r2
n〉 and

√〈r2
p〉 for Ne isotopes. In panel (a), the neutron

and proton rms radii increase with A, when A � 24. For
A = 20–24, the proton rms radii have a bump. This indicates
that for A = 20–22 the proton-neutron correlation is strong and
hence the α-clustering grows. Panel (b) shows the difference√〈r2

n〉 − √〈r2
p〉 as a function of A. The difference also goes

up as A increases. There is a sizable jump between A = 28
and 29, since the deformation β̄ is around 0.25 for A = 24–28
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FIG. 7. (Color online) Matter rms radii of Ne isotopes calculated
with the AMD, the AMD-RGM, and the spherical HF model. The
closed circle represents the results of the AMD, and the closed square
denotes the result of the AMD-RGM model for 31Ne. The opened
circles are the results of the spherical HF calculation.

but around 0.4 for A = 29–32. As a result of this gap, the
radius difference is around 0.35 fm for A = 29, 30, and 32.
This indicates that Ne isotopes have a skin structure there. For
A = 31, the radius difference calculated with the AMD-RGM
method is about 0.5 fm that is significantly larger than 0.35 fm.
This implies that 31Ne is a halo nucleus. These interpretations
are more obvious through the neutron and proton density
profiles shown in Fig. 9. Panels (a)–(e) show the density
profiles for 28−32Ne, respectively. Obviously 29,30,32Ne have
the neutron-skin structure. In panel (f), the density profile for
31Ne is plotted on a logarithmic scale. The neutron density
(dashed line) calculated with the AMD-RGM method has a
long-range tail, indicating that 31Ne has a halo structure.

In neutron-rich nuclear matter, some versions of the Gogny
interactions are compared [85,86]. We then briefly consider
the Gogny-D1N interaction [87] to see how AMD results
depend on the interactions. Table III shows β̄, γ̄ and S−1n

calculated with the Gogny-D1N interaction for 30−32Ne. The
values of β̄ and γ̄ for the Gogny-D1N interaction are almost
the same as the corresponding values in Table II for the
Gogny-D1S interaction. As for S−1n, the value for the Gogny-
D1N interaction is a bit larger than that for the Gogny-D1S
interaction, although both the values are consistent with the
data. Only a difference between the two interactions appears
at the spin-parity of 31Ne; it is 3/2− for the Gogny-D1S
interaction and 3/2+ for the Gogny-D1N interaction. Thus
any significant difference does not appear for 30,32Ne. For
the structure of 31Ne, meanwhile, detailed analyses are highly
expected, since it is quite interesting whether 31Ne has a halo
structure when the spin-parity is 3/2+. We will discuss this
point in a forthcoming paper.

C. Woods-Saxon mean-field model

In this subsection, results of the Woods-Saxon mean-field
model are investigated. First, the spherical case is studied to
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FIG. 8. (Color online) Neutron and proton rms radii of Ne
isotopes calculated with the AMD and the AMD-RGM model. In (a),
the closed (opened) circle represents the proton (neutron) rms radius
calculated with the AMD and the closed (opened) square denotes
the result of the AMD-RGM calculation for proton (neutron) of 31Ne;
note that the AMD-RGM result agrees with the AMD result for proton
rms radius. (b) shows the difference between neutron and proton rms
radii. The opened circle (square) stands for the AMD (AMD-RGM)
result.

justify the present parameter set of the Woods-Saxon model.
Figure 10 shows the reaction cross sections for Ne isotopes
calculated with the spherical Woods-Saxon (SWS) model
(neglecting the pairing correlation) and the spherical Gogny-
HF method. The SWS model (dotted line) well simulates the
results of the spherical Gogny-HF calculation (solid line). This
means that the SWS model yields almost the same matter
radius as that of the spherical Gogny-HF calculation. The SWS
model with the present parameter set proposed by Wyss [32]
is thus a handy way of simulating the spherical Gogny-HF
calculation.

Figure 11 shows the neutron Nilsson diagram for 30Ne
calculated with the deformed Woods-Saxon (DWS) model. It
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FIG. 9. (Color online) Neutron and proton density profiles for (a)
28Ne, (b) 29Ne, (c) 30Ne, (d) 31Ne, and (e) 32Ne on a linear scale and (f)
31Ne on a logarithmic scale. In (a)–(f), the solid (dotted) line presents
the neutron (proton) density profile calculated with the AMD method,
whereas the dashed line in (f) is the neutron density profile calculated
with the AMD-RGM method.

is emphasized that the relatively large shell gap with N = 20
is observed at the spherical shape (β2 = 0). Comparing this
figure with the Nilsson diagram (Fig. 2 of Ref. [28]) calculated
with the AMD model, one can see that the Nilsson diagram of
the DWS model is close to that of the AMD model. In both the
models, the [2,0,0,1/2] and the [3,3,0,1/2] orbit in terms of
the Nilsson asymptotic quantum numbers [N ,n3,�,
] cross
each other at β2 ≈ 0.4, although the single-particle energy at
the crossing point is −3 MeV in the AMD model and −4 MeV
in the DWS model. It is well known that the occupation of this
down-sloping orbit [3,3,0,1/2] derives the system to deform
near N ≈ 20.

TABLE III. Ground-state properties of 30−32Ne predicted by
AMD with the Gogny-D1N interaction.

Nuclide Iπ (exp) Iπ (AMD) S−1n [MeV] β̄ γ̄

30Ne 0+ 0+ 0.39 0◦
31Ne 3/2+ 1.1 0.40 0◦
32Ne 0+ 0+ 1.6 0.28 0◦
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FIG. 10. (Color online) Reaction cross sections for Ne isotopes
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line represents the results of the SWS model, while the solid line
corresponds to the spherical Gogny-HF results. The nucleus with
A > 30 are unbound. The experimental data are taken from Ref. [10].

Next, the equilibrium deformations of Ne isotopes are
calculated in the DWS model by the microscopic-macroscopic
(Strutinsky) method. The pairing correlation is included within
the Kruppa-BCS approximation [47]. Here we consider two
types of pairing strengths, �̃ = 12/

√
A and 4/

√
A MeV,

determined from the smoothed pairing gap. The strength
�̃ = 12/

√
A MeV is a typical value yielding the average

even-odd mass differences. It has been pointed out [88],
however, that in the light mass nuclei the even-odd mass
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FIG. 11. (Color online) The neutron Nilsson diagram for 30Ne
in the deformed WS model, where the other parameters are fixed
to β4 = γ = 0. The solid (dashed) lines correspond to the positive
(negative) parity orbits. The Nilsson asymptotic quantum numbers
[N ,n3,�,
] are attached. The number 20 stands for a neutron magic
number in the spherical limit.

TABLE IV. Deformation parameters (β2, β4) extracted from the
results of deformed Gogny-D1S HFB calculations of Refs. [90,91].
The nucleus 31Ne is unbound and no data are available.

Nuclide β2 β4

20Ne 0.325 0.108
21Ne 0.370 0.085
22Ne 0.355 0.016
23Ne 0.234 0.011
24Ne 0.179 0.011
25Ne −0.047 0.001
26Ne −0.002 0.000
27Ne −0.073 −0.005
28Ne −0.006 0.000
29Ne −0.060 −0.003
30Ne −0.002 0.000
31Ne — —
32Ne 0.246 0.096

differences contain considerable amount of the shell effect of
deformed mean-field and thereby the actual pairing correlation
becomes weaker. This situation is simulated by the smaller
value �̃ = 4/

√
A MeV. All nuclei are calculated to be

axially symmetric in their ground states, and the obtained
deformations are smaller than those obtained by the AMD
calculation. If the standard pairing is used, all even-even
isotopes turn out to be spherical. Even with the weaker pairing,
25,26,28,30Ne are calculated to be spherical, because of the
relatively large N = 20 shell gap; see Fig. 11 for the shell
gap. This result is in contrast to the prediction based on the
tensor force in Ref. [89]. Although the binding energies and the
one-neutron separation energies are rather well reproduced in
the microscopic-macroscopic method, the calculated reaction
cross sections are smaller in the island of inversion (not
shown); this is due to the fact that the obtained equilibrium
deformations are too small.

In order to confirm that the simple mean-field model does
not give large deformations in the island of inversion, we
show the deformations obtained by the systematic Gogny-D1S
HFB calculations [90], the results of which are available
on the web site [91]. The (β2, β4) deformation parameters
are listed in Table IV, which are extracted in such a way
that 〈r2Y20〉uni/〈r2〉uni and 〈r4Y40〉uni/〈r2〉2

uni calculated with
the uniform density in Eq. (33) reproduce the corresponding
values of Gogny-D1S HFB calculations tabulated in [91]. It is
clear that the obtained deformations are smaller than those of
the AMD calculation in Table II, and similar to those of the
Strutinsky calculations (not shown). The reason why the AMD
calculation gives larger deformations particularly in the island
of inversion is that the optimum deformation is searched after
the AMP; note that the same Gogny-D1S force is used in the
HFB calculation of Refs. [90,91]. It is known that the potential
energy surface as a function of quadrupole deformation is
rather shallow for nuclei in the island of inversion. In such
a case, the energy gain of the AMP at large deformation can
easily change the equilibrium deformation, see, e.g., Ref. [27]
for Ne isotopes. The AMP is thus important for the island of
inversion to obtain large deformations.
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TABLE V. Deformation parameter β2 and γ deduced from the
AMD intrinsic density. Those with higher multipoles λ > 2 are not
included. The Nilsson asymptotic quantum numbers of last neutron
are included as the last column for axially symmetric cases.

Nuclide β̄ γ̄ β2 γ [N ,n3,�,
] for last-n

20Ne 0.46 0◦ 0.479 0◦ [2,2,0,1/2]
21Ne 0.44 0◦ 0.456 0◦ [2,1,1,3/2]
22Ne 0.39 0◦ 0.400 0◦ [2,1,1,3/2]
23Ne 0.32 0◦ 0.325 0◦ [2,0,2,5/2]
24Ne 0.25 60◦ 0.258 60◦ [2,0,0,1/2]
25Ne 0.20 31◦ 0.202 31.5◦
26Ne 0.22 0.1◦ 0.221 0◦ [2,1,1,1/2]
27Ne 0.27 13.6◦ 0.273 14.1◦
28Ne 0.50 0◦ 0.526 0◦ [3,3,0,1/2]

0.28 60◦ 0.291 60◦ [2,1,1,3/2]
29Ne 0.43 0◦ 0.445 0◦ [2,0,0,1/2]
30Ne 0.39 0◦ 0.400 0◦ [2,0,0,1/2]
31Ne 0.41 0◦ 0.422 0◦ [3,2,1,3/2]
32Ne 0.33 0◦ 0.335 0◦ [2,0,2,3/2]

D. Woods-Saxon model with AMD deformation

In the previous subsection, it was shown that both the
microscopic-macroscopic calculation in the DWS model and
the deformed Gogny-D1S HFB calculation (without the AMP)
do not yield large deformations expected in the island of
inversion. In this subsection we then consider the DWS model
with the AMD deformation and compare the results with the
AMD results. The pairing correlation is discussed at the end
of this subsection.

Table V lists up the deformation parameters β2 and γ

deduced from the corresponding AMD values β̄ and γ̄ and
used in the following DWS calculations. In Fig. 12, the matter
rms radius calculated with the DWS model is compared with
those of AMD and AMD-RGM calculations. The DWS model
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FIG. 12. (Color online) Matter rms radii of Ne isotopes calculated
with the DWS, AMD, and AMD-RGM models. The opened circles
represent the results of the AMD model, and the closed square denotes
the result of the AMD-RGM model for 31Ne. The opened inverted
triangles are the results of the deformed Woods-Saxon calculation.
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FIG. 13. (Color online) Density distributions of (a) 31Ne and
(b) 24Ne. The dotted line represents the result of the AMD model,
whereas the dashed line corresponds to the result of the DWS model.
The solid line is the result of the AMD-RGM model.

well reproduces the matter rms radii of AMD calculations for
24−29Ne of which S−1n is large. For 30−32Ne of which S−1n is
small, the matter rms radii of AMD calculations are slightly
smaller than those of the DWS model. The deviation may
come from the fact that the AMD densities are inaccurate in
the tail region, since the DWS model almost reproduces the
matter rms radius of the AMD-RGM calculation for 31Ne.
For 20−23Ne, the matter rms radii of AMD calculations are
larger than those of the DWS model. This implies that the
α-clustering is well developed in AMD calculations so that
deformations not included in the present Woods-Saxon model,
e.g., the octupole deformation (α3μ), becomes important.

The nucleon density distributions are plotted in Fig. 13 for
24Ne and 31Ne. The AMD densities (dotted curves) decrease
with increasing r more rapidly than the densities of the
DWS model (dashed curves). The deviation between the two
densities at large r is rather small for 24Ne where S−1n is
large. The deviation is, however, enlarged for 31Ne of which
S−1n is small. The AMD density is thus inaccurate at large r
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FIG. 14. (Color online) Reaction cross sections for Ne isotopes
calculated with the DWS, AMD, and AMD-RGM models. The
dashed line represents the results of the DWS model, while the
solid line corresponds to the AMD results. The result of the DWS
with the deformation determined by the deformed Gogny-D1S HFB
calculation (Table IV) is also included as the dotted line. The closed
square represents the result of the AMD-RGM calculation without
breakup contribution. The experimental data are taken from Ref. [10].

particularly for 31Ne. The tail correction to the AMD density
can be made by the AMD-RGM calculation. The density
(solid curve) has actually a long-range tail and consequently
becomes close to that of the DWS model. As an important
result, the density of the DWS model almost agrees with that
of the AMD-RGM calculation for 31Ne. This result indicates
that the DWS model with the AMD deformation is a handy
way of making a tail correction to the AMD density.

Figure 14 shows the reaction cross sections for Ne isotopes.
The DWS model with AMD deformation gives σR consistent
with the experimental data [10]. Comparing Fig. 14 with
Fig. 12, one can see that A dependence of σR is similar to that of
the matter rms radius for each of DWS, AMD, and AMD-RGM
calculations. The DWS model with HFB deformation [90,91]
yields much smaller σR in the island of inversion than the DWS
model with AMD deformation. The AMP is thus important to
evaluate σR properly. As another important result, the DWS
model with AMD deformation gives almost the same σR as
the AMD model for 24−29Ne and as the AMD-RGM model
for 31Ne. This indicates that the DWS model with AMD
deformation is a simple of making the tail correction to the
AMD density. The difference between the DWS model with
AMD deformation and the AMD model for 30,32Ne shows the
amount of the tail correction.

Figure 15 shows effects of the pairing correlation on
the total binding energy, S−1n and σR. The dashed and
dotted lines represent results of the standard pairing strength
�̃ = 12/

√
A MeV and the weaker one �̃ = 4/

√
A MeV,

respectively. The DWS model with AMD deformation well
reproduces the measured total binding energy [63,64], even
if the pairing is switched off. The pairing effects are more
significant for S−1n than for the total binding energy, as
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FIG. 15. (Color online) Pairing effects on (a) the total binding
energy, (b) the one-neutron separation energy S−1n, and (c) the
reaction cross sections σR for Ne isotopes. The solid line is the
result of the DWS model without pairing correction and the dashed
(dotted) lines stand for the result of the DWS model including the
pairing correlation with �̃ = 4/

√
A (12/

√
A) MeV. In (a) and (b) the

dot-dashed line represents the results of AMD, whereas in (c) the line
means σR calculated with the AMD density. The experimental data
are taken from Refs. [63,64] in (a) and (b), and from Ref. [10] in (c).

064613-14



DEFORMATION OF Ne ISOTOPES IN THE REGION OF . . . PHYSICAL REVIEW C 85, 064613 (2012)

expected. In the DWS model, the even-odd difference in S−1n is
too much enhanced for 29−32Ne, if the standard pairing strength
is used, while a better fitting is obtained with the weaker
pairing strength. The S−1n calculated with AMD (dot-dashed
line) is close to the result of the standard paring strength for
21−28Ne and to the result of the weaker pairing strength for
29−32Ne, so that AMD almost reproduces the measured S−1n.
This indicates that AMD includes the paring correlation at
least partly. The reaction cross sections are slightly enhanced
by the pairing correlation, but the effect is small even with the
standard pairing strength.

For weakly bound systems, it is speculated that the pairing
correlation leads to an extra binding of halo orbit and makes the
nuclear radius shrink; it is called the “pairing anti-halo” effect
[92,93]. Our Kruppa-BCS method can produce the anti-halo
like effect [49], but a reduction due to the pairing effect is
not observed in the present calculations. Possible reasons are
the large deformations, which tend to prevent the anti-halo
effect, and that the binding of the last neutron orbit is not weak
enough. As a future work, the deformed AMP-HFB calculation
is highly expected to answer whether the “pairing anti-halo”
effect really occurs and reflects the reaction cross section.

In the DWS model that corresponds to the AMD model
with the tail correction, σR for 32Ne is slightly larger than
that for 31Ne as shown in Fig. 14, but the rms radius for
32Ne is smaller than that for 31Ne as presented in Fig. 12.
The reduction of the rms radius comes from that of β2. It is
interesting to consider what causes the reduction of β2. This
is another interesting future subject related to the “pairing
anti-halo” effect mentioned above.

IV. SUMMARY

We have determined deformations of 20−32Ne by using the
fully microscopic AMD model with the Gogny-D1S inter-
action. The quadrupole deformation parameter determined is
around 0.4 in the island of inversion. The AMD model has no
adjustable parameter, but the tail of the density is inaccurate
particularly for weakly bound systems such as 31Ne. We have
made a tail correction to the AMD density for 31Ne by using
the AMD-RGM method. The resultant matter density has a
halo structure and hence 31Ne is a halo nucleus with large
deformation.

We have analyzed the measured interaction cross sections
[10] for 20,28−32Ne with the DFM in order to verify the theo-
retical prediction mentioned above. The microscopic reaction
model with the Melbourne g-matrix yields good agreement
with the measured interaction cross sections, if the projectile

densities are constructed by the AMD model for 20,28−30,32Ne
and the AMD-RGM model for 31Ne. We can thus conclude that
the theoretical prediction mentioned above is reliable. In this
analysis, the interaction cross section is assumed to be identical
with the reaction cross section. The difference between the two
cross sections comes from projectile excitations to its discrete
states. It has been confirmed by coupled-channel calculations
that the difference is small.

Since the AMD-RGM calculation is quite time consuming,
as an alternative to the calculation we have considered the
Woods-Saxon mean-field model with the deformation obtained
by the AMD calculation. This deformed Woods-Saxon (DWS)
model provides the matter density with the proper asymptotic
form, but the parameter set of the Woods-Saxon potential
should be carefully chosen. The parameter set recently pro-
posed by Wyss [32] is quite successful, since the DWS model
yields almost the same matter density as the AMD-RGM
method for 31Ne. This means that the DWS model is a handy
way of simulating the AMD-RGM calculation.

The DWS model is quite useful to understand dynamics
of many-body systems. When the microscopic-macroscopic
(Strutinsky) calculations are done in the Woods-Saxon model,
the obtained deformations are too small for 28−32Ne. This result
is consistent with the deformed HFB calculations with no
angular momentum projection in this region. This shows that
the angular momentum projection is essential to obtain the
large deformations in 28−32Ne. It is also easy to add the BCS-
type pairing correlation to the model. The result shows that the
pairing effect is small in 28−32Ne.

Throughout these results, we propose, as a useful and
convenient microscopic approach, the combination of the
DFM with the Melbourne g-matrix and the DWS model with
the AMD deformation. The microscopic approach provides the
density with the proper asymptotic form and has no adjustable
parameter. The microscopic approach well reproduces the
measured interaction cross sections for 20,28−32Ne. It is thus
highly expected that the microscopic approach is applied to
other scattering systems.
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Johnson, A. M. Moro, I. J. Thompson, and J. A. Tostevin, Phys.
Rev. C 77, 064609 (2008).

[81] M. Rodrı́guez-Gallardo, J. M. Arias, J. Gómez-Camacho, A. M.
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