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Structures in high-energy fusion data
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Structures observed in heavy-ion fusion cross sections at energies above the Coulomb barrier are interpreted
as caused by the penetration of centrifugal barriers that are well separated in energy. The structures are most
pronounced in the fusion of lighter, symmetric systems, where the separation in energy between successive
angular momentum barriers is relatively large. It is shown that the structures or peaks can be revealed by plotting
the first derivative of the energy weighted cross section. It is also shown how an orbital angular momentum can
be assign to the observed peaks by comparing to coupled-channels calculations. This is illustrated by analyzing
high-energy fusion data for 12C + 16O and 16O + 16O, and the possibility of observing similar structures in the
fusion of heavier systems is discussed.
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I. INTRODUCTION

The cross sections for the fusion of light, symmetric
systems of nuclei sometimes exhibit structures or oscillations
at energies above the Coulomb barrier. This has been observed
both in measurements and in coupled-channels calculations.
The best experimental examples of this behavior are the fusion
data of 12C + 12C [1] 12C + 16O [2], and 16O + 16O [3–5]. The
structures have been associated with resonances but there are
also suggestions that they may be caused by the penetration of
centrifugal barriers that are well separated in energy [6,7].

A simple reason the oscillations occur primarily in the
fusion of lighter, symmetric systems is that the separation
in energy between successive angular momentum barriers is
relatively large in these systems. Thus, when the separation
of successive barriers becomes larger than twice the width
associated with the penetration of the individual barriers, the
oscillating pattern may occur. This feature will be illustrated
by applying a simple model that is based on the Hill-Wheeler
barrier penetration formula [8].

It was recently shown [7] that the structures observed in
the 16O + 16O fusion data of Ref. [4] can be explained fairly
well by coupled-channels calculations. The calculations were
based on a shallow potential in the entrance channel, whereas
calculations based on a conventional Woods-Saxon potential
did not reproduce the data so well [7]. Thus there appears
to be some connection between the oscillations in fusion
cross sections at energies above the Coulomb barrier and the
fusion hindrance phenomenon that occurs at deep sub-barrier
energies [9,10]. Both phenomena can be explained by applying
a shallow M3Y + repulsion potential in coupled-channels
calculations, whereas a conventional Woods-Saxon potential
fails [7,11].

A model of heavy-ion fusion which contains information
about the centrifugal barriers at high energies is introduced in
the next section. It is based on the Hill-Wheeler formula for
barrier penetration [8], and it is shown how the first derivative
of the energy-weighted fusion cross section can be used as a
diagnostic tool to reveal the heights of the centrifugal barriers.
It is also shown why information about centrifugal barriers is
lost in the commonly used Wong’s formula [12]. In Sec. III, the

first derivative of the energy-weighted cross section is applied
to analyze the structures that are observed in the fusion data
of 12C + 12C, 16O + 16O, and 12C + 16O. The possibility of
observing similar structures in the fusion of heavier systems
is discussed in Sec. IV, and Sec. V contains the conclusions.

II. MODEL BASED ON THE HILL-WHEELER
APPROXIMATION

In order to make a simple interpretation of high-energy
fusion data one may resort to the well-known Hill-Wheeler
formula [8], which expresses the barrier penetration probabil-
ity in terms of a simple Fermi function,

PHW(x) = exp(x)

1 + exp(x)
, (1)

where x = (E − VB(L))/ε0. Here E is the center-of-mass
energy, VB is the barrier height, and ε0 is a parameter that
determines the exponential falloff at energies far below the
barrier. The latter parameter can be derived from a parabolic
approximation to the barrier potential but it is treated as an
adjustable parameter in the following.

The fusion cross section can now be obtained from the
expression

σf = π h̄2

2μE

Lmax∑
L=0

(2L + 1)
exp(xL)

1 + exp(xL)
, (2)

where xL = (E − VB(L))/εL, and μ is the reduced mass of
the fusing system. For a symmetric system of 0+ ground state
nuclei, the sum over angular momenta in Eq. (2) is restricted to
even values of L and the cross section must then be multiplied
by a factor of 2. There are two types of parameters in Eq. (2),
namely, the L-dependent barrier heights, VB(L), and the decay
constants εL.

The first derivative of the energy-weighted cross section
obtained from Eq. (2) is

(
d(Eσf )

dE

)
HW

= π h̄2

2μ

Lmax∑
L=0

(2L + 1)
1

εL

exp(xL)

(1 + exp(xL))2
.

(3)
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This expression can be interpreted as a sum of individual L-
dependent barrier distributions weighted with the factor (2L +
1). Each distribution is centered at the barrier height VB(L),
and it has a width that is determined by the constant εL. The
constants εL are assumed in the following to be independent
of L, i.e., εL = ε0.

A. Wong’s formula

The model (2) was applied by Wong [12] to derive his
formula for the fusion cross section. He assumed that the L-
dependent barriers were parametrized as follows:

VB(L) = VCB + h̄2L(L + 1)

2μR2
CB

, (4)

where VCB is the height of the Coulomb barrier (for L = 0),
μ is the reduced mass of the system, and RCB is the radial
distance at the Coulomb barrier. By replacing the discrete sum
over L in Eq. (2) with a continuous integration over L, i.e.,∑

L(2L + 1) → ∫
d[L(L + 1)], Wong obtained the following

compact formula [12]:

σf = πR2
CB

ε0

E
ln(1 + exp(x0)), (5)

where x0 = (E − VCB)/ε0. The first derivative of Wong’s
formula, (

d(Eσf )

dE

)
W

= πR2
CB

exp(x0)

1 + exp(x0)
, (6)

is proportional to a Fermi function and it approaches the value
πR2

CB at energies far above the Coulomb barrier.
The barrier distribution for heavy-ion fusion reactions that

was introduced in Ref. [13] is defined as the second derivative
of the energy weighted cross section,

B(E) = d2(Eσf )

dE2
. (7)

This definition was partly inspired by Wong’s formula because
the second derivative one obtains in this case,(

d2(Eσf )

dE2

)
W

= πR2
CB

1

ε0

exp(x0)

[1 + exp(x0)]2
, (8)

is a nice symmetric distribution that is centered at the Coulomb
barrier VCB (for L = 0.) The width is determined by ε0, which
characterizes the exponential falloff of the barrier penetrability
at energies far below the s-wave barrier.

The definition Eq. (7) is reasonable at energies close to the
Coulomb barrier. However, it does not reveal any information
about the individual L-dependent barriers. A better way to
search for evidence of the individual centrifugal barriers is to
plot the first derivative of the energy weighted cross sections,
according to the Hill-Wheeler expression, Eq. (3).

In order to be able to identify the individual centrifugal
barriers from the measured fusion cross sections, it is necessary
that the energy difference between successive barriers is much
larger than twice the width of the individual barriers. Using
the simple expression, Eq. (4), one obtains the following
expression for the energy difference between the heights of

successive barriers:

�VB = VB(L + 1) − VB(L) ≈ h̄22(L + 1)

2μR2
CB

. (9)

The width of the individual barrier distributions that appear in
Eq. (3) is characterized by the parameter εL, which is assumed
to be independent of L and equal to ε0. The requirement that
the energy difference, Eq. (9), is much larger than 2ε0 implies
that

(L + 1) � 2μR2
CBε0

h̄2 . (10)

This condition applies to the fusion of an asymmetric system,
where the fusion can occur for all values of L. For a symmetric
system of 0+ ground state nuclei, the fusion can only take place
for even values of the angular momentum. The condition for
observing individual barriers is then replaced by

(2L + 3) � 2μR2
CBε0

h̄2 . (11)

B. Illustration of Hill-Wheeler’s formula

Measured cross sections for the fusion of 16O + 16O [4,14]
are compared in Fig. 1 to the Hill-Wheeler cross section
(HW), Eq. (2), using the parameters VCB = 9.9 MeV,
ε0 = 0.4 MeV, and RCB = 8.4 fm. These parameters provide a
fair representation of the data above 8 MeV and are used below
for illustrative purposes. Also shown is the coupled-channels
calculation of Ref. [7] (solid curve) that is discussed in more
detail in the next sections.

The first derivative of the energy-weighted cross section
for the fusion of 16O + 16O is illustrated in Fig. 2. in terms
of Wong’s and Hill-Wheeler’s formulas. The parameters used
here are the same as those mentioned above. The first derivative
of Wong’s formula is a Fermi function which approaches
the constant value πR2

CB at energies far above the Coulomb
barrier, c.f. Eq. (6). The Hill-Wheeler expression, Eq. (3),
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FIG. 1. (Color online) Measured cross sections for the fusion
of 16O + 16O [4,14] are compared to the simplified Hill-Wheeler
model (HW) with the parameters VCB = 9.9 MeV, RCB = 8.4 fm,
ε0 = 0.4 MeV. The solid curve (M3Y + rep) is the result of the
coupled-channels calculation presented in Ref. [7].
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FIG. 2. (Color online) First derivative of the energy-weighted
fusion cross sections for 16O + 16O obtained from Hill-Wheeler’s
and Wong’s formulas. The parameters are the same as in Fig. 1.
The expression obtained from Wong’s formula, Eq. (6), behaves like
a Fermi function and approaches πR2

CB at high energy. The Hill-
Wheeler expression, Eq. (3), has the same behavior in the vicinity of
the Coulomb barrier but starts to oscillate at high energies. The peaks
show the location of the individual centrifugal barriers; the barriers
for L = 12, 16, and 20 are indicated.

reproduces this behavior at energies near and below the
Coulomb barrier but it starts to oscillate at energies above
the Coulomb barrier. The peaks in this figure reflect the
location of the individual centrifugal barriers, as evidenced
by Eq. (3). The peaks for L = 12, 16, and 20 are labeled in the
figure.

The lowest peak that is visible in Fig. (6) is due to the
centrifugal barrier for L = 8. This observation is consistent
with the condition, Eq. (11), which in the example considered
here requires that (2L + 3) � 11. The condition is not
fulfilled for L = 4 or 6, but it is reasonably well satisfied
for L = 8. As the angular momentum increases, the overlap
between neighboring peaks diminishes which results in the
breakdown of Wong’s formula. The breakdown of Wong’s
formula is primarily a problem in light, symmetric systems,
whereas it is usually not recognized in the fusion of heavy
systems.

Let us for completeness also examine the conventional
barrier distribution [13], i. e., the second derivative of the
energy weighted cross section. The results one obtains in the
example considered in this subsection are shown in Fig. 3.
Wong’s formula gives a symmetric distribution, Eq. (8), which
is peaked at the Coulomb barrier. The distribution derived
from Hill-Wheeler’s formula reproduces Wong’s formula in
the vicinity of the Coulomb barrier but it starts to oscillate
at higher energies. This illustrates vividly the breakdown
of Wong’s formula. It should be emphasized that the peaks
in Fig. 3 at high energies do not represent the actual
centrifugal barrier distributions; the barrier distributions at
high energy are depicted in Fig. 2. It is only the peak at
the lowest energy in Fig. 3 that represents a real barrier
distribution, and it is associated with the angular momentum
L = 0.
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FIG. 3. (Color online) Second derivative of the energy-weighted
fusion cross sections for 16O + 16O obtained from Hill-Wheeler’s
formula, Eq. (2), and from Wong’s formula, Eq. (5). The parameters
for the two expressions are quoted in the caption of Fig. 1. They
produce almost identical results in the vicinity of the Coulomb barrier
(VCB = 9.9 MeV). The second derivative of Wong’s formula goes to
zero at high energies, whereas the Hill-Wheeler expression starts to
oscillate.

III. STRUCTURES IN LIGHT-ION FUSION

In this section the high-energy fusion data for 12C + 12C [1],
12C + 16O [2], and 16O + 16O [4] are compared to simple
estimates based on the Hill-Wheeler formula and to coupled-
channels calculations. The comparison is made in terms of the
first derivative of the energy weighted cross section, which
in the following is defined in terms of the average, finite
difference value,(

d(Eσ )

dE

)
n

= 1

2

[
(Eσ )n+1 − (Eσ )n

En+1 − En

+ (Eσ )n − (Eσ )n−1

En − En−1

]
.

(12)

This definition is used to determine both the calculated and
measured values. The energies En are the discrete energies
where the measurements/calculations are performed. The
average energy associated with the definition (12) is Ēn =
(En−1 + 2En + En+1)/4.

The coupled-channels calculations are performed in the
rotating frame approximation with ingoing-wave boundary
conditions (IWBC) that are imposed at the minimum of the
pocked of the entrance channel potential [11]. The fusion cross
section is obtained from the ingoing flux at the boundary. A
slight improvement is to impose the IWBC for each orbital
angular momentum L at the minimum of the pocket in
each centrifugal potential. This definition works quite well
at energies near and below the Coulomb barrier but it can be
difficult to account for the data at high energy. The problem
can be solved by introducing an imaginary potential [11],

W (r) = W0

1 + exp((r − Rw)/aw)
, (13)

where the radius parameter Rw is chosen to coincide with
the location of the pocket minimum. At low energies, it is
sufficient to use a weak and short ranged potential, with typical
parameters W0 = −2 MeV and aw = 0.2 fm.
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FIG. 4. (Color online) The measured fusion cross sections for
16O + 16O [4,14] are compared to the coupled-channels calculations
(solid red curve) [7] that are based on the M3Y + repulsion potential.
The thick (blue) dashed curve is the coupled-channels result for a
maximum angular of Lmax = 16. The thick, black dashed curve is the
prediction of Hill-Wheeler’s formula, whereas the thin dashed curves
are the predictions for Lmax = 8, 10, . . . ,20.

At high energies it is often necessary to increase the values
of the parameters W0 and aw if one wants to account for the
data. This problem seems to be more serious for heavy systems
where a large number of reaction channels that are not treated
explicitly in the coupled-channels calculations open up. There
are other aspects of the calculations that are questionable
as the maximum angular momentum for fusion is reached.
For example, angular momentum dissipation must play an
important role at very high energies and the rotating frame
approximation must therefore become questionable. These
issues will not be addressed here.

A. Fusion of 16O + 16O

The cross section one obtains by applying the Hill-Wheeler
parametrization (2) to the fusion of 16O + 16O is compared in
Fig. 4 to the high-energy data of Tserruya et al. [4] and also
to the low-energy data of Thomas et al. [14]. The parameters
are the same as used in the previous section. These parameters
provide a fairly good description of the data at energies near the
Coulomb barrier (and above 8 MeV) as illustrated in Fig. 1, but
they fail to account for the high-energy data. One interpretation
is that the centrifugal barriers predicted by Eq. (4) and the
parameters considered here are not correct at high angular
momenta.

The Hill-Wheeler cross sections one obtains for different
choices of the maximum angular momentum for fusion,
namely, Lmax = 8, 10, . . . , 20, are also shown in Fig. 4. They
fall off as 1/E when the energy exceeds the height of the
maximum barrier considered. To be specific, the cross section
for a symmetric system behaves like

σf (E,Lmax) ≈ πh̄2

2μE
[Lmax(Lmax + 3) + 2], (14)

when E � VB(Lmax). A similar expression holds for asym-
metric systems with the Lmax dependent factor replaced by
(Lmax + 1)2. The simple dependence on energy and maximum

angular momentum is very useful because it can be used
to roughly assign an angular momentum associated to each
centrifugal barrier extracted from an experiment.

The fusion data shown in Fig. 4 follow the predicted 1/E

dependence in small sections of energy but they do not agree
with the magnitude of the curves predicted for different values
of Lmax. In fact, the data fall mostly halfway between these
curves when the 1/E dependence occurs. This is a somewhat
disturbing feature but it is nicely reproduced by the coupled-
channels calculation of Ref. [7], which is shown by the solid
(red) curve. The blue dashed curve shows the coupled-channels
result one obtains by imposing a maximum angular momentum
of Lmax = 16. This curve does eventually approach the the
Hill-Wheeler prediction for Lmax =16 but it occurs at an almost
10 MeV higher energy.

The coupled-channels calculation of Ref. [7] was calibrated
to reproduce the low-energy fusion data of Thomas et al. [14].
It was supplemented with a short-ranged imaginary potential
that acts near the minimum of the pocket in the entrance
channel potential in order to improve the behavior at high
energy. In spite of the latter adjustment, it is remarkable that
the calculation does reproduce the high energy data so well up
to about 27 MeV.

A good way to amplify the structures in the high energy
data is to plot the first derivative of the energy weighted cross
section. The result are shown in Fig. 5(a). The structures of the
data are reproduced remarkably well in this representation by
the coupled-channels calculation (the thick solid curve.) That
gives confidence in the assignment of an angular momentum
to each individual peak because the angular momenta of the
calculated peaks are well determined. The peak associated with
L = 16 is marked in the figure for clarity so that the peaks for
L = 12 to 20 can easily be identified.

A similar coupled-channels calculation, which was based
on a conventional Woods-Saxon potential, was also performed
in Ref. [7]. It did a rather poor job in reproducing the data at
high energy (see Fig. 7 of Ref. [7].) The barrier distributions
one obtains from this calculation are shown in Fig. 5(b). While
the location of the L = 16 peak is essentially the same as
obtained with the M3Y + repulsion potential, the structures
at smaller angular momenta have essentially disappeared. By
comparing the two figures, Figs. 5(a) and 5(b), it is clear that
the M3Y + repulsion potential provides the better description
of the data.

"

B. Fusion of 12C + 12C

Another example of a system that exhibits strong structures
in its high-energy fusion data is 12C + 12C [1]. Unfortunately,
it was not possible to reproduce the data so well by coupled-
channels calculations, as it was done for the fusion of
16O + 16O. It is therefore of interest to try a different approach
when analyzing the data. One way is to use the Hill-Wheeler
parametrization of the cross section, Eq. (2), and treat the
energies of the centrifugal barriers, VB(L), as adjustable
parameters.

The high-energy fusion data for 12C + 12C that were
measured Sperr et al. [1] are shown in Fig. 6. Also shown
is a prediction by Hill-Wheeler’s formula, Eq. (2), which is
based on the parameters: VCB = 6.23 MeV, ε0 = 0.4 MeV,
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FIG. 5. (Color online) First derivative of the measured energy-
weighted cross section for the fusion of 16O + 16O [4] is com-
pared to coupled-channels calculations [7] that are based on the
M3Y + repulsion potential (a), and on a conventional Woods-Saxon
potential (b). The calculated peaks at L = 16 are marked.

and RCB = 7.667 fm. These parameters characterize the
entrance channel potential that was used in the coupled-
channels calculations of Ref. [15]. The cross sections for
different maximum angular momentum cutoffs, namely, for
Lmax = 4–16, are also shown. They coincide in most cases
with the data when the data exhibit the characteristic 1/E

dependence. One exception is at the highest energies, above
25 MeV, where the data fall half-way between the predictions
for Lmax = 12 and 14.

The fact that the data agree so well with the 1/E curves
when the data exhibit the characteristic 1/E behavior, makes
it fairly easy to fit the data simply by adjusting the heights of
the centrifugal barriers. The result that gives the best fit to the
data up to 25 MeV is shown by the solid curve in Fig. 6. A
more detailed comparison is shown in Fig. 7 in terms of the
first derivative of the energy-weighted cross section. Here one
can see that the widths of the measured centrifugal barrier
distributions apparently increase with increasing angular
momentum, whereas the width was assumed to be a constant
characterized by the parameter ε0 in the calculation. It may be
useful to incorporate an L dependence of the value of εL in the
data analysis but that will not be tried here. The ultimate goal
is to develop a coupled-channels description that can account
for the data and provide a reliable determination of the angular
momenta associated with the experimental peaks.
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FIG. 6. (Color online) Cross sections for the fusion of 12C + 12C
[1] are compared to the Hill-Wheeler expression (HW) using the
parameters VCB = 6.23 MeV, RCB = 7.667 fm, and ε0 = 0.4 MeV. The
solid curve was obtained by adjusting the heights of the centrifugal
barriers to optimize the fit to the data below 25 MeV.

C. Fusion of 12C + 16O

The last example in this section is the fusion of 12C + 16O
which was also measured by Sperr et al. [2]. This is an
asymmetric system so the fusion can occur for all values
of L. The data are compared in Fig. 8 to coupled-channels
calculations that include six channels (Ch6). The six channels
are the elastic channel, the four channels associated with the
excitation of the 2+ and 3− states in either projectile or target,
and the channel associated with the excitation of the 0+

2 in
12C. The structure input to the calculation can be found in the
papers on the fusion of oxygen plus oxygen [7] and carbon
plus carbon [15].

The M3Y + repulsion, double-folding potential that is used
in the calculation is generated from the charge densities of
the reacting nuclei. The repulsive part of the interaction is
determined by the incompressibility K = 234 MeV, and the
diffuseness parameter ar associated with the repulsion [11].
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FIG. 7. (Color online) First derivative of the energy-weighted
cross sections shown in Fig. 6.
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FIG. 8. (Color online) Cross sections for the fusion of 12C + 16O
[2] are compared to coupled-channels calculations (Ch6) with
different strengths of the imaginary potential (W0 = −2 and −4 MeV,
respectively), and to the no-coupling limit (top dashed curve).

The latter was set to ar = 0.41 fm because that was the
preferred value in the analysis [7] of the 16O + 16O fusion
data by Thomas et al. [14].

The sensitivity to the imaginary potential is illustrated in
Fig. 8 by two coupled-channels calculations, one with the
strength W0 = −2 MeV and one with W0 = −4 MeV, whereas
the diffuseness was kept fixed at aw = 0.2 fm. It appears that
the data are best described by the weaker absorption. The
top dashed curve is the result of the no-coupling calculation
which employs the weak absorption, W0 = −2 MeV. Here
the oscillations in the high energy cross sections are modest.
Evidently, the strong structures in the solid curve of Fig. 8 are
caused by coupled-channels effects.

The first derivative of the energy weighted cross sections is
shown in Fig. 9. By comparing the data to the coupled-channels
calculation (the one with the weak absorption, W0 = −2 MeV)
it is possible to assign an angular momentum to each of the
observed peaks. Since the fusing systems is asymmetric, fusion
occurs for both even and odd values of L. Calculated barriers
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FIG. 9. (Color online) First derivative of some of the energy-
weighted cross sections shown in Fig. 8. Both calculations include an
imaginary potential with W0 = −2 MeV. The peaks associated with
L = 12, 14, and 16 in the Ch6 calculation are labeled.
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FIG. 10. (Color online) First derivative of the energy-weighted
cross section obtained from the L = 14 partial wave. The peak of
the coupled-channels calculation Ch6 is lowered by about 2 MeV
compared to the peak obtained in the no-coupling limit.

exist for all values of angular momenta in the range L = 11–17,
and the barriers for L = 12, 14, and 16 are marked for clarity
in the figure. Experimental barriers are clearly identified for
L = 12, 13, and 15 but the barrier for L = 14 is apparently
missing.

It is remarkable that the Ch6 coupled-channels calculation
shown in Fig. 9 reproduces the peak structures of the data
so well, both in position and in absolute magnitude. The
no-coupling limit, on the other hand, produces very modest
peaks, and their positions are shifted compared to the peaks
of the coupled-channels calculation. This is seen more clearly
in Fig. 10, where the first derivative of the energy weighted
contribution to the cross section from the orbital angular
momentum L = 14 is shown. It is seen that the peak of
the coupled-channels calculation is lowered by about 2 Mev
compared to the no-coupling limit. This implies that the
L = 14 peak obtained in the no-coupling limit is located
in Fig. 9 near the L = 15 peak of the coupled-channels
calculation.

In summary, structures due to individual centrifugal bar-
riers are clearly observed in the fusion data for all three
combinations of 12C and 16O nuclei. The coupled-channels
calculations reproduce most of the observed structures fairly
well, provided the M3Y + repulsion entrance channel po-
tential is relatively shallow and the imaginary potential is
relatively weak and short ranged. Using instead a conventional
Woods-Saxon potential, the structures at low energies become
suppressed, whereas the structures at higher energies become
much stronger (see Fig. 5(b)). The results for 12C + 16O
demonstrate that coupled-channels effects can be very large
and shift the location of the effective centrifugal barrier to
lower energies. The possibility of observing similar structures
in the fusion of heavier systems is discussed in the next
section.

IV. APPLICATIONS TO HEAVIER SYSTEMS

The search for structures in the high-energy fusion of
heavier systems is difficult. The reason is that structures
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associated with individual angular momentum barriers can
only be seen at high angular momenta in heavy systems,
according to Eqs. (10) and (11). Since many reaction channels
are expected to open up at high angular momenta and high
energies in heavy systems, the effect of couplings to these
channels may smear out the peak structures. It is of great
interest to pursue the search for such structures because they
can provide valuable information (if they exist) about the
ion-ion potential and put constraints on coupled-channels
calculations. On the other hand, the disappearance of the
structures may indicate where the coupling to many open
reaction channels sets in.

An experimental search was performed by Gary and Volant
[16] who investigated the fusion of 24Mg + 24Mg, 28Si + 28Si
and similar systems. The amplitudes of the oscillations that
were observed are modest compared to the oscillations that
are seen in the fusion of the 12C and 16O systems. They
are sometimes comparable to the experimental uncertainties
which makes it difficult to judge whether the structures exist
or not. It was concluded [16] that 12C + 24Mg and 28Si + 28Si
are the only systems that exhibit an oscillatory behavior in
the fusion data at high energy. Although these findings are
disappointing, it is useful to analyze the data the same way
it was done in the previous section, namely, in terms of the
first derivative of the energy weighted cross section. It is
of particular interest to see whether the observed structures
can be reproduced by coupled-channels calculations. As an
example of a system that exhibits some structures, the fusion
of the symmetric system 28Si + 28Si will be discussed in the
following.

It is difficult to calibrate the M3Y + repulsion interaction
to the 28Si + 28Si data by Gary and Volant [16] because they
cover a relatively small range of energies. Fortunately, there
is another data set by Nagashima et al. [17] which covers
a much broader range of energies, and the high energy data
by Vineyard et al. [18] are also very valuable because they
determine a limiting or critical angular momentum for fusion,
which is about Lc = 38h̄. The three data sets are shown
in Fig. 11. Also shown in this figure are coupled-channels
calculations and calculations performed in the no-coupling
limit. All calculations are based on an M3Y + repulsion
potential, which is produced by 28Si densities of radius
R = 3.17 fm and diffuseness a = 0.48 fm. The diffuseness
associated with the repulsive part of the interaction (see
Ref. [11] for details) was adjusted to ar = 0.378 fm so that the
data by Nagashima et al. were reproduced (see below.)

The structure input to the calculations is shown in
Table I. The calculations include the excitation of the 2+ the
3−, and an effective two-phonon quadrupole states in each
nucleus. The two-phonon state was constructed following the
procedure described in Ref. [20] from the information given
in Table I about the 0+

2 and 4+ states. Unfortunately, there is
no information available about the 2+

2 state so it is ignored.
The mutual (2+, 2+), (2+, 3−), and (3−, 2+) excitations in
projectile and target were also included, whereas the mutual
excitation of the 3− states was ignored because the excitation
energy is so high. In addition to the elastic channel, that gives
a total of (1 + 3 + 3 + 3) ten channels and the calculation is
referred to as the Ch10 calculation.
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FIG. 11. (Color online) Measured cross sections for the fusion of
28Si + 28Si [16–18] are compared to coupled-channels calculations
(Ch10, solid curves) and to calculations without couplings (dashed
curves). The thin curves are based on a weak imaginary potential,
with aw = 0.2 fm, W0 = −2 MeV, whereas the thick curves use a
stronger imaginary potential, with aw = 0.5 fm, W0 = −10 MeV. All
calculations assume a maximum angular momentum of Lmax = 38.

The nucleus 28Si is deformed with an oblate quadrupole
shape. The measured quadrupole moment of the 2+ state,
Q2 = 0.16(3) b [21], implies a deformation parameter which
is β2 = −0.40(8). This is consistent with the measured B(E2)
value given in Table I. The quadrupole deformation was
considered explicitly in the coupled-channels calculations
by including the diagonal matrix element of the quadrupole
interaction in the excited 2+ state (see Ref. [20] for details.)

It is difficult to make a good calibration of the
M3Y + repulsion interaction without access to any data at
sub-barrier energies. The cross sections at high energies are
sensitive to other reaction mechanisms that are not considered
explicitly in coupled-channels calculations, so there is some
ambiguity in the calibration of the ion-ion potential and the
imaginary potential. The thick solid curve in Fig. 11 is a
compromise which does a fairly good job in reproducing the
data of Nagashima et al. [17]. It is based on a relatively strong
imaginary potential, W0 = −10 MeV and aw = 0.5 fm. More-
over, a maximum angular momentum for fusion, Lmax = 38,

TABLE I. The properties of the low-lying states in 28Si are
from Ref. [19]. The 0+

2 and 4+ states are lumped together into one
effective two-phonon quadrupole state as described in Ref. [20].
Unfortunately, no information about the 2+

2 state is available. The
Coulomb and nuclear deformation parameters are assumed to be
the same.

Iπ Ex (MeV) Transition B(Eλ) (W.u.) βC
λ

2+
1 1.779 2+

1 − 0+
1 13.2(3) −0.411

0+
2 4.980 0+

2 − 2+
1 8.6(16)

4+ 4.618 4+ − 21 13.8(13)
Eff 2PH 4.689 2PH − 2+

1 8.8 −0.238
3− 6.879 3− − 0+

1 13.9(24) 0.416(35)
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FIG. 12. (Color online) First derivative of the energy-weighted
cross sections shown in Fig. 11. The coupled-channels calculation
Ch10 is based on the weak imaginary potential, with aw = 0.2 fm,
W0 = −2 MeV. The calculated peak for L = 20 near 35 MeV is
indicated.

was imposed on the calculations in order to be consistent with
the high energy data of Vineyard et al. [18]. The thin solid
curve is the result of a similar calculation that is based on a
weaker and short-ranged imaginary potential, W0 = −2 MeV
and aw = 0.2 fm. It does not account for Nagashima’s data at
high energies but it is in fair agreement with the data by Gary
and Volant.

The first derivative of the energy-weighted cross section
for the fusion of 28Si + 28Si is shown in Fig. 12. The data by
Gary and Volant [16] are connected by the dashed curve for
clarity. The data by Nagashima et al. [17] are also shown.
They are consistent with the data by Gary and Volant but the
energy steps between the data points are too large to reveal
any structures in the data.

The solid curve in Fig. 12 is derived from the coupled-
channels calculation shown in Fig. 11 with the weak absorp-
tion. It shows a lot of structure and it is remarkable how well the
peaks of the calculation correlate with the structures observed
in the data. The good agreement in this respect allows one to
assign with some confidence an angular momentum to each
of the peaks. The peak near 35 MeV is caused by the L = 20
centrifugal barrier.

Based on the results discussed here it is suggested that
some of the measurements by Gary and Volant [16] should
be repeated with higher precision and with sufficiently small
energy steps so that the structures associated with the individ-
ual centrifugal barriers can better be resolved. In order to be
able to calibrate the ion-ion potential, it would be very useful
not only to perform the measurements at energies above the
Coulomb barrier, where the structures due to the individual
centrifugal barriers may exist, but also at energies far below the
Coulomb barrier, where the sensitivity to the ion-ion potential
for overlapping nuclei also shows up [11].

The analysis of the 28Si fusion data shows that it is nec-
essary to employ an imaginary potential of varying strength,
depending on which data set is analyzed. The high-energy
data require a strong imaginary potential, combined with a
maximum angular momentum for fusion, whereas the low
energy data can be explained with a weak imaginary potential.

It would be useful in future work to develop an energy
dependent imaginary potential.

V. CONCLUSIONS

The structures that have been observed a long time ago in the
high-energy data for several light-ion systems can be explained
as being caused by the penetration of successive centrifugal
barriers that are well separated in energy. This mechanism is
clearly seen in Hill-Wheeler’s expression for the fusion cross
section, and it is best illustrated by plotting the first derivative
of the energy weighted cross section. The locations of the peaks
in such a plot show the energies of the centrifugal barriers
that causes the structures, whereas the width of the peaks
can be associated with the quantum mechanical penetration
of the centrifugal barrier. The analytic expression for the
fusion cross section derived by Wong, on the other hand, does
not reveal the energy location of any individual centrifugal
barriers, except the location of the s-wave barrier. This is not
surprising because the derivation of Wong’s formula assumes
that sequential barriers are so close in energy that the discrete
sum over the orbital angular momentum be replaced by a
smooth integration.

Some of the fusion data were analyzed by coupled-channels
calculations that were based on the M3Y + repulsion potential.
The calculations showed that the strength and the location
of the peaks observed in the first derivative of the energy-
weighted cross section are very sensitive to coupled-channels
effects. This implies that the extracted barriers are effective
barriers and not the real barriers of the centrifugal potential in
the entrance channel.

The nuclear potentials that were used in the coupled-
channels calculations were adjusted in each case to optimize
the fit to the data, and when this was achieved, it turned out that
the calculations reproduced fairly well the location of the peak
structures that are observed in the data. The good agreement
allows one to assign an orbital angular momentum to most of
the effective centrifugal barriers that have been extracted from
the experiments.

The results of the data analysis suggest that the structures
observed in the fusion data at energies above the Coulomb
barrier are best explained by coupled-channels calculations
that are based on a shallow potential in the entrance channel.
Thus there appears to be some consistency in the description
of the structures at energies above the Coulomb barrier and
the hindrance of fusion, which is observed at energies far
below the Coulomb barrier. Both phenomena are sensitive
to the ion-ion potential for overlapping nuclei, and both
are best described by a shallow potential in the entrance
channel.

The amplitude of the structures observed in the fusion data
seems to diminish in heavier systems. This is unfortunate
because the structures reveal valuable information about
the ion-ion potential, and they provide an excellent test of
coupled-channels calculations. It is very encouraging to see,
however, that structures do exist in the fusion of a system
as heavy as 28Si + 28Si. It is therefore suggested that a
new experimental search for structures in high-energy fusion
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cross sections be pursued, preferably with higher precision
than in the past, and with energy steps that are sufficiently
small to resolve the structures associated with the individual
barriers.
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