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We report measurements of cross sections and analyzing powers for reaction angles of θlab = 0.0◦–10.0◦

and complete sets of polarization transfer observables and induced polarizations at θlab = 0.0◦–7.0◦ for the
208Pb( �p, �n) reaction at a bombarding energy of Tp = 296 MeV. A multipole decomposition technique was
applied to the data to extract the Gamow-Teller (GT) and spin-dipole (SD) components from the continuum.
The polarization observables were also used, for the first time, to separate the SD components into different
spin-parity transfer (�J π = 0−, 1−, and 2−) contributions. A significant strength with �J π = 1+ is identified
in the continuum beyond the GT giant resonance, which is due to configuration mixing effects and the isovector
spin monopole (IVSM) contribution. The SD strength distributions were clearly dependent on �Jπ , which is
reasonably reproduced by Hartree-Fock (HF) plus random phase approximation (RPA) calculations that include
the Skyrme interaction with tensor components [Phys. Rev. C 83, 054316 (2011)].
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I. INTRODUCTION

Spin-isospin excitations provide a unique opportunity to
study the spin correlations in nuclei [1]. At small momentum
transfers, the spin-isospin particle-hole interaction is strongly
repulsive, and the residual interaction leads to collective
excitations such as the Gamow-Teller (GT) and spin-dipole
(SD) resonances. The quenching of the total GT strength [2]
from the GT sum rule [3] (also called Ikeda’s sum rule [4])
for 3(N − Z) has prompted theoretical studies of possible
mechanisms, ranging from conventional configuration mixing
[5,6] to an admixture of the �-hole (�-h) states [7–10].
Experimental investigations into the (p, n) [11] and (n, p) [12]
reactions of 90Zr using the multipole decomposition (MD)
technique [13] have revealed that configuration mixing effects,
such as coupling to 2-particle–2-hole (2p-2h) excitations, play
an important role in GT quenching, whereas �-h coupling has
a minor role. It has also been noted that some quenching may
result from tensor interaction effects that couple the GT states
with the spin-quadrupole 1+ states [14].

The SD resonance is the lowest multipolarity spin-isospin
mode involving both spatial and spin degrees of freedom. MD
analysis of (p, n) cross sections has identified a considerable
amount of broadly distributed dipole strength at excitation en-
ergies beyond the main GT peak [15]. Recently, Yako, Sagawa,
and Sakai [16] extracted the dipole components for 90Zr(p, n)
and 90Zr(n, p) data by MD analysis. These data were acquired
at incident kinetic energies of around Tp � 300 MeV, for
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which spin excitations are dominant. Therefore, the deduced
components are assumed to be the SD components. The SD
strengths are obtained by assuming a proportionality relation
between the SD cross section and the relevant strength [17].
The experimental SD strengths are reasonably reproduced
using the second-order random phase approximation (RPA)
calculation by Drożdż et al. [18], although the strengths at low
excitation energies are significantly overestimated. It should
be noted that the experimental strengths include all the SD
strengths with spin-parity transfer �Jπ = 0−, 1−, and 2−,
because separation of the individual multipole contributions is
difficult in the MD analysis [13]. The separated SD strengths
should be useful for further theoretical investigations on
the tensor interaction effects of spin-isospin SD excitations
[19–22] and the neutron matter equation of state [23].

In this article, we present measurements of cross sections
and analyzing powers at nine angles over the angular range of
0◦ � θlab � 10◦, in addition to complete sets of polarization
transfer observables Dij , and induced polarizations P , at
θlab = 0◦, 2◦, 4◦, 5.5◦, and 7◦ for the 208Pb(p, n) reaction at
Tp = 296 MeV. Distortion effects are minimized at around
this incident energy [13], and thus theoretical calculations
based on the distorted-wave impulse approximation (DWIA)
should be reliable, due to the simple reaction mechanism. The
MD technique has been extended to simultaneously treat the
data for polarization observables, and this technique has been
applied to the present data. The SD strengths are successfully
separated into component strengths with this technique. The
results are compared with theoretical calculations based on
the Skyrme Hartree-Fock (HF) plus RPA approach in order to
assess the multipole-dependent effect of the tensor interaction
on the SD excitations [21,22]. The GT strength is also
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extracted, and the effects of the isovector spin-monopole
(IVSM) excitations are investigated.

II. EXPERIMENTAL METHODS

Measurements were performed using a neutron time-
of-flight (NTOF) system [24] at the Research Center for
Nuclear Physics (RCNP) of Osaka University. The data
for the polarization transfer observables, DNN and DLL, at
θlab = 0◦ [25] were measured using an old neutron detector
and polarimeter (NPOL2) system [26], whereas all other data
were measured using a new neutron detector and polarimeter
(NPOL3) system [27]. The relevant experimental techniques
for the NPOL2 system have been reported previously for
similar polarization transfer measurements of the 90Zr(p, n)
reaction at θlab = 0◦ [28]. Thus, only a brief description of the
NPOL3 system is given and experimental details relevant to
the present experiments are discussed.

A. Polarized proton beam

The polarized proton beam produced by a high-intensity
polarized ion source (HIPIS) [29] was accelerated up to
Tp = 53 and 296 MeV using the azimuthally varying field
(AVF) and ring cyclotrons, respectively. The beam polarization
direction was reversed every 5 s by selecting rf transitions to
minimize false geometric asymmetries. In measurements of
the cross section and analyzing power, one out of seven beam
pulses was selected for injection into the ring cyclotron, which
then yielded a beam pulse period of 454 ns. This pulse selection
reduces the wraparound of slow neutrons from preceding
beam pulses. In the polarization transfer measurements,
pulse selection was not performed, so reasonable statistical
accuracy could be achieved. Single-turn extraction from the
ring cyclotron was maintained during these measurements to
preserve the beam polarization.

Two superconducting solenoid magnets, SOL1 and SOL2
[24], located in the injection line from the AVF to ring
cyclotron were used to precess the proton spin. Each magnet
can rotate the proton spin direction from the normal direction
N̂ , to the sideways direction Ŝ. These two magnets were
installed in front of (SOL1) and behind (SOL2) a 45◦ bending
magnet, so that the spin precession angle in the bending
magnet was approximately 85.2◦ for Tp = 53 MeV protons.
Therefore, proton beams with longitudinal (L̂) and sideways
(Ŝ) polarizations could be obtained at the exit of the SOL2
magnet using the SOL1 and SOL2 magnets, respectively.

The beam polarization was continuously monitored using
two sets of beamline polarimeters, BLP1 and BLP2 [24],
installed after the ring cyclotron. Each polarimeter consists
of four conjugate-angle pairs of plastic scintillators and
determines the beam polarization via 1H( �p, p)1H scattering
in the N̂ and Ŝ directions. A self-supporting polyethylene
(CH2) target with a thickness of 1.1 mg/cm2 was used as
the hydrogen target, and the elastically scattered and recoiled
protons were detected in kinematical coincidence with a pair
of scintillators. The BLP1 and BLP2 systems were installed
in front of and behind a 98◦ bending magnet, respectively.

The spin precession angle in this bending magnet was
approximately 231.1◦ for Tp = 296 MeV protons; therefore,
all components (pS, pN, pL) of the polarization vector could
be simultaneously determined using the BLP1 and BLP2
systems. The typical magnitude of the beam polarization was
approximately 0.59.

B. Target and neutron spin-rotation magnet

The proton beam bombarded a self-supporting 208Pb
(�99%) target with a thickness of 634 mg/cm2 located in a
beam-swinger magnet [24]. Neutrons from the target entered
the time-of-flight (TOF) tunnel and were detected using the
NPOL3 system. Protons downstream of the target were swept
by the beam swinger magnet and stopped by a graphite
beam dump (Faraday cup), from which the beam current was
measured. Typical beam currents used for the cross-section
and polarization transfer measurements were 30 and 500 nA,
respectively. The reaction angle was changed by repositioning
the target along the beam trajectory inside the beam-swinger
magnet.

A dipole magnet for neutron spin rotation (NSR magnet
[24]) was positioned at the entrance of the TOF tunnel. The
magnet was used to precess the neutron polarization vector
from the longitudinal direction L̂′ to the normal direction N̂ ′
so that the longitudinal component could be measured using
NPOL3 as the normal component. The NSR magnet was also
used for measurement of the induced polarization P [30]. In
this case, the neutron polarization was precessed in the N̂ ′-L̂′
plane by approximately 120◦, depending on the neutron kinetic
energy.

C. Neutron detector and polarimeter NPOL3

Neutrons were measured using the NPOL3 system [27] with
a flight path length of 70 m. The NPOL3 system consists of
three planes of neutron detectors. Each of the first two planes
(HD1 and HD2) has 10 sets of one-dimensional position-
sensitive plastic scintillators (BC408) with dimensions of
100 × 10 × 5 cm3, which covers an effective detection area
of 1 m2. The last plane (NC) is a two-dimensional position-
sensitive plastic scintillator with dimensions of 100 × 100 ×
10 cm3. The HD1 and HD2 planes serve as both neutron
detectors and neutron polarization analyzers for the cross-
section and polarization transfer measurements, respectively,
and the NC plane acts as a catcher for particles scattered by
the HD1 or HD2 planes.

III. DATA REDUCTION

A. Neutron detection efficiency

The neutron detection efficiency of the NPOL3 system
(HD1 and HD2) was measured using the neutrons obtained
from the 7Li(p, n)7Be(g.s. + 0.43 MeV) reaction at θlab =
0◦, which has a constant center-of-mass cross section of
σc.m. = 27.0 ± 0.8 mb/sr over a wide incident energy range of
Tp = 80–795 MeV [31]. A self-supporting 7Li (99.97% 7Li)
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target with a thickness of 59.4 mg/cm2 was used. The resulting
efficiency was 0.043 ± 0.002, with the overall uncertainty
mainly arising from uncertainties in the cross section and
thickness of the 7Li target.

B. Effective analyzing power

The neutron polarization was analyzed by monitoring �n + p

scattering at either the HD1 or HD2 neutron detectors, and the
recoiled protons were detected using the NC neutron detector.
The effective analyzing power Ay;eff of the NPOL3 system
was determined using polarized neutrons from GT transitions
in the 2H(p, n)pp and 12C(p, n)12N(g.s., 1+) reactions at Tp =
296 MeV and θlab = 0◦. Two types of polarized protons with
normal (pN ) or longitudinal (pL) polarizations were used. The
corresponding neutron polarizations at 0◦ then become p′

N =
pNDNN (0◦) and p′

L = pLDLL(0◦), respectively. The resulting
asymmetries measured with NPOL3 are given by

εN = p′
NAy;eff = pNDNN (0◦)Ay;eff, (1a)

εL = p′
LAy;eff = pLDLL(0◦)Ay;eff . (1b)

The polarization transfer observables for the GT transition
satisfy [28]

2DNN (0◦) + DLL(0◦) = −1, (2)

so that Ay;eff can be expressed in terms of Eqs. (1) and (2) as

Ay;eff = −
(

2
εN

pN

+ εL

pL

)
. (3)

Therefore, Ay;eff can be obtained without already knowing the
values of Dii(0◦). The result was Ay;eff = 0.120 ± 0.005, in
which the uncertainty is the systematic uncertainty estimated
from the difference between the results for 2H(p, n)pp and
12C(p, n)12N(g.s., 1+).

The DLL(0◦) values of the 2H(p, n)pp reaction at Tp =
305–788 MeV have been reported by McNaughton et al. [32],
and the results are shown in Fig. 1 (open circles). The solid
curve is the result obtained by fitting with a second-order
polynomial. The DLL(0◦) value at Tp = 296 MeV, which is
determined from Eq. (1b) using the obtained Ay;eff value,
is indicated in Fig. 1 by the filled square. The DLL(0◦)
value is consistent with the energy dependence predicted
using previous data, which demonstrates the reliability of the
calibrations.

IV. RESULTS

A. Cross section and analyzing power

The cross-section and analyzing-power data for the
208Pb(p, n) reaction at Tp = 296 MeV are presented in Figs. 2
and 3. The GT giant resonance with an angular-momentum
transfer of �L = 0 is prominent in the spectra for angles
θlab � 2◦, whereas the SD resonance with �L = 1 dominates
at θlab = 4◦. These resonances are in the low energy transfer
region of ω � 30 MeV and are prominent at forward angles. In

FIG. 1. (Color online) Polarization transfer observables DLL(0◦)
for the 2H(p, n) reaction at 0◦ as a function of incident energy Tp . The
filled square indicates the present result and the open circles represent
data from McNaughton et al. [32]. The solid curve is a fit of the data
using a second-order polynomial.

the high energy transfer region, featureless continuum spectra
extend up to an energy transfer of ω = 50 MeV.

For the analyzing-power data, the effect of the GT giant
resonance contribution is clearly observed in the spectra at
θlab � 2◦ as a negative bump at ω � 18 MeV, whereas that of
the SD resonance is evident as a positive bump at ω � 25 MeV.
The analyzing powers increase with the reaction angle in the
continuum beyond the resonance region and reach a value of
approximately 0.1 at θlab = 10◦.

B. Polarization transfer and induced polarization

Figures 4–6 show complete sets of polarization transfer ob-
servables Dij and induced polarizations P for the 208Pb(p, n)
reaction at θlab = 0◦, 2◦, 4◦, 5.5◦, and 7◦. The data have been
sorted into 1 MeV bins to reduce statistical fluctuations. The
statistical uncertainties in Dij are approximately 0.02–0.03 in
the GT and SD resonance regions. An interesting feature of
the Dii(0◦) data is that negative values are obtained over the
entire energy transfer region, which indicates a predominance
of spin-flip excitations. The observed spin-flip dominance at
Tp � 300 MeV is consistent with previous studies on 90Zr [28]
and 12C [33].

Another interesting feature of the data is the energy
transfer dependence of the Dij values. It should be noted that
polarization transfer observables are sensitive to the spin-parity
of an excited state [34], as was demonstrated for SD excitations
in 12N [33] and 16F [35]. Thus, these data are useful for
decomposition of the SD transitions into individual spin-parity
components, as discussed later.

V. ANALYSIS

In this section, the experimental data are compared with
the DWIA calculations employing RPA response functions
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FIG. 2. (Color online) Cross sections (left panels) and analyzing
powers (right panels) for the 208Pb(p, n) reaction at Tp = 296 MeV
and θlab = 0◦–4◦. The cross sections and analyzing powers are binned
in steps of 0.1 and 1 MeV, respectively. The solid curves show the
results of DWIA calculations employing RPA response functions.

(DWIA + RPA) to investigate the distributions of the GT and
SD excitations. The numerical calculations were performed
using the CRDW computer code [36].

A. Random phase approximation formalism

We followed the RPA formalism described in Refs. [36,
37]. Here, the spin response functions are calculated using
a continuum RPA with the ring approximation including �

degrees of freedom. The π + ρ + g′ model interaction V στ
eff ,

was employed as an effective interaction and is expressed
as [13]

V στ
eff (q, ω) = V στ

L (q, ω) + V στ
T (q, ω), (4)

where the spin-longitudinal and spin-transverse terms, V στ
L

and V στ
T , are given by

V στ
L (q, ω) = f 2

πNN

m2
π

(
g′

NN + 
2
πNN (q, ω)

q2

ω2 − q2 − m2
π

)
× (σ 1 · q̂)(σ 2 · q̂)(τ 1 · τ 2)

+ fπNNfπN�

m2
π

(
g′

N� + 
πNN (q, ω)
πN�(q, ω)

× q2

ω2 − q2 − m2
π

)
×{[(σ 1 · q̂)(S2 · q̂)(τ 1 · T2) + (1 ↔ 2)] + H.c.}

FIG. 3. (Color online) As described in Fig. 2 for the range of
θlab = 5.5◦–10◦.

+ f 2
πN�

m2
π

(
g′

�� + 
2
πN�(q, ω)

q2

ω2 − q2 − m2
π

)

×{[(S1 · q̂)(S†
2 · q̂)(T1 · T†

2)

+ (S1 · q̂)(S2 · q̂)(T1 · T2)] + H.c.}, (5)

and

V στ
T (q, ω) = f 2

πNN

m2
π

(
g′

NN + Cρ

2
ρNN (q, ω)

q2

ω2 − q2 − m2
ρ

)

× (σ 1 × q̂) · (σ 2 × q̂)(τ 1 · τ 2)

+ fπNNfπN�

m2
π

(
g′

N�+Cρ
ρNN (q, ω)
ρN�(q, ω)

× q2

ω2 − q2 − m2
ρ

)
×{[(σ 1 × q̂) · (S2 × q̂)(τ 1 · T2)

+ (1 ↔ 2)] + H.c.}

+ f 2
πN�

m2
π

(
g′

��+Cρ

2
ρN�(q, ω)

q2

ω2 − q2 − m2
ρ

)

×{[(S1 × q̂) · (S†
2 × q̂)(T1 · T†

2)

+ (S1 × q̂) · (S2 × q̂)(T1 · T2)] + H.c.}. (6)

Here, mπ and mρ are the pion- and rho-meson masses, σ and τ

are the spin and isospin operators of the nucleon N , and S and
T are the spin and isospin transition operators, respectively,
from N to �. The constants fπNN and fπN� are the πNN

and πN� coupling constants, respectively, Cρ is the ratio of
rho-meson coupling to pion coupling, and 
α (α = πNN ,
πN�, ρNN , and ρN�) are the vertex form factors. We have
used the coupling constants and the meson parameters for
the pion and rho-meson exchange interactions from a Bonn
potential that treats � explicitly [38]. The peak position of
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FIG. 4. (Color online) Polarization transfer observables DNN (left
panels) and induced polarization P (right panels) for the 208Pb(p, n)
reaction at Tp = 296 MeV and θlab = 0.0◦–7.0◦. The data are binned
in 1 MeV steps. The solid curves denote the results of DWIA
calculations employing RPA response functions.

the GT giant resonance is sensitive to the g′
NN value [39], and

the present data can be well reproduced for g′
NN = 0.64. This

value is consistent with previous results [39–41] and is thus
used in the following calculations. The g′

N� value has been
estimated to be g′

N� = 0.35 ± 0.16 based on the GT quenching
factor [12]. Here, we fixed g′

�� = 0.5 [42], because the g′
��

dependence of the results was very weak.
For the spin-scalar modes, the zero-range interaction V τ

eff ,
was employed as an effective interaction and is expressed as

V τ
eff = f ′

(
f 2

πNN

m2
π

)
(τ 1 · τ 2), (7)

where f ′ is the Landau-Migdal parameter for the spin-scalar
channel. The f ′ value was estimated to be f ′ = 0.72 to
reproduce the excitation energy Ex = 15.2 MeV [43] of the
0+ isobaric-analog state (IAS) of 208Bi, the present value of
which is consistent with previous results [44,45].

Single-particle wave functions were generated by a Woods-
Saxon (WS) potential with r0 = 1.27 fm, a0 = 0.67 fm, and
Vso = 7.5 MeV [46]. The depths of the WS potentials for
neutrons and protons were adjusted to reproduce the separation
energies of the 3p1/2 and 3s1/2 orbits, respectively.

FIG. 5. (Color online) As described in Fig. 4, but for the
polarization transfer observables DS′S (left panels) and DL′L (right
panels).

To account for many-body effects, a local effective mass
approximation was adopted [30]:

m∗(r) = mN − fWS(r)

fWS(0)
[mN − m∗(0)], (8)

where mN is the nucleon mass and fWS(r) is a WS radial form.
Here, we used a standard value of m∗(0) = 0.7mN [47,48].

The spreading width of the particle states is taken into
account by introducing an imaginary part to the WS potential.
The phenomenological energy-dependent relation is used for
the spreading width [49] given by

γ (ε)

2
= α

[
ε2

ε2 + ε2
0

] [
ε2

1

ε2 + ε2
1

]
, (9)

where ε is measured from the single-particle energy of the
outermost occupied state. The α and ε1 values were taken
from Ref. [49] as 10.75 and 110 MeV, respectively, and ε0

is determined so as to reproduce the spectral shape of the
GT giant resonance. Figure 7 compares the experimental
cross section at θlab = 0◦ with the DWIA + RPA calculations
employing three different ε0 values. The details for the DWIA
calculations are described in the next subsection. ε0 = 26 MeV
is adopted in the following calculations.

The depth parameter W0, of the imaginary WS potential is
set to W0 = γ (ε)/2. The spreading width of the hole states
γh, is also taken into account by adding an imaginary energy
iγh/2 to the hole energy [36,50] and setting γh = γ (ε).
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FIG. 6. (Color online) As described in Fig. 4, but for the
polarization transfer observables DL′S (left panels) and DS′L (right
panels) at θlab = 2.0◦–7.0◦.

B. Formalism of distorted-wave impulse approximation

We followed the DWIA formalism described in Ref. [36].
The NN t matrices parametrized by Franey and Love [51] were
used, and interpolation was performed to deduce the t-matrix
components at Tp = 296 MeV. The distorted wave for the
protons was generated using a global optical model potential
(OMP) in the proton energy range of Tp = 20–1040 MeV [52],
while that for the neutrons was generated using a global OMP
in the neutron energy range of Tn = 20–1000 MeV [53].

FIG. 7. (Color online) Cross sections for the 208Pb(p, n) reaction
at Tp = 296 MeV and θlab = 0◦. The dashed, solid, and dotted curves
denote the DWIA + RPA results obtained with ε0 = 18, 26, and
30 MeV, respectively. See text for details.

FIG. 8. (Color online) Cross sections for the 208Pb(p, n) reac-
tion at Tp = 296 MeV for θlab = 0◦ (a) and 4◦ (b). The shaded,
cross-hatched, hatched, and unfilled regions represent the results
of DWIA + RPA calculations for the �J π = 1+, 0−, 1−, and 2−

components, respectively. The dashed curves show the total cross
sections, including contributions up to �J π = 9+.

C. Comparison with DWIA + RPA calculations

The solid curves in Figs. 2 and 3 show the results of the
theoretical calculations. The calculations for the cross sections
shown in these figures and all following figures have been
normalized by a factor of 0.9 for all �Jπ contributions. This
factor was chosen to reproduce the GT giant resonance at
θlab = 0◦. The excess of the calculations can be redistributed
[6] by mixing with 2p-2h and other excitations, which is
interpreted as having significant experimental cross sections in
the continuum at ω � 35 MeV. The GT resonance is reasonably
reproduced in the θlab � 2◦ spectra, whereas the SD resonance
could not be well reproduced at θlab = 4◦. Figures 8(a) and
8(b) show the contributions from the GT and SD excitations
at θlab = 0◦ and 4◦, respectively. The shaded, cross-hatched,
hatched, and unfilled regions correspond to the �Jπ = 1+, 0−,
1−, and 2− components, respectively. The total cross sections,
including components up to �Jπ = 9+, are shown by the
dashed curves. The peak positions of the SD resonances are
expected to be multipole dependent, and thus the calculated
total spectrum at θlab = 4◦ has a broad bump. The difference
between the experimental and theoretical results suggests that
the multipole dependence of the SD distributions differs from
the present prediction, which is investigated in Sec. VI using
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FIG. 9. (Color online) Polarization transfer observables (a) DS′S ,
(b) DNN , and (c) DL′L for the 208Pb(p, n) reaction at Tp = 296 MeV
and θlab = 4◦. The dashed, dotted, and dot-dashed curves represent
the results of DWIA + RPA calculations for the �J π = 0−, 1−, and
2− components, respectively. The solid curves show the total Dij ,
including contributions up to �J π = 9+.

MD analysis. We also note that the calculations predict a
significant �Jπ = 1+ contribution at ω � 35 MeV from
the (2h̄ω) IVSM transition, which has a forward-peaking
angular distribution similar to that of the GT transition. Other
excitations would also have contributions in this continuum
region, so that the MD technique will be applied to extract the
�Jπ = 1+ component.

The solid curves in Figs. 4–6 show the results of calculations
for the polarization transfer observables Dij and induced
polarizations P . The calculations reproduce the DNN data
fairly well at forward angles of θlab = 0◦ and 2◦, but do not
agree well with the DS ′S and DL′L data. For DL′S and DS ′L,
the calculations reasonably reproduce the data at all angles.
Polarization observables are sensitive to the spin-parity of an
excited state [34]; therefore, the disagreement between the ex-
perimental and theoretical results suggests that the spin-parity
composition may be slightly different from that predicted in
the present RPA. Figure 9 shows typical polarization transfer
observables for the �Jπ = 0−, 1−, and 2− SD excitations at
θlab = 4◦, at which angle the SD resonances are predominantly
excited. The polarization transfer observables take distinct
values depending on �Jπ . To investigate the reason for this
discrepancy, the cross section was separated into polarized
cross sections using the polarization observables.

D. Polarized cross section

The double differential cross section I (d2σlab/d�dω in
Figs. 2 and 3) can be separated into nonspin ID0, spin-
longitudinal IDq , and two spin-transverse, IDn and IDp,
polarized cross sections as follows:

I = ID0 + IDq + IDn + IDp, (10)

where Di are the polarization observables introduced by
Bleszynski et al. [54]. The center-of-mass (c.m.) coordinate
system, (q, n, p), in this case is defined as q̂ = q/|q|, n̂ =
(k × k′)/(|k × k′|), and p̂ = q̂ × n̂ with q = k′ − k, where k
and k′ are the momenta of the incident and outgoing nucleons,
respectively, in the c.m. frame. The Di values are related to
Dij in the laboratory frame as [55]

D0 = 1
4 [1 + DNN + (DS ′S + DL′L) cos α1

+ (DL′S − DS ′L) sin α1], (11a)

Dn = 1
4 [1 + DNN − (DS ′S + DL′L) cos α1

− (DL′S − DS ′L) sin α1], (11b)

Dq = 1
4 [1 − DNN + (DS ′S − DL′L) cos α2

− (DL′S + DS ′L) sin α2], (11c)

Dp = 1
4 [1 − DNN − (DS ′S − DL′L) cos α2

+ (DL′S + DS ′L) sin α2], (11d)

where α1 ≡ θlab + � and α2 ≡ 2θp − θlab − �. The angle θp

represents the angle between k̂ and p̂, and � is the the
relativistic spin rotation angle defined in Ref. [55]. Here, we
also use the spin-longitudinal IDL and spin-transverse IDT

polarized cross sections defined as [33]

IDL ≡ IDq, (12a)

IDT ≡ IDn + IDp. (12b)

Figure 10 compares the experimental IDL and IDT po-
larized cross sections with those predicted from the DWIA +
RPA calculations. The shaded, cross-hatched, hatched, and
unfilled regions represent the �Jπ = 1+, 0−, 1−, and 2−
components, respectively. The total IDi spectra, including
components up to �Jπ = 9+, are shown by the dashed
curves. The spin-longitudinal cross section IDL consists
mainly of unnatural-parity transitions �Jπ = 0−, 1+, 2−, etc.,
whereas the spin-transverse cross section IDT consists of
both natural- and unnatural-parity transitions [34,35]. Note
that the unnatural-parity �Jπ = 0− transition is a special
case and contributes only to IDL. The GT giant resonance
at ω � 18 MeV is observed in both the IDL and IDT

spectra at θlab � 2◦, which is consistent with the theoretical
predictions. The calculations predict a bump in the IDL

spectra at ω � 27 MeV, which corresponds to the �Jπ = 0−
SD resonance. However, the experimental data do not show
a clear bump in this region, and thus the excitation energy
is likely to be different than that predicted. The magnitudes
of the SD resonances are reasonably reproduced in both the
IDL and IDT spectra at θlab = 4◦, whereas the energy-transfer
dependence is slightly different. The discrepancies observed
in the IDL and IDT spectra suggest that the SD strength
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FIG. 10. (Color online) Spin-longitudinal IDL (left panels) and
spin-transverse IDT (right panels) polarized cross sections for the
208Pb(p, n) reaction at Tp = 296 MeV and θlab = 0.0◦–7.0◦. The
shaded, cross-hatched, hatched, and unfilled regions represent the
results of DWIA + RPA calculations for the �J π = 1+, 0−, 1−, and
2− components, respectively. The dashed curves show the total IDi ,
including contributions up to �J π = 9+.

distributions of �Jπ = 1− and 2− would be softened (shift
toward lower energy transfer) and hardened (shift toward
higher energy transfer), respectively, in comparison with those
predicted by the present calculations. Therefore, MD analysis
is conducted using the polarized cross sections to separate the
SD resonances into individual �Jπ components.

VI. DISCUSSION

A. Multipole decomposition analysis

The GT [11,12] and SD [16] strengths for 90Zr were
successfully obtained by applying a MD technique [13]
to the experimental data for the 90Zr(p, n) and 90Zr(n, p)
reactions. The same technique has also been applied to the
data for the 48Ca(p, n) and 48Ti(n, p) reactions to deduce
the GT strengths in 48Sc [56]. The SD transitions consist
of contributions from the three spin-parity components of
�Jπ = 0−, 1−, and 2−. However, the SD strengths were
not separated into individual �Jπ contributions in previous
studies on 90Zr. This is mainly because the angular distribution
of the cross section used in the MD analysis is relatively
insensitive to �Jπ contributions with the same �L [13].
However, recent theoretical investigations [19–22] suggest

that the effect of the tensor interaction on the SD strengths
is dependent on �Jπ , and thus detailed experimental data
on the SD strengths are required. It should be noted that the
polarization observables are sensitive to �Jπ [34]; therefore,
those of the SD transitions are also significantly different for
�Jπ = 0−, 1−, and 2−, as shown in Fig. 9. Therefore, MD
analysis in the present case was conducted using not only the
cross-section data, but also the polarization observable data to
separate the SD strengths into individual �Jπ contributions as
follows.

B. Extended multipole decomposition analysis

In standard MD analysis [13], the experimentally obtained
angular distributions I expt(θ, ω), of the cross section are fit
using the least-squares method, based on the following linear
combination of the calculated angular distributions I calc

�Jπ (θ, ω),
for various spin-parity transfers, �Jπ ; that is,

I expt(θ, ω) =
∑
�Jπ

a�Jπ (ω)I calc
�Jπ (θ, ω), (13)

where a�Jπ (ω) are the fitting coefficients. The I calc
�Jπ (θ, ω)

values are obtained from the DWIA calculations. In the
presently proposed extended MD analysis, the experimental
polarized cross sections, ID

expt
i (i = 0, L, T ), are fit using a

linear combination of the calculated IDcalc
i values as

ID
expt
i (θ, ω) =

∑
�Jπ

a�Jπ (ω)IDcalc
i;�Jπ (θ, ω). (14)

For �Jπ = 1−, the spin-scalar (spin-transfer �S = 0) and
spin-vector (�S = 1) components are treated separately.

The analyzing power Acalc
y (θ, ω), is also obtained from

the DWIA results, Acalc
y;�Jπ (θ, ω), by weighting each �Jπ

contribution, a�Jπ (ω)I calc
�Jπ (θ, ω):

Acalc
y (θ, ω) =

∑
�Jπ a�Jπ (ω)I calc

�Jπ (θ, ω)Acalc
y;�Jπ (θ, ω)∑

�Jπ a�Jπ (ω)I calc
�Jπ (θ, ω)

. (15)

The experimental analyzing powers A
expt
y (θ, ω), are also fit

using Acalc
y;�Jπ (θ, ω). However, because the number of data

points is limited, the transitions having �Jπ � 4− are divided
into two groups corresponding to the natural- and unnatural-
parity transitions. Thus, the explicit expression of Eq. (14) is
given with twelve fitting coefficients a�Jπ (ω) as

ID
expt
i (θ, ω) = a0+ (ω)IDcalc

i;0+(θ, ω) + a1+ (ω)IDcalc
i;1+(θ, ω)

+ a0− (ω)IDcalc
i;0−(θ, ω)

+ a1−;�S=0(ω)IDcalc
i;1−;�S=0(θ, ω)

+ a1−;�S=1(ω)IDcalc
i;1−;�S=1(θ, ω)

+ a2− (ω)IDcalc
i;2−(θ, ω)

+ a2+ (ω)IDcalc
i;2+(θ, ω) + a3+ (ω)IDcalc

i;3+(θ, ω)

+ a3− (ω)IDcalc
i;3−(θ, ω) + a4− (ω)IDcalc

i;4−(θ, ω)

+ aJπ �4+ (ω)IDcalc
i;Jπ �4+ (θ, ω)

+ aJπ �5− (ω)IDcalc
i;Jπ �5− (θ, ω), (16)
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where a1−;�S=0(ω)IDcalc
i;1−;�S=0(θ, ω) and

a1−;�S=1(ω)IDcalc
i;1−;�S=1(θ, ω) are the spin-scalar and

spin-vector components for �Jπ = 1−, respectively.
The χ2 value in the fitting procedure is defined as

χ2 =
∑

θj ={�}

(
I expt(θj ) − I calc(θj )

δI (θj )

)2

+
∑

i=0,L,T

∑
θj ={�}

(
ID

expt
i (θj ) − IDcalc

i (θj )

δIDi(θj )

)2

+
∑

θj ={�}

(
A

expt
y (θj ) − Acalc

y (θj )

δAy(θj )

)2

, (17)

with

δI (θj ) = max[δI expt(θj ), α × I expt(θj )], (18a)

δIDi(θj ) = max
[
δID

expt
i (θj ), α × ID

expt
i (θj )

]
, (18b)

δAy(θj ) = max[δAexpt
y (θj ), α], (18c)

where δI expt(θj ), δID
expt
i (θj ), and δA

expt
y (θj ) are the statistical

uncertainties of I expt(θj ), ID
expt
i (θj ), and A

expt
y (θj ), respec-

tively. Here, we take α = 0.03 [57] to avoid trapping in an
unphysical local χ2 minimum. The α dependence of the final
results was also investigated in the range of α � 0.06 with
consideration of the systematic uncertainties in the data. The
angle groups, {�}, {�}, and {�}, are given as

{�} = 1◦, 3◦, 8.5◦, 10◦, (19a)

{�} = 0◦, 2◦, 4◦, 5.5◦, 7◦, (19b)

{�} = 1◦, 2◦, 3◦, 4◦, 5.5◦, 7◦, 8.5◦, 10◦. (19c)

The variables a�Jπ (ω) in Eq. (16) are determined using
the least-squares technique with this χ2 to simultaneously
reproduce the cross-section and polarization observable data.

The DWIA calculations were performed using the same
computer code CRDW [36] as used previously. The parameters
in the DWIA and RPA calculations are the same as those used
in the previous calculations. The calculations were performed
for �Jπ transfers up to �Jπ = 9+. In a previous MD analysis
[13], the I calc

�Jπ (θ, ω) values for a given �Jπ were evaluated
for several 1-particle–1-hole (1p-1h) configurations, and the
1p-1h configuration that provided the best fit to the cross-
section data was selected. However, this method is not realistic
for the 208Pb(p, n) reaction, because the number of possible
1p-1h configurations is considerably larger than those for the
90Zr(p, n) and 90Zr(n, p) reactions. The present DWIA + RPA
calculations provide an approximate description of the data,
as shown in Sec. VC; therefore, the I calc

�Jπ values were used in
these calculations.

Figures 11 and 12 show the cross sections and analyzing
powers obtained by MD analysis, respectively. The cross-
section results are shown with the �Jπ transitions grouped
to the lowest dominant �L value in the present angular
range. The results of MD analysis are in reasonable agreement

FIG. 11. (Color online) Cross-section results obtained by MD
analysis. See text for details.

with the cross-section and analyzing-power data over the
entire energy transfer region for all angles. The MD analysis
clearly shows a fairly large contribution from the �L = 0
component up to ω � 50 MeV. This �L = 0 contribution in
the continuum is due to both the configuration mixing and
IVSM contributions. It should be noted that the present MD
analysis provides a reasonable description for the cross section
at θlab = 4◦, which could not be realized with the DWIA +
RPA calculations, as discussed in Sec. VC. In addition, a fairly
large contribution from the �L = 1 component including the
SD transitions can be identified up to ω � 50 MeV.

Figures 13 and 14 show the polarized cross sections
obtained by MD analysis. For the nonspin polarized cross
sections ID0, at θlab � 4◦, the �Jπ = 0+ IAS transition and
the �Jπ = 1− giant dipole resonance (GDR) are evident at
ω � 18 and 26 MeV, respectively. For the �Jπ = 0− SD tran-
sition, the MD results show significant strength concentrated
at ω � 32 MeV in the IDL data, which is significantly higher
than the DWIA + RPA prediction of ω � 27 MeV. For the
�Jπ = 1− transition, two bumps at ω � 19 and 25 MeV are
clearly observed in the IDT data at θlab = 4◦, even though the
DWIA + RPA calculations predict a higher energy transfer
of ω � 27 MeV. For the �Jπ = 2− transition, the results
show a broad bump at ω � 24 MeV in both the IDL and
IDT data, which is slightly higher than that predicted from
the DWIA + RPA calculations, as shown in Fig. 10. In the
following, the experimental GT and SD strengths are derived
and compared with those obtained by theoretical calculations.

064606-9



T. WAKASA et al. PHYSICAL REVIEW C 85, 064606 (2012)

FIG. 12. (Color online) Analyzing-power results obtained by MD
analysis.

C. Gamow-Teller unit cross section

The �Jπ = 1+ cross section I1+ (q, ω), can be related to
the corresponding GT strength B(GT; ω), as [13,58]

I1+ (q, ω) = σ̂GTF (q, ω)B(GT; ω), (20)

where σ̂GT is the GT unit cross section and F (q, ω) represents
the (q, ω) dependence with a normalization of F (0, 0) = 1.

The σ̂GT values were obtained using the present DWIA
calculations. These values were investigated for several nuclei
from 12C to 208Pb, and the results for typical 1p-1h configura-
tions, such as (π1p1/2, ν1p−1

3/2) for 12C, and (π1i13/2, ν1i−1
13/2)

FIG. 13. (Color online) Nonspin ID0 polarized cross sections
obtained by MD analysis.

FIG. 14. (Color online) Spin-longitudinal IDL (left panels) and
spin-transverse IDT (right panels) polarized cross sections obtained
by MD analysis.

and (π1i11/2, ν1i−1
13/2) for 208Pb, are shown in Fig. 15. It is

assumed here that the mass-number A dependence can be
written as a smooth function of A; that is,

σ̂GT(A) = N exp(−xA1/3), (21)

according to the parametrization set out in Ref. [58]. Here,
N represents the GT unit cross section at A = 0 and x is
an adjustable parameter. The result of fitting with Eq. (21) is
represented by the solid line in Fig. 15, which reproduces the A

dependence reasonably well. The experimental σ̂GT values [59]
(open circles) are also accurately reproduced by the present
A dependence and are generally within 15% uncertainty, as
shown by the band in Fig. 15. Therefore, the uncertainties of
the following GT, IVSM, and SD strengths that were deduced
with the help of the present DWIA calculations are estimated
to be approximately 15%.

D. Gamow-Teller and isovector spin monopole strengths

The �Jπ = 1+ cross section, a1+ (ω)I calc
1+ (θ, ω), in the MD

analysis contains not only the GT contribution, but also other
contributions such as those from the IVSM transition. In the
present analysis, it was assumed that the relative contributions
from GT and IVSM transitions were the same as those of
the DWIA + RPA calculations. The experimental GT and
IVSM strengths, B(GT; ω) and B(IVSM; ω), can therefore
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FIG. 15. (Color online) Gamow-Teller unit cross sections σ̂GT as
a function of A1/3. The open circles show the experimental data taken
from Ref. [59] and the filled squares represent the DWIA predictions
for typical nuclei from 12C to 208Pb. The solid line represents the result
of fitting with Eq. (21), and the blue band represents the estimated
uncertainty of ±15%.

be deduced as

B(GT; ω) = a1+ (ω)Bcalc
1+ (GT; ω), (22a)

B(IVSM; ω) = a1+ (ω)Bcalc
1+ (IVSM; ω), (22b)

where Bcalc(GT; ω) and Bcalc(IVSM; ω) are the theoretical GT
and IVSM strengths, respectively, which are calculated using
the same continuum RPA as that used to obtain I calc

1+ (θ, ω). The
integrated GT and IVSM strengths, SGT(ω) and SIVSM(ω), are
defined as

SGT(ω) =
∫ ω

B(GT; ω)dω, (23a)

SIVSM(ω) =
∫ ω

B(IVSM; ω)dω. (23b)

For the IVSM strength, we restrict examination to the part
of the 2h̄ω compression mode, as is often done [60]. The
prescription by Hamamoto and Sagawa [61] is adopted to
extract Bcalc(IVSM; ω) for this mode, thereby employing the
following operator:

ÔIVSM =
A∑

k=1

tk;−σ k

[
r2
k − 〈r2〉excess

]
, (24)

where 〈r2〉excess is the average value of 〈r2〉 for the excess
neutrons and 〈r2〉excess = 47 fm2 is used.

Figures 16(a) and 16(b) show the B(GT; ω) and SGT(ω) dis-
tributions, respectively. The bands represent the uncertainties
arising from the selection of α in Eq. (18). The solid and dashed
curves are the results of calculations by Drożdż et al. [18]
and Dang et al. [62], respectively, both of which include
configuration mixing effects. The results of calculations in
these figures have been normalized by a quenching factor of
Q = 0.86 [13]. The GT giant resonance peak calculated by

FIG. 16. (Color online) (a) The GT strength B(GT; ω) and (b)
its integrated SGT(ω) distributions obtained by MD analysis of the
208Pb(p, n) reaction. The bands represent the uncertainties arising
from the selection of α in Eq. (18). The solid and dashed curves are
the theoretical predictions reported by Drożdż et al. [18] and Dang
et al. [62], respectively, with a quenching factor Q = 0.86 [13].

Drożdż et al. is in agreement with the present result, whereas
that identified by Dang et al. is slightly lower. Both theoretical
distributions are significantly extended beyond the GT giant
resonance region due to configuration mixing effects, and the
integrated strengths are slightly larger than the present result
at ω � 50 MeV. It should be noted that there are some sources
of uncertainty, such as interference between the GT and IVSM
transitions [61]. Thus, further simultaneous investigations
into interference and configuration mixing effects should
provide more quantitative and precise information on the
GT strength.

Figures 17(a) and 17(b) show the B(IVSM; ω) and SIVSM(ω)
distributions, respectively. The solid curves are the present
RPA predictions. The extracted peak position is approximately
ω � 37 MeV (Ex � 35 MeV for the excitation energy of
208Bi), which is consistent with the previous values of Ex = 32
and 37 ± 1 MeV obtained for (p, n) [63] and (3He, t) [64]
reactions, respectively. The experimental data are distributed
over a wide energy region, which is also consistent with the
previous results [63,64]. The integrated strength up to ω =
60 MeV is almost consistent with the RPA calculation. The
present SIVSM(60 MeV) value of (6.4 ± 0.1+0.2

−1.1) × 104 fm4

corresponds to (83 ± 2+3
−15)% of SIVSM = 4π × 6146 = 7.7 ×

104 fm4 [65] in the normal-mode (NM) calculation [66],
which fully exhausts the non-energy-weighted sum rule. It
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FIG. 17. (Color online) (a) The IVSM strength B(IVSM; ω) and
(b) its integrated SIVSM(ω) distributions obtained by MD analysis of
the 208Pb(p, n) reaction. The bands represent the uncertainties arising
from the selection of α in Eq. (18). The solid curves are the predictions
obtained by RPA. See text for details.

should be noted that only approximately (60 ± 5 ± 14)% of
the NM strength was found in the study of the (3He, t)
reaction at T3He = 410 MeV [64]. This discrepancy would
be due to the fact that the contributions from the GT and
IVSM transitions and their interference effects are significantly
different for the (p, n) and (3He, t) reactions [67]. Therefore,
further theoretical investigations into interference effects are
also required to resolve the discrepancy for the IVSM strength.

E. Spin dipole strength

The SD strength B(SD,�Jπ ; ω), is obtained by assuming a
proportionality relation [17,68] similar to that used for the GT
strength. To evaluate B(SD,�Jπ ; ω), the same prescription as
that used in Eq. (22) for B(GT; ω) and B(IVSM; ω) is adopted,
given as

B(SD,�Jπ ; ω) = a�Jπ (ω)Bcalc(SD,�Jπ ; ω), (25)

where Bcalc(SD,�Jπ ; ω) is the theoretical SD strength corre-
sponding to I calc

�Jπ (θ, ω) in the MD analysis.
Figures 18(b), 18(c), and 18(d) represent the SD strength

distributions for �Jπ = 0−, 1−, and 2−, respectively, while
Fig. 18 (a) shows the total SD strength obtained as the sum of
these three strengths. The error bars indicate the statistical
uncertainties, while the bands represent the uncertainties
arising from the selection of α in Eq. (18). The total SD
strength spectrum shows a dominant resonance centered at

FIG. 18. (Color online) The SD strength distributions obtained
by MD analysis of the 208Pb(p, n) reaction. The separated SD
strengths are presented in panels (b)–(d) for �J π = 0−, 1−, and
2−, respectively, and the total SD strength is shown in panel (a). The
bands represent the uncertainties arising from the selection of α in
Eq. (18). The solid curves are the predictions obtained by RPA.

ω � 24 MeV with the strength extending up to ω � 50 MeV.
The �Jπ = 2− spectrum also shows a dominant resonance
centered at ω � 24 MeV. In contrast, the �Jπ = 1− strength
has a double-peak structure with peak energies of ω � 19
and 25 MeV. Similarly, the �Jπ = 0− spectrum also has a
double-peak structure with peak energies at ω � 19 and 32
MeV. It should be noted that there are large uncertainties at ω �
19 MeV for all SD strengths. The asymmetric uncertainties
mean that some of the �Jπ = 0− and 1− strengths at ω � 19
MeV could be attributed to the �Jπ = 2− strength (note the
scale differences of the figures).

The solid curves in Fig. 18 show the RPA predictions,
which give a qualitative description of the total SD strength;
however, some discrepancies are found for the separated SD
strengths. The centroids of the resonances are significantly
lower and higher than the experimental results for �Jπ = 0−
and 1−, respectively. The centroid of the �Jπ = 1− resonance
is expected to be higher than that of the �Jπ = 2− resonance,
because the unperturbed 1p-1h excitation energy for �Jπ =
1− is generally larger than that for �Jπ = 2−. However, the
present measured centroids for �Jπ = 1− and 2− are very
similar. In the following, we compare the present results with
the self-consistent HF + RPA calculations including Skyrme
interactions [22] to quantitatively investigate the effects of the
tensor interaction on the SD strengths.
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F. Comparison with calculations including Skyrme interactions

The parametrization of nuclear effective interactions, such
as zero-range Skyrme interactions [69], has been quite success-
ful to describe many nuclear properties [70,71]. While most of
the Skyrme parameter sets are purely central, extensive efforts
have recently been focused on including the noncentral tensor
term [72–79]. Note that the tensor interaction is particularly
crucial to understand the evolution of single-particle energies
of exotic nuclei [80,81]. Recently, self-consistent HF + RPA
schemes including the tensor interaction have been developed
[14,82,83]. In these schemes, it is found that the tensor
interaction has a characteristic �Jπ -dependent effect on the
SD strengths [21,22]; therefore, the SD distributions are con-
sidered to play an essential role in constraining this interaction.

The triplet-even (TE) and triplet-odd (TO) zero-range
tensor terms of the Skyrme interaction are expressed as [69,84]

V T = T

2

{[
(σ1 · k′)(σ2 · k′) − 1

3
(σ1 · σ2)k′2

]
δ(r)

+ δ(r)

[
(σ1 · k)(σ2 · k) − 1

3
(σ1 · σ2)k2

]}

+ U

2

{
(σ1 · k′)δ(r)(σ2 · k) + (σ2 · k′)δ(r)(σ1 · k)

− 2

3
[(σ1 · σ2)k′ · δ(r)k]

}
, (26)

FIG. 19. (Color online) As described for Fig. 18, but including
the HF + RPA predictions [22] for comparison with the data. The
solid, dashed, dotted, and dot-dashed curves represent the results
with the SGII, SGII + Te1, SGII + Te2, and SGII + Te3 interactions,
respectively. The discrete RPA results have been smoothed by
Lorentzian averaging with a width of 1 MeV. See text for details.

where T and U denote the TE and TO tensor interactions,
respectively.

Figure 19 compares the experimental results with the
HF + RPA predictions [22]. The calculations were performed
by adding the tensor terms on top of the existing interaction
SGII. Three sets of tensor terms with (T ,U ) = (500,−350),
(600, 0), and (650, 200) have been investigated, which are
labeled as SGII + Te1, SGII + Te2, and SGII + Te3, respec-
tively. These tensor interactions have been determined to
reproduce the centroids of the GT and total SD strengths for
90Zr and 208Pb within 2.5 MeV. All three sets of tensor terms
provide reasonable descriptions for �Jπ = 1− and 2−. The
�Jπ = 0− SD distribution is sensitive to the tensor terms
and the SGII + Te3 set is the most preferable of the three
tensor interactions. Therefore, the present �Jπ -separated SD
strengths provide valuable information to determine the tensor
components of the Skyrme interaction.

Figure 20 compares the integrated SD strengths with
the HF + RPA predictions. Here, the integrated strength
SSD,�Jπ (ω), is defined as

SSD,�Jπ (ω) =
∫ ω

B(SD,�Jπ ; ω)dω. (27)

FIG. 20. (Color online) The integrated SD strengths defined in
Eq. (27). The separated SD strengths are presented in panels (b)–(d)
for �J π = 0−, 1−, and 2−, respectively, and the total SD strength
is shown in panel (a). The bands represent the uncertainties arising
from the selection of α in Eq. (18). The solid, dashed, dotted, and dot-
dashed curves represent the HF + RPA predictions [22] with the SGII,
SGII + Te1, SGII + Te2, and SGII + Te3 interactions, respectively.
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The solid, dashed, dotted, and dot-dashed curves represent the
HF + RPA results with the SGII, SGII + Te1, SGII + Te2,
and SGII + Te3 interactions, respectively. The SGII + Te3
results give qualitative descriptions for both the separated
and total SD strengths. However, the theoretical predictions
overestimate the total strengths by approximately 30% for
�Jπ = 0− and 2−. The present SD strengths have fairly large
uncertainties arising from the selection of α in Eq. (18), which
is indicated by the bands in Fig. 20. Furthermore, other sources
of uncertainty exist for which no assessment is currently
available, such as possible quenching of the SD strengths or
interference between SD and other excitations with the same
�Jπ . Therefore, further detailed theoretical investigations
are required to assess the effects of quenching on the SD
strengths.

VII. SUMMARY AND CONCLUSION

Measurements of the cross sections and analyzing powers
at θlab = 0◦–10◦ and complete sets of polarization transfer
observables and induced polarizations at θlab = 0◦–7◦ were
performed for the 208Pb(p, n) reaction at Tp = 296 MeV.
The experimental data were compared with those obtained
using DWIA calculations employing RPA response functions.
The GT giant resonance at θlab � 2◦ was reasonably repro-
duced by the DWIA + RPA calculations with appropriate
normalization. In contrast, the SD resonance and other
excitations at θlab � 4.0◦ were not reproduced particularly
well. Furthermore, the calculations underestimate the cross
sections at ω � 35 MeV, which is due to neglecting the

effect of configuration mixing, such as the coupling to 2p-2h

excitations beyond the RPA.
MD analysis was performed to deduce the GT and SD

strengths in the continuum. In the analysis, the polarization
observables were included, for the first time, to separate the
SD strengths into individual multipole contributions. There is
significant �Jπ = 1+ strength in the continuum beyond the
GT giant resonance, which is due to both the configuration
mixing and IVSM contributions. To determine each GT and
IVSM strength, detailed information on the interference effects
that occur between the GT and IVSM transitions is required.

The SD strengths were successfully separated into in-
dividual �Jπ components. A �Jπ dependence is clearly
evident in the SD strength distributions and is reasonably
reproduced by HF + RPA calculations including the Skyrme
interaction with tensor components. The present findings,
and further applications of polarization transfer measurements
to other nuclei, will provide valuable insight into nuclear
structure, such as tensor interaction effects in nuclear spin
excitations.
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