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Nuclear level density and γ -ray strength function of 43Sc
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The nuclear level density and the γ -ray strength function have been determined for 43Sc in the energy range
up to 2 MeV below the neutron separation energy using the Oslo method with the 46Ti(p, α)43Sc reaction.
A comparison to 45Sc shows that the level density of 43Sc is smaller by an approximately constant factor of
two. This behavior is well reproduced in a microscopic, combinatorial model calculation. The γ -ray strength
function increases at low γ -ray energies, a feature which has been observed in several nuclei but which still
awaits theoretical explanation.
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I. INTRODUCTION

Network calculations aiming to reproduce isotopic abun-
dances observed in stars or predictions of isotope productions
in nuclear power plants require good knowledge of nuclear
level densities and γ -ray transition rates for many nuclei
and over a large range of excitation energies to calculate
the relevant cross sections. Up to a certain excitation energy,
it is feasible to perform spectroscopic measurements on all
individual nuclear excited states and to determine at least
some of their properties. But at higher excitation energies, the
spacing between nuclear levels may become very small, which
does not allow us to resolve all individual levels. A continuing
effort has long been devoted both in experiment and theory to
the study of level densities and γ -ray strength functions also
in this region of the quasicontinuum. Despite these efforts,
the amount of available experimental data is relatively small.
Therefore, network calculations often have to rely on models
to compensate for the lack of measured values, and models are
difficult to validate without experimental data to compare with.

The nuclear physics group at the University of Oslo
has performed many experiments using the Oslo method to
determine nuclear level densities and γ -ray strength functions
of many isotopes throughout the nuclear chart [1–6]. In the
present work, the Oslo method is used on a nucleus produced
in a (p, α) reaction to determine the level density and the
γ -ray strength function of 43Sc. Previously published data
for 45Sc [2], produced in the (3He,3He′) reaction, allow the
comparison of two relatively light isotopes with �A = 2.

In the next section, the experimental setup and the analysis
procedure are described, followed by a discussion of the
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experimental results in Secs. III and IV. In Sec. V, we conclude
with a summary.

II. EXPERIMENT AND DATA ANALYSIS

The experiment was performed at the cyclotron laboratory
of the University of Oslo. A proton beam with an energy of
32 MeV impinged on a Ti target of 3 mg/cm2 thickness with
an enrichment of 86% 46Ti. The main impurities were 48Ti
(10.6%), 47Ti (1.6%), 50Ti (1.0%), and 49Ti (0.8%). Eight
silicon �E − E particle telescopes with a total geometric
efficiency of about 1.3% were placed in the forward direction
5 cm behind the target at an angle of 45◦ with respect
to the beam axis. The target was surrounded by the γ -ray
detector array CACTUS, consisting of 28 collimated NaI(Tl)
scintillator crystals covering about 15% of 4π .

Using the specific energy losses in the thin (140 μm) �E

and the thick (1500 μm) E particle detectors, α ejectiles were
identified to select the 46Ti(p, α)43Sc reaction channel. From
the known Q values, the reaction kinematics and the energy
losses in the materials passed by the α particles, the initial
excitation energies Ei of the 43Sc nuclei could be reconstructed
with an accuracy of about 700 keV full width at half maximum
(FWHM).

The difference in total energy deposit in the Si detectors
between 43Sc (produced from the main target component,
46Ti) and 45Sc (produced from the main impurity, 48Ti) in
the respective (p, α) reactions is only about 0.5 MeV for the
ground states. With the present experimental setup, it is not
possible to separate the reactions on the two target components
and a certain level of background from 45Sc cannot be removed
from the spectra for 43Sc.

From the amount of impurities in the target, one would
expect that the contribution from these impurities should not
exceed ≈14%. This assumption is supported by (p, t) data
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FIG. 1. (Color online) Alpha spectra from the 46Ti(p, α)43Sc
reaction: Oslo data from one particle telescope (black solid line),
data from Abou-Zeid et al. scaled by a factor of 10 (blue dashed line,
from Ref. [8]), and the Abou-Zeid data folded with a Gaussian of
700 keV FWHM and scaled by a factor of 40 (red line).

from the same experiment (see Fig. 2 in Ref. [7]). Here, it
is clear that the main impurity is stemming from (p, t)46Ti,
which is of the order of 10%. In addition, from calculations of
differential cross sections at 45◦ for the (p, α)43,45Sc reactions
and from the cross-section data of Ref. [8], we find no
significant difference in either the absolute value nor the shape
of the estimated α spectra. Therefore, it seems reasonable to
believe that the background from 45Sc in the present data is of
the same order as the amount of 48Ti in the target.

A comparison with the 43Sc α-particle spectrum from
Ref. [8], folded with the present detector resolution, shows
very good agreement for α energies above ≈22 MeV (see
Fig. 1). This further indicates that the contribution from 45Sc
is rather small.

We observe deviations between our data and the Abou-Zeid
data for Eα < 21 MeV. In particular, this is so for the peaks
centered at ≈21.6 MeV and ≈19.5 MeV in our data, and
the peak at ≈20.7 MeV in the Abou-Zeid data. The former
ones are coming by the 16O(p, α)13N reaction, as the Ti target
had a layer of TiO2 on the surface. However, there is no
obvious reason for the difference of the latter peak. Possibly,
the different beam energy and scattering angle (our data cover
angles between ≈43◦–47◦) could account for the observed
deviation.

As a consequence of the 45Sc contribution, some smoothing
effects on the extracted quantities are expected.

The excited 43Sc nuclei will emit cascades of γ rays to decay
to their ground states. The spectra of these γ -ray energies Eγ

were measured in coincidence with the α particles, and a matrix
Ei vs Eγ was constructed after correcting for the NaI response
function, as described in Ref. [9]. This matrix of unfolded γ -
ray spectra was normalized such that, for each initial excitation
energy Ei , the integral over all γ -ray energies measured in
coincidence with this excitation energy equaled the average

γ -ray multiplicity observed in this excitation energy bin. The
average multiplicity was determined as 〈M〉 = Ei/〈Eγ 〉 with
the average γ -ray energy 〈Eγ 〉 for the excitation energy bin Ei

[10]. The first-generation method [11] was then applied on this
matrix to extract a matrix P containing the spectrum of primary
γ -ray energies for each initial excitation energy bin Ei . A
fundamental assumption for the first-generation method is that
the γ -ray spectrum emitted from each excitation energy bin is
independent of how the states in this bin were populated—by
γ decay from higher excited states or by population in the
(p, α) reaction.

From the matrix P , both the shape of the level density
ρ(Ef ) and the shape of the γ -ray strength function f (Eγ ) can
be extracted as described in Ref. [9]. As explained there, this
extraction can only be performed if the γ -ray strength function
only depends on the γ -ray energy, but not on the excitation
energy (the generalized Brink-Axel hypothesis [12,13]), and
the transition probability from an initial state i to a final state
f (with excitation energies Ei and Ef , respectively) can be
factorized into the level density at the final state, ρ(Ef ), and
the γ transmission coefficient, T (Ei − Ef ). Furthermore, it is
assumed in the following that dipole radiation is predominant
and that one can write T (Eγ ) = 2πf (Eγ )E3

γ . The results
obtained at this point are only the functional forms of ρ and f

in the sense that the matrix P can be equally fit to other pairs
of ρ ′ and f ′ obtained by the transformations:

ρ ′(Ef ) = A exp(αEf )ρ(Ef ), (1)

f ′(Eγ ) = B exp(αEγ )f (Eγ ), (2)

for any positive values of A, B, and any value of α [9].
To determine appropriate values for these coefficients,

the level density and the γ -ray strength function must be
normalized using data from other sources. The parameters
A and α were determined using two level-density values: one
is the counted level density from discrete-line spectroscopy
at low excitation energy, where it has been assumed that
all levels have been observed (green region in Fig. 2). The
second is the level density derived from resonance spacings at
average energy En, slightly above a particle separation energy.
This value is extrapolated to lower excitation energies using
a scaled back-shifted Fermi gas (BSFG) model [14] to bridge
the gap between the maximum energy for which ρ(Ef ) can
be determined in the experiment and En (red line and region
in Fig. 2). While no neutron resonance data are available for
43Sc, some information on proton resonances is tabulated in
Ref. [15]. To perform the normalization, it has been assumed
that the tentative spin assignments in Ref. [15] are correct and
that the distribution of unknown spin-parity values equals the
distribution of known spin-parity values. The normalization
point for the level density has then been obtained by counting
the levels in the excitation energy region around En = 7 MeV.
The BSFG parameters for the extrapolation are the same
as used for 45Sc in [2]: the level-density parameter was
a = 4.94 MeV−1, the back-shift parameter E1 = −2.55 MeV.
In addition, the curve was scaled with a factor η = 0.585
to match the level-density normalization point for 43Sc as
obtained from the proton resonance data. This particular BSFG
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FIG. 2. (Color online) Experimental level density for 43Sc. The
experimental curve (blue steps) is normalized to discrete levels (green
steps, fit in green region) and to proton resonance spacings (cyan
diamond) extrapolated using a BSFG model (red line, fit in the red
region).

parametrization was chosen to allow a comparison with the
data for 45Sc from Ref. [2].

A third normalization point is necessary to fix the parameter
B for the γ -ray strength function scale. If available, data on
the average total radiative width could be used for this purpose
[16,17]. Such data are, however, not available for 43Sc. There-
fore, estimated values of the γ -ray strength function for 46Sc
have been used in exactly the same way as for 45Sc in Ref. [2]:
the normalization value is the sum of the E1 and M1 strength
function values for 46Sc from Ref. [18]. The use of the 46Sc
value is justified if it is assumed that the γ -ray strength func-
tions for 43Sc and 46Sc (and 45Sc) are not very different in scale.

III. NUCLEAR LEVEL DENSITY

Figure 2 shows the level-density curve obtained for 43Sc af-
ter the normalization as described in the previous section. The
level-density normalization point at En = 7 MeV is ρ(En) =
375 MeV−1 with an estimated uncertainty of �ρ(En) =
100 MeV−1. The uncertainties for the experimental data points
in this figure are estimated mainly based on the number of
counts in the Ei vs Eγ matrices (see Ref. [9]). They do, in
particular, not include the uncertainty from the normalization.
In Fig. 3, the experimental level density is compared to
the previously published level-density curve for 45Sc [2]. It
appears that, on a logarithmic scale, the two level-density
curves are more or less parallel to each other: the level
density for 45Sc is larger by a factor of about 2 for a large
excitation-energy range. A similar behavior has been found
in heavier nuclei: near closed shells, the level density of
nuclei of the same element with masses A and (A + 2) differs
significantly [1,5,19]. For midshell nuclei, on the other hand,
the level density of �A = 2 neighbors of the same element is
very similar or almost identical in scale [20,21].
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FIG. 3. (Color online) Level-density comparison. The exper-
imental level density for 43Sc (blue steps) is compared to the
experimental level density of 45Sc (red steps) [2] and to combinatorial
model calculations for these two nuclei (blue and red lines for 43Sc
and 45Sc, respectively), see text. In addition, BSFG calculations are
included for 43Sc and 45Sc (blue and red dashed lines, respectively).

It is not obvious from where this increase by a factor 2
between A = 43 and A = 45 originates. In case of spherical
nuclei with pronounced N = 20 and N = 28 shell gaps, only
a few active particles in the f7/2 orbitals would be responsible
for the number of levels; namely, 1 π and 2 ν for 43Sc, and
1 π and 4 ν for 45Sc. In this picture, one could expect many
more configurations at one and the same excitation energy
for 45Sc compared to 43Sc. However, both isotopes have an
Iπ = 3/2+ state just above the 7/2− ground state, indicating
that the d3/2 hole orbital is close to the f7/2, which can
be explained by a quadrupole deformation of ε2 ≈ 0.23 as
shown in the Nilsson single particle scheme of Ref. [2]. These
calculations show a rather uniform distribution of 
π Nilsson
orbitals, and one could expect very similar level densities
for 45Sc and 43Sc. On the other hand, it is well established
that 45Sc exhibits coexistence of prolate and weakly oblate
(nearly spherical) rotational bands [22]. Since the level density
includes all types of configurations with various spins and
parities, one has to expect contributions from both shapes,
where the near-spherical shape might drive toward a large
level-density ratio and the deformed shape toward a small
level-density ratio between 43Sc and 45Sc. The situation is
complex and it is difficult to present simple arguments to
explain the experimentally observed level-density ratio of ≈2.

Figure 3 includes calculations of level densities for 43Sc
and 45Sc using the phenomenological BSFG model. For these
curves, the global parametrization from [23] was used (which
is different from the parameters used for the normalization in
Sec. II and Fig. 2). This parametrization includes shell effects
via nuclear masses, which enter the calculation of the level-
density parameter a. The resulting ratio of level densities is
1.5 at Ex = 3 MeV, slightly smaller than the ratio of 2 seen
in experiment. Generally, the two BSFG calculations tend to
underestimate the level density below Ex = 6 MeV.
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TABLE I. Microscopical model normalization parameters. The
values for the level-density normalization energy En and density
ρ(En) for 45Sc are from Ref. [2], and the values for ρHFM were
interpolated from Ref. [25].

Nucleus En ρ(En) ρHFM(En) c

(MeV) (MeV−1) (MeV−1)

43Sc 7.0 375 1022 −0.379
45Sc 9.904 3701 11470 −0.359

Figure 3 also includes theoretical level-density curves de-
rived from calculations using the combinatorial plus Hartree-
Fock-Bogoliubov model (HFM) described in Ref. [24]. These
theoretical level densities were retrieved from Ref. [25].
As explained in Ref. [24], a meaningful comparison of the
theoretical predictions ρHFM with the experimental data ρexp

requires a normalization of ρHFM to the level-density value
used to normalize the experimental level densities at a given
energy En. Following the normalization recipe of Ref. [23],
we thus determine for both of 43Sc and 45Sc a normalization
parameter c such that

ρHFM(En) exp(c
√

En) = ρexp(En), (3)

and then plot in Fig. 3 the normalized values; that is,

ρHFM(Ex) exp(c
√

Ex), (4)

as a function of Ex .
In Fig. 3, we chose zero pairing shift and obtained values

for c from Eq. (3) as listed in Table I. The normalized HFM
curves nearly reproduce the parallel trend of the level-density
curves and the ratio between them with a significant increase
of the 45Sc level densities with respect to that of 43Sc, but
they underestimate the level densities for both nuclei. The
main qualitative differences between the HFM calculation and
experimental data are at excitation energies below 1.5 MeV,
where the calculation neither reproduces the level densities as
obtained from discrete level counting nor their ratio, and in the
excitation energy range between around 1.5 and 4 MeV where
the model predicts a local increase in the level density for both
nuclei which is not seen in experiment.

At excitation energies below 2 MeV, the HFM curves show
more structure than the experimental curves. One possible
explanation is the experimental energy resolution. Another
possibility to explain this mismatch is the too-approximate
treatment of the coupling between particle-hole and vibrational
excitations implemented in the combinatorial HFM model.
To check this hypothesis, we tested a simplistic model to
mimic a more realistic particle-vibration coupling resulting
in a spreading of the coupled states by an arbitrarily chosen
energy of the order of a few hundred keV. The HFM curves
obtained using such a simplistic treatment show, as expected,
less structure and better agreement with the shape of the
experimental data. The tested modifications are, however,
completely arbitrary and have to be investigated and refined
in future work before including them in the general HFM
calculations.
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FIG. 4. (Color online) γ -ray strength function for 43Sc. The
experimental curve (blue steps) is shown together with the γ -ray
strength function for 45Sc (red steps). The normalization data point
from 46Sc is also shown (cyan diamond).

IV. GAMMA-RAY STRENGTH FUNCTION

Figure 4 shows the experimental curves of the γ -ray
strength function for 43Sc, together with the experimental data
for 45Sc [2]. As for the level density, the uncertainties for the
experimental data points are estimated mainly based on the
number of counts in the Ei vs Eγ matrices. The similarity
of the shapes of the measured γ -ray strength functions of the
�A = 2 neighbors is astonishing. A common feature of the
curves is that they both show a minimum at around 3.5 MeV
and an increase of the γ -ray strength function for lower γ -ray
energies. Similar behavior has been observed in other nuclei
and using different experimental approaches [17,26–28].

A possible explanation for the case of light nuclei
is the typically low level density at low excitation en-
ergy, in particular the scarcity of higher-spin states, and
the dominance of E1 radiation. For a higher-spin state—
which can be populated in the particle-induced reaction—the
deexcitation then needs multiple, smaller-energy steps to
reach one of the available low-spin states at low excitation
energy [29].

Phenomenological models describing such γ -ray strength
functions shows that the increased γ -ray strength for low Eγ

may have important effects on radiative neutron capture cross
sections and thus on r-process nucleosynthesis calculations
[30].

V. SUMMARY

The nuclear level density and the γ -ray strength function
of 43Sc have been determined experimentally using the Oslo
method. There is an almost constant factor between the
level densities of 43Sc and 45Sc, a behavior similar to what
has been observed in heavier nuclei in the vicinity of shell
closures. The parallel evolution of the level densities of the
two �A = 2 isotope neighbors can be nearly reproduced
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within a combinatorial model for a large excitation energy
range. The γ -ray strength function for 43Sc is surprisingly
similar to the one of 45Sc, and it shows an increase at low
γ -ray energy which cannot be explained theoretically as of
yet.
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