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Multipair approach to pairing in nuclei
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The ground state of a general pairing Hamiltonian for a finite nuclear system is constructed as a product
of collective, real, distinct pairs. These are determined sequentially via an iterative variational procedure that
resorts to diagonalizations of the Hamiltonian in restricted model spaces. Different applications of the method
are provided that include comparisons with exact and projected BCS results. The quantities that are examined
are correlation energies, occupation numbers, and pair transfer matrix elements. In a first application within the
picket-fence model, the method is seen to generate the exact ground state for pairing strengths confined in a
given range. Further applications of the method concern pairing in spherically symmetric mean fields and include
simple exactly solvable models as well as some realistic calculations for middle-shell Sn isotopes. In the latter
applications, two different ways of defining the pairs are examined: either with J = 0 or with no well defined
angular momentum. The second choice is revealed to be more effective, leading, under some circumstances, to
solutions that are basically exact.
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I. INTRODUCTION

Since the seminal paper by Bohr, Mottelson, and Pines [1],
pairing plays a crucial role in the description of both finite
and infinite nuclear systems [2–5]. In nuclear structure, in
particular, a renewed interest in pairing has been observed
in recent years following the great advances made in the
experimental investigation of nuclei far from stability: pairing
is essential to understand the properties of these loosely bound
systems [4,5].

As is well known, Bohr, Mottelson, and Pines transferred to
nuclear physics the ideas developed by Bardeen, Cooper, and
Schrieffer (BCS) [6] to explain the electron superconductivity
in metals. However, while the BCS approach turns out to
be fully appropriate for macroscopic systems, being exact in
the thermodynamic limit [7], its application to mesoscopic
systems shows some limitations owing to the fact that the
BCS wave function is not an eigenstate of the number
operator. In spite of that and of its being well on in years,
BCS, together with the more refined Hartree-Fock-Bogoliubov
(HFB) method [3], still provides a quite common approach to
pairing in nuclear structure.

Besides its inherent particle-number violation, the BCS
wave function exhibits another noteworthy feature: it is
formulated in terms of just one collective pair. The same
feature characterizes other BCS-like approaches that have been
proposed over the years to overcome the limitations of the
theory (see, for instance, Ref. [3] for a review). Among these,
the projected BCS (PBCS) approximation proposed by Blatt
[8] and Bayman [9] stands out for its conceptual simplicity
and its effectiveness. This theory suggests a ground-state wave
function that is simply a condensate of one collective pair.

The scenario that the exact ground state (when available) of
a pairing Hamiltonian exhibits can be, however, very different
from that suggested by PBCS. This is the case, for instance,
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of the so-called reduced-BCS [10] or picket-fence [11] model
(PFM) largely used in condensed matter physics to describe the
superconducting properties of ultrasmall metallic grains [10]
as well as to mimic pairing in a deformed nucleus [12–14].
The Hamiltonian of the model describes a system of fermions
occupying a set of doubly degenerate equally spaced levels
and interacting via a pairing force with constant strength. The
corresponding eigenvalue problem can be solved exactly in a
semianalytical way [12,15–17] and one finds that, for a system
of 2N particles, the ground state is a product of N collective
distinct pairs (either real or complex) irrespective of the pairing
strength.

Recently Sandulescu and Bertsch [18] carried out a detailed
analysis of the validity of the BCS and PBCS (with variation
after projection) approaches within the PFM. This analysis
showed a very poor reliability of the BCS approximation
together with, in spite of the evident dissonance between exact
and approximate scenarios, a good performance of the PBCS
approach. In the latter case, however, a strong dependence of
the results on the size of the model space was also observed:
the quality of the PBCS approximation substantially decreases
with increasing energy window around the Fermi level which
fixes the model space.

A qualitative explanation for the behavior of these PBCS
results can be inferred from the exact form of the ground-state
wave function [12,15–17]. The collective pairs defining this
wave function can be of very different nature, there being
pairs mainly formed by deeper bound particles as well as
pairs whose basic contribution arises from particles in the
upper orbitals. By enlarging the energy window around the
Fermi level one actually broadens the spectrum of the pairs
entering the exact wave function. Correspondingly, it becomes
more and more difficult for PBCS to provide a satisfactory
description of the ground state in terms of just one collective
pair.

The mentioned limitations of the PBCS approach could
be overcome, in principle, by resorting to a more general
description of the ground state in terms of nonidentical pairs.

064326-10556-2813/2012/85(6)/064326(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.85.064326


M. SAMBATARO PHYSICAL REVIEW C 85, 064326 (2012)

Such a description, however, is expected to be considerably
more difficult than PBCS since it implies minimizing the
ground-state energy with respect to a much larger set of
variables. Moreover, the use of pairs that are all distinct
from one another does not allow the application of simple
recurrence formulas to compute norms and expectation values
of observables, as can be done, in contrast, in the PBCS
case [19]. Aiming at realizing this description by limiting as
much as possible its computational cost, we have developed
a simplified procedure to determine the pairs: these are
constructed sequentially through an iterative sequence of
diagonalizations. Each diagonalization is carried out in a space
of very limited size and is meant to generate one collective pair
at a time while all the others act as spectators. All pairs are
by construction real. This procedure takes inspiration from a
somewhat analogous iterative approach recently proposed to
search for the best description of the eigenstates of a generic
Hamiltonian in terms of a selected set of physically relevant
configurations [20].

We will provide various applications of the method. In each
case we will make a comparison with exact and PBCS results.
The quantities that will be examined are correlation energies,
occupation numbers and pair transfer matrix elements. The
first application will concern the PFM and will therefore sim-
ulate pairing in a deformed mean field. This will be discussed
in Sec. II together with the presentation of the formalism. We
will then examine some applications in spherically symmetric
mean fields. These will include the cases of nucleons moving
in a single j shell (Sec. III A), in a double j shell (Sec. III B)
and, finally, some realistic calculations for middle-shell Sn
isotopes (Sec. III C). In Sec. IV, we will summarize the results
and draw some conclusions.

II. THE FORMALISM WITHIN THE PFM

For simplicity, we will illustrate the formalism directly in
the case of the PFM. A detailed analysis of the model can be
found in the works by Richardson [12,15,17] and Richardson
and Sherman [16]. Here, we shall limit ourselves to review
some of its features with special concern for the ground state.

The Hamiltonian of the model is

H =
�∑

k=1

εkNk − g

�∑
k,k′=1

P
†
k Pk′ , (1)

where

Nk =
∑

σ

a
†
kσ akσ , P

†
k = a

†
k+a

†
k−, Pk = (P †

k )†. (2)

The operator a
†
kσ (akσ ) creates (annihilates) a fermion in the

single-particle state (k, σ ), where k identifies one of the �

levels of the model and σ = ± labels time-reversed states.
These operators obey standard fermion commutation relations.
The � doubly degenerate levels of the model have energies
εk = kd, d being the level spacing. We restrict our analysis
to the case of an even number of particles (2N ) and exclude
partial occupation of the levels, i.e., levels are considered to

be either fully occupied (two particles in time-reversed states)
or empty.

The pair product state

|�〉 =
N∏

ν=1

B†
ν |0〉, B†

ν =
�∑

k=1

1

2εk − eν

P
†
k (3)

is an (unnormalized) eigenstate of the Hamiltonian (1) if the
N parameters eν (the so-called pair energies) are roots of the
set of N coupled nonlinear equations

1 −
�∑

k=1

g

2εk − eν

+
N∑

ρ=1 (ρ �=ν)

2g

eρ − eν

= 0. (4)

The eigenvalue E(�) associated with |�〉 is just the sum of the
corresponding pair energies, i.e.,

E(�) =
N∑

ν=1

eν. (5)

The pair energies eν can be either real or complex depending
on the pairing strength g. In the case of the ground state and
for an even number of pairs, in particular, all eν’s turn, two by
two, from real into complex-conjugate pairs with increasing
strength g.

The formalism of Eqs. (3)–(5) provides a very elegant way
of evaluating the ground-state energy of the PFM Hamiltonian,
but it can only be applied within this model. More generally,
the same results could be obtained by expressing the ground
state as

|�〉 =
N∏

ν=1

B†
ν |0〉, B†

ν =
�∑

k=1

βkνP
†
k , (6)

(with βkν complex, in general) and therefore minimizing the
energy of this state with respect to the variables βkν . With
increasing size of the system (and so of the number of
variables βkν that should be handled simultaneously), this way
of proceeding is bound to become, however, quite complicated.
Owing to that and aiming at extending a description of the
type (6) to the ground state of a general pairing Hamiltonian,
we have searched for an alternative (and simpler) method to
determine the pairs. As a major feature, this method proposes
a sequential determination of the pairs B†

ν through an iterative
sequence of diagonalizations of the Hamiltonian in spaces of
very limited size. Each diagonalization is meant to update one
pair at a time while guiding the ground-state energy towards
its minimum. The amplitudes βkν are, by construction, real.

To illustrate the method in detail, let B†
ν (ν = 1, . . . , N ) be

the pairs that at a given stage of the iterative process define the
ground state |�〉, Eq. (6). We define the space

F (ρ) =
{

P
†
k

N∏
ν=1(ν �=ρ)

B†
ν |0〉

}
(7)

whose states are generated by acting with all possible uncor-
related pair operators P

†
k (2) on a pair-product state formed

by all the pairs B†
ν but the ρth one. The dimension of F (ρ) is

therefore �. The diagonalization of the Hamiltonian in this
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FIG. 1. Relative errors in the ground-state correlation energy
calculated for a system with 2N = � = 16 particles within BCS,
PBCS, and the present approach (line labeled with triangles) as a
function of the pairing strength g. The arrow indicates the critical
value gc at which the Richardson pairs start being complex (see text).
g is in units of the level spacing d .

space generates a new ground state

|�(new)〉 = B†(new)
ρ

N∏
ν=1,ν �=ρ

B†
ν |0〉 (8)

which differs from |�〉 only for the pair B†(new)
ρ . The energy of

this state is by construction lower than (or, at worst, equal to)
that of |�〉. As a result of this operation, the pair B†(new)

ρ updates
B†

ρ while all other pairs remain unchanged. Performing a series
of diagonalizations of H in F (ρ) for all possible ρ values (1 �
ρ � N ) exhausts what we define a cycle of diagonalizations.
At the end of a cycle all the pairs B†

ν have been updated and
a new cycle can then start. The iterative sequence of cycles is
stopped when the difference between the ground-state energies
at the end of two successive cycles becomes vanishingly small.

As a first application of the method, we will study a
system of 2N = 16 particles distributed over � = 16 levels.
The procedure requires an initial ansatz for the pairs B†

ν in
order to start (notice, however, that only N − 1 of these pairs
are needed to generate the space F (ρ)). We have adopted
initial pair amplitudes βkν = δkν . The state |�〉 that one
constructs in correspondence is nothing but the uncorrelated
ground state (i.e., the state obtained by filling all levels
up to the Fermi energy). We have verified, however, that
different initial choices of these amplitudes do not modify
significantly the results. In Fig. 1, we compare the relative
errors 
E/E = (E(exact)

corr − E
(appr)
corr )/E(exact)

corr in the ground-state
correlation energy Ecorr that are calculated within the BCS,
PBCS, and present approximations. Ecorr defines the energy of
the correlated ground state relative to the uncorrelated one.

Before commenting on these results, we simply recall
that the BCS approximation, for which we refer to standard
textbooks (see Ref. [3], for example), has a ground state

characterized by the well known exponential form

|BCS〉 ∝ eB† |0〉 =
∞∑

n=0

(B†)n

n!
|0〉, (9)

with the pair operator

B† =
�∑

k=1

xkP
†
k (10)

being such that it minimizes the energy of the state (9) under the
constraint that the number of particles be conserved on average.
The PBCS ground state is, instead, simply the condensate [8,9]

|PBCS〉 ∝ (B†)N |0〉. (11)

The corresponding energy results from the minimization of
the expectation value of the Hamiltonian in the (properly nor-
malized) state (11) with respect to the variables xk (variation
after projection).

The comparison of Fig. 1 refers to pairing strengths g

ranging in the interval (0.1, 0.9) (in units of the level spacing
d). According to Richardson [12], however, only values
roughly between 0.4 and 0.7 guarantee, for the system under
study, physically acceptable values of the pairing energy
P (2N ) = 2E(2N − 1) − E(2N ) − E(2N − 2), where E(L)
is the ground-state energy for L particles. As is apparent from
the figure, these results confirm previous conclusions [12,18]
on the very limited reliability of the BCS approximation in
finite systems (this approximation will not be further discussed
in this work) and show, at the same time, a definitely better
performance of the PBCS approximation, whose maximum
error is about 6% at g ≈ 0.4.

For what concerns our approach, one can clearly distinguish
two regions. For g smaller than a critical value gc (gc � 0.36,
indicated by the arrow in Fig. 1), this approach is able to
find the exact solution. For g � gc, instead, the error remains
very small (up to three orders of magnitude smaller than the
corresponding PBCS error) but nevertheless is appreciably
different from zero. The existence of these two regions does
not come as a surprise since gc is the strength at which the
Richardson pairs (3) start being complex. This implies that,
for g � gc, the exact ground state can be represented as a
pair-product state only by assuming a complex form of the
pairs. This complex form is not considered in our formalism,
which is therefore unable to find the exact solution in this
region (differently from the case g < gc).

We remark at this stage that, as anticipated earlier in this
section, the complex Richardson pairs always occur in a
complex-conjugate form, namely, for every pair B†

ν with a
complex pair energy eν there always exists a pair B

†
ν̄ with

the complex conjugate ēν . As shown in Ref. [21], the product
B†

νB
†
ν̄ can be easily rewritten as a linear combination of squares

of two real pairs. Therefore, the exact PFM ground state
can be equivalently formulated in terms of N real pairs. In
such a case, however, this state looses the simple form (3),
becoming a linear combination of pair-product states. If and
how a similar formalism can be extended to a general pairing
Hamiltonian is an intriguing problem which deserves further
investigation.
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FIG. 2. (Color online) Pair amplitudes βkν [Eq. (6)] calculated
within the present approach for a system with 2N = � = 16 particles
and a pairing strength g = 0.3 (in units of d). Each line shows the
amplitudes βkν relative to the pair ν indicated on top of it. In the figure,
the amplitudes relative to each pair ν have been assigned an arbitrary
overall phase such that βkν > 0 at k = 16. The normalization is such
that

∑
k β2

kν = 1.

In Figs. 2 and 3, we show the pair amplitudes βkν that
are generated by our approach at g = 0.3 and g = 0.7,
respectively. At g = 0.3, these amplitudes coincide with the
Richardson ones (at this strength all pairs are real). The
amplitudes exhibit a peak close to 1 (denoting little collectivity
of the pair) at the level k = ν for all pairs but the pair
ν = 8, which appears instead to be visibly more collective.
At g = 0.7, the amplitudes βkν keep a pattern similar to
that exhibited at g = 0.3 but with a much more pronounced
collectivity of the pairs. This collectivity manifestly increases
moving from ν = 1 to ν = 8.

As a further test for the various approximations, we
have evaluated two additional quantities: the occupation
numbers nk = 〈�|Nk|�〉 and the pair transfer matrix elements
tk = |〈�(N = 8)|P †

k |�(N = 7)〉|. The latter quantity has,
of course, required building the ground state also for the
system with N = 7 pairs. In Figs. 4 and 5, we show the
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FIG. 3. (Color online) As in Fig. 2, but for g = 0.7.
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FIG. 4. Root-mean-square values of the relative errors in the
occupation numbers calculated for a system with 2N = � = 16
particles within PBCS and the present approach (line labeled with
triangles) as a function of the pairing strength g (in units of d).

root-mean-square (rms) values σn and σt of the relative
errors in the occupation numbers and pair transfer matrix
elements, respectively, as a function of g. The quantities
plotted are defined as σn =

√
(
∑�

k=1 
2
k(n))/� with 
k(n) =

(n(exact)
k − n

(appr)
k )/n

(exact)
k and σt =

√
(
∑�

k=1 
2
k(t))/� with


k(t) = (t (exact)
k − t

(appr)
k )/t

(exact)
k . The behavior of these quan-

tities is similar in the two figures and is also close to that
observed in Fig. 1 for the relative error in the ground-state
correlation energy. These new calculations confirm the very
good performance of our approach by evidencing at the same
time some increased difficulty for PBCS in reproducing the
exact results (particularly in the pair transfer case) in regimes
of very weak coupling. For completeness we also show in
Figs. 6 and 7 the behaviors of the relative errors 
k(n) and

k(t), respectively, calculated with our procedure as a function
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FIG. 5. Root-mean-square values of the relative errors in the pair
transfer matrix elements calculated for a system with 2N = � = 16
particles within PBCS and the present approach (line labeled with
triangles) as a function of the pairing strength g (in units of d).
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FIG. 6. Relative errors in the occupation numbers nk calculated
with our procedure as a function of k for a system with 2N = � =
16 particles. The lines refer to three different values of the pairing
strength.

of k for three different values of the pairing strength. In both
cases, some peaks around the Fermi level can be observed.

III. PAIRING IN A SPHERICALLY SYMMETRIC
MEAN FIELD

The PFM Hamiltonian (1) studied so far schematically
describes pairing in a deformed mean field. In this section, we
will focus instead on pairing in a spherically symmetric mean
field. The 2N (identical) particles of the system will be allowed
to occupy a set of 2� single-particle states labeled by the
quantum numbers n, l, j,m (according to the standard notation
[3]). If a

†
ni li jimi

≡ a
†
imi

is the operator creating a fermion

in the single-particle state imi and ã
†
imi

= (−1)ji−mi a
†
i−mi

is
the corresponding time-reversed operator, a general pairing
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0.003
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g=0.9
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FIG. 7. Relative errors in the pair transfer matrix elements tk
calculated with our procedure as a function of k for a system with
2N = � = 16 particles. The lines refer to three different values of
the pairing strength.

Hamiltonian is written as

H =
∑

i

εiNi −
∑
ii ′

gii ′L
†
i Li ′ , (12)

where

Ni =
∑
mi

a
†
imi

aimi
, L

†
i =

∑
mi>0

P
†
imi

, P
†
imi

= a
†
imi

ã
†
imi

.

(13)

The operator L
†
i creates a pair of particles in the state i = niliji

with total angular momentum J = 0. By further defining

Nimi
= a

†
imi

aimi
+ a

†
i−mi

ai−mi
, (14)

the Hamiltonian (12) becomes

H =
∑

i,mi>0

εiNimi
−

∑
i,mi>0

∑
i ′,mi′ >0

gii ′P
†
imi

Pi ′mi′ (15)

or, using a simplified notation,

H =
�∑

k=1

εkNk −
�∑

k,k′=1

gkk′P
†
k Pk′ . (16)

In this expression, the index k runs over the � levels
i, mi > 0. Both εk and gkk′ are independent of the projection
m of the angular momentum. The energies εk are therefore
characterized by a (j + 1/2)-fold degeneracy.

Due to the similarity between the Hamiltonians (1) and
(16), the formalism of Eqs. (6)–(8) can be applied without
any change also to the present case. An important difference
occurs, however, with respect to the application discussed in
the previous section. As already stated, the iterative procedure
requires an initial ansatz for the pair amplitudes βkν [Eq. (6)].
In Sec. II, we have assumed βkν = δkν . This choice, however,
did not significantly affect the results. This is no longer true in
the cases that we are going to treat. Indeed, the mechanism of
construction of the pairs is such that an initial choice of J = 0
pairs will result in final pairs with the same angular momentum.
Analogously, in correspondence with initial pairs with no well
defined angular momentum, final pairs too will not have a well
defined angular momentum, in general. As we will see in the
following, however, this fact will not automatically prevent
the final ground state from being a state with total angular
momentum J = 0.

In order to examine in detail the above statements we will
discuss two very simple cases of pairing, namely those of
nucleons in a single j shell (Sec. III A) and in a double j shell
(Sec. III B). After these illustrative examples, we will provide a
realistic application of the procedure in the case of Sn isotopes
(Sec. III C).

A. Nucleons in a single j shell

Pairing in a single j shell represents the most elementary
example of pairing in a finite nuclear system. This model
allows a simple illustration of the effects that different choices
of initial pairs can have on the final result in our approach. The
Hamiltonian (12) simply reduces to

H = −gL†L, (17)
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where, for simplicity, we have omitted the one-body term and
suppressed all indexes. The (unnormalized) ground state of
this Hamiltonian is represented in standard textbooks as the
condensate [3]

|�N 〉 = (L†)N |0〉 (18)

and the corresponding energy is

EN = −gN (� − N + 1). (19)

The application of the iterative procedure of Sec. II, with initial
pair amplitudes βkν = δkν that do not guarantee any coupling
to a good angular momentum, leads to the exact energy (19)
in just one iterative cycle. The wave function that is generated
looks, however, very different from (18). This is

|�N 〉 =
N∏

ν=1

�
†
νN |0〉, (20)

with

�
†
νN =

�∑
k=ν

γ
(N)
kν P

†
k , γ

(N)
kν = 1 + (N − ν)δkν. (21)

|�N 〉 is a product of pairs that are all different from one another
[notice, in particular, the index k of �

†
νN running only within the

interval (ν,�)] and with no well defined angular momentum.
Nevertheless, this state carries a total angular momentum
J = 0: contrary to all appearances, |�N 〉 and |�N 〉 are actually
identical. It is straightforward to prove analytically this identity
for N = 2 (being �

†
12 = L† + P

†
1 and �

†
22 = L† − P

†
1 ) and

N = 3 (�†
13 = L† + 2P

†
1 , �

†
23 = L† − P

†
1 + P

†
2 , and �

†
33 =

L† − P
†
1 − P

†
2 ). This proof can be extended to any N , with

the understanding that it gets more involved as this number
increases.

The case of initial J = 0 pairs is a trivial one in the present
example since it already provides the exact solution (18) and
the procedure only limits itself to confirm this choice. This
case will be analyzed in more detail in the next application.

B. Nucleons in a double j shell

This model assumes that nucleons are confined in two
shells characterized by the same angular momentum j and
that they interact via a pairing force with constant strength.
The Hamiltonian of the model is therefore that of Eq. (12)
with gii ′ ≡ g and the index i = 1, 2 labeling the two shells.
We will study the case j = 11/2 with energies ε1 = −1 and
ε2 = 1 (in arbitrary units) and for two different values of the
strength V = g�j/2ε (we keep the same notation of Ref. [22],
with �j = j + 1/2 being the half-degeneracy of the shell
and ε ≡ ε2 − ε1 the difference between the single-particle
energies). In Figs. 8 and 9, upper part, we show the exact
ground-state correlation energy as a function of the pair
number N for V = 0.3 and V = 0.7, respectively. The lower
part of the same figures shows the relative errors in this quantity
that are generated by our procedure in correspondence with
two different choices of the initial pairs. The line labeled with
squares refers to an initial choice of random J = 0 pairs, i.e.,
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-0.15

-0.1

E/
2ε

2 4 6 8 10 12
N

10-6
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10-2

ΔΕ
/Ε

V=0.3

FIG. 8. Upper part: exact ground-state correlation energy for
2N particles in two j = 11/2 shells and V = 0.3. The energy
is expressed in units of 2ε. Lower part: relative errors in the
ground-state correlation energy calculated with the present procedure
in correspondence with two different choices of the initial pairs.
Squares refer to J = 0 pairs while triangles to pairs with no well
defined angular momentum (see text for details).

pairs L† = ∑2
i=1 ciL

†
i with coefficients ci chosen randomly,

while the line labeled with triangles shows the results for an
initial choice of pairs with amplitudes βkν = δkν (however,
results do not vary significantly by assuming amplitudes βkν

generated randomly).
As is apparent from these figures, results are quite different

in the two cases and globally better for the ground state built
from pairs with no well defined angular momentum. In this
case, one can clearly distinguish two regions: for N < �j ,
the procedure gives rise to results that are not too far from
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FIG. 9. As in Fig. 8, for V = 0.7.
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FIG. 10. Root-mean-square values of the relative errors in the
occupation numbers calculated with the present procedure for 2N

particles in two j = 11/2 shells and V = 0.3. The two lines refer
to different choices of the initial pairs: J = 0 pairs (squares) and
pairs with no well defined angular momentum (triangles). See text
for details.

those obtained by adopting J = 0 pairs, while for N � �j

results turn out to be basically exact no matter the strength
V . N = �j (corresponding to the filling of the lowest shell)
therefore marks a real turning point for the procedure: from
this point on, the procedure becomes as effective as in the
single j -shell case in spite of the fact that the lowest shell is
only partially filled (for N = 6 and V = 0.7, for instance, the
exact occupation numbers are 〈N1〉 = 8.36 and 〈N2〉 = 3.64).
Differently from the single j -shell application, however, some
violations of the total angular momentum are observed (only
for N < �j ). In order to quantify these violations, we have
evaluated the expectation value of the J 2 operator in the final
ground state. The largest values found in the calculations of
Figs. 8 and 9 are 0.008 at V = 0.3 and 0.002 at V = 0.7
always for a system with N = 5 pairs. It is also worthy noticing
that all the pairs defining the ground state are, in this case,
very far from being J = 0 pairs: the expectation value of the
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FIG. 11. As in Fig. 10, for V = 0.7.
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FIG. 12. Root-mean-square values of the relative errors in the pair
transfer matrix elements |〈�(N )|L†

i |�(N − 1)〉| calculated with the
present procedure for 2N particles in two j = 11/2 shells and V =
0.3. The two lines refer to different choices of the initial pairs: J = 0
pairs (squares) and pairs with no well defined angular momentum
(triangles). See text for details.

J 2 operator for the single pairs for N = 6 and V = 0.7, for
instance, varies from 14.0 to 51.7.

As far as the case of initial J = 0 pairs is concerned, the
noteworthy result is that the final pairs that are generated
(still with J = 0) are all identical. In other words, in spite
of being initialized with and of allowing the use of distinct
J = 0 pairs, our procedure finds the PBCS condensate to be
the one which guarantees the lowest energy in the model under
study.

In Figs. 10 and 11, we show the rms values of the
relative errors in the occupation numbers 〈�|Ni |�〉 for
V = 0.3 and V = 0.7, respectively. In Figs. 12 and 13, the
corresponding quantities for the pair transfer matrix elements
|〈�(N )|L†

i |�(N − 1)〉| are plotted. The behaviors of these
quantities are consistent with the previous analysis.

We conclude this section by noticing that results quali-
tatively very similar to those just discussed are obtained by
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FIG. 13. As in Fig. 12, for V = 0.7.
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TABLE I. Single-particle energies εj and matrix elements
V0(j, j ′) employed in the calculations for Sn isotopes. All values
are in MeV.

g7/2 d5/2 d3/2 s1/2 h11/2

εj − 6.121 − 5.508 − 3.749 − 3.891 − 3.778
g7/2 − 0.9850 − 0.5711 − 0.5184 − 0.2920 − 1.1454
d5/2 − 0.7063 − 0.9056 − 0.3456 − 0.9546
d3/2 − 0.4063 − 0.3515 − 0.6102
s1/2 − 0.7244 − 0.4265
h11/2 − 1.0599

repeating the same calculations for a system with two different
shells (j = 11/2 and j = 7/2).

C. An application to Sn isotopes

Pairing correlations are known to play a major role in
modeling the ground state of Sn isotopes [4]. As it is common
practice in the description of these isotopes, we will assume
a Z = 50, N = 50 inert core and, dealing with systems with
mass number between A = 100 and A = 132, we will allow
neutrons to occupy the five levels g7/2, d5/2, d3/2, s1/2, and
h11/2 that are located between the magic numbers 50 and 82.
Single-particle energies and pairing strengths will be the same
as those adopted by Zelevinsky and Volya [23]. The strengths
gii ′ , in particular, are derived from the interaction matrix
elements V0(i, i ′) that result from G-matrix calculations [24].
These two quantities are related as

gii ′ = −V0(i, i ′)/
√

(ji + 1/2)(ji ′ + 1/2). (22)

The matrix elements V0(i, i ′) used are listed in Table I together
with the single-particle energies. Being, at this stage, only
interested in testing our procedure, we will not refer in the
following to experimental data but rather concentrate on the
comparison with exact and PBCS results.

The diagonalization of a generic Hamiltonian in the model
space just described is all but trivial for isotopes in the
middle of the shell due to the large number of basis states
involved [24]. In the case of the pairing Hamiltonian, however,
a great simplification arises from the possibility of classifying
these states within the seniority scheme [25,26]. This limits
the number of basis states needed to build up a ground state
to a maximum value of 110 (for 116Sn) therefore making the
derivation of the exact wave function straightforward [23]. In
Tables II – V, we compare exact and approximate ground-state
correlation energies, occupation numbers, and pair transfer
matrix elements relative to the middle-shell 112–118Sn isotopes.
As in the previous applications, we have examined both the
case of initial pairs with J = 0 (approach A) and the case of
pairs with no well defined angular momentum (approach B).
In case A, the initial pairs relative to ASn have been assumed
equal to the final ones for A−2Sn (beginning with a simple
diagonalization to find the lowest J = 0 pair in 102Sn). In
case B, we have adopted initial amplitudes βkν = δkν as in the
previous applications.

A glance at Tables II–V shows some interesting analogies
with the case of nucleons in a double j shell discussed in the
previous section. As a general outcome, the results of approach
B are always better than those of approach A in spite of some
(limited) violations in the total angular momentum of the final
wave function (see Tables II–V). In particular, approach B
turns out to be basically exact for 116–118Sn isotopes while
less effective for the lighter systems. Mass number A = 114,

TABLE II. Comparison between exact and approximated ground-state correlation energies, occupation numbers, and pair transfer matrix
elements for 112Sn. 〈J 2〉 is the expectation value of the J 2 operator in the ground state. The quantities σ are root-mean-square values of the
relative errors. Approaches A and B are described in the text.

PBCS App. A App. B Exact

E (MeV) −2.8587 −2.8713 −2.8954 −2.9038

E/E 0.16 × 10−1 0.11 × 10−1 0.29 × 10−2

〈J 2〉 0 0 0.45 × 10−2 0

j PBCS App. A App. B Exact
〈Nj 〉

7/2 6.4305 6.4393 6.4602 6.4551
5/2 3.6462 3.6462 3.6338 3.6458
3/2 0.4795 0.4793 0.4771 0.4757
1/2 0.2403 0.2395 0.2370 0.2358
11/2 1.2035 1.1957 1.1919 1.1877
σ 0.11 × 10−1 0.84 × 10−2 0.35 × 10−2

|〈112Sn|L†
j |110Sn〉|

7/2 1.8997 1.8969 1.8846 1.8870
5/2 1.7035 1.7032 1.7051 1.7040
3/2 0.6588 0.6585 0.6581 0.6569
1/2 0.3312 0.3312 0.3294 0.3287
11/2 1.8225 1.8146 1.8113 1.8089
σ 0.58 × 10−2 0.45 × 10−2 0.15 × 10−2
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TABLE III. As in Table II, for 114Sn.

PBCS App. A App. B Exact

E (MeV) −2.5237 −2.5427 −2.6002 −2.6011

E/E 0.30 × 10−1 0.22 × 10−1 0.34 × 10−3

〈J 2〉 0 0 0.18 × 10−3 0

j PBCS App. A App. B Exact
〈Nj 〉

7/2 6.9182 6.9438 6.9568 6.9562
5/2 4.3909 4.4218 4.4638 4.4630
3/2 0.6478 0.6379 0.6271 0.6265
1/2 0.3743 0.3674 0.3536 0.3558
11/2 1.6687 1.6290 1.5988 1.5985
σ 0.35 × 10−1 0.19 × 10−1 0.27 × 10−2

|〈114Sn|L†
j |112Sn〉|

7/2 1.6453 1.6370 1.6126 1.6197
5/2 1.6056 1.6087 1.6153 1.6107
3/2 0.7542 0.7476 0.7415 0.7411
1/2 0.4053 0.4019 0.3940 0.3958
11/2 2.1197 2.0898 2.0667 2.0687
σ 0.19 × 10−1 0.10 × 10−1 0.31 × 10−2

at which this discontinuity occurs, marks a (partial) subshell
closure corresponding to the filling of the levels g7/2 and d5/2.
This closure reflects the gap in energy between these two
levels and the remaining ones (see Table I). The scenario is
therefore analogous to that observed in Sec. III B where, in
correspondence with the partial closure of the lowest shell,
one observed a drastic improvement of the results of approach
B. Also in this case, the single pairs of approach B are
characterized by expectation values of the J 2 operator that are
very far from 0. As far as approach A is concerned, instead,

differently from the previous application, one finds a final
ground state that is formed by pairs which are all different
from one another. Finally, we notice the good performance of
the PBCS approximation whose results, although worse than
those of approaches A and B, never deviate significantly from
the exact ones.

We mention that a study of pairing correlations in Sn
isotopes has been recently carried out by Pillet et al. [27]
in terms of a multiparticle-multihole configuration mixing
method. This method proposes a description of the nuclear

TABLE IV. As in Table II, for 116Sn.

PBCS App. A App. B Exact

E (MeV) −3.5703 −3.5925 −3.6185 −3.6185

E/E 0.13 × 10−1 0.72 × 10−2 0.16 × 10−4

〈J 2〉 0 0 0.14 × 10−4 0

j PBCS App. A App. B Exact
〈Nj 〉

7/2 7.1334 7.1407 7.1413 7.1413
5/2 4.7479 4.7618 4.7697 4.7697
3/2 0.9391 0.9295 0.9280 0.9280
1/2 0.6332 0.6557 0.6463 0.6463
11/2 2.5465 2.5124 2.5146 2.5147
σ 0.12 × 10−1 0.66 × 10−2 0.15 × 10−4

|〈116Sn|L†
j |114Sn〉|

7/2 1.3846 1.3628 1.3585 1.3592
5/2 1.3775 1.3630 1.3489 1.3494
3/2 0.8840 0.8773 0.8720 0.8722
1/2 0.5062 0.5150 0.5140 0.5138
11/2 2.5558 2.5343 2.5249 2.5256
σ 0.16 × 10−1 0.57 × 10−2 0.38 × 10−3
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TABLE V. As in Table II, for 118Sn.

PBCS App. A App. B Exact

E (MeV) −4.0749 −4.0941 −4.1052 −4.1053

E/E 0.74 × 10−2 0.27 × 10−2 0.56 × 10−5

〈J 2〉 0 0 0.36 × 10−5 0

j PBCS App. A App. B Exact
〈Nj 〉

7/2 7.2711 7.2732 7.2727 7.2727
5/2 4.9665 4.9730 4.9743 4.9743
3/2 1.2624 1.2535 1.2526 1.2526
1/2 0.9034 0.9230 0.9171 0.9171
11/2 3.5966 3.5774 3.5833 3.5833
σ 0.77 × 10−2 0.30 × 10−2 0.80 × 10−5

|〈118Sn|L†
j |116Sn〉|

7/2 1.2513 1.2451 1.2466 1.2466
5/2 1.2430 1.2357 1.2336 1.2336
3/2 0.9792 0.9743 0.9719 0.9720
1/2 0.5541 0.5553 0.5563 0.5563
11/2 2.9049 2.8975 2.8951 2.8951
σ 0.56 × 10−2 0.16 × 10−2 0.21 × 10−4

eigenstates as a linear combination of Slater determinants that
include a Hartree-Fock-type state together with a (restricted)
number of multiple particle-hole excitations built on this
state. Both the configuration mixing coefficients and the
single-particle states are determined in a self-consistent way
from a variational procedure. Even though a direct comparison
between the present calculations and those of Pillet et al. is
difficult to make both quantitatively, due significant differences
in the single-particle spaces and interactions employed, and
qualitatively, due to the very different form of the two
approximation schemes, we remark some common features
in the two approaches: they are both variational, they preserve
the particle number, and they never violate the Pauli principle.

IV. SUMMARY AND CONCLUSIONS

In this paper we have searched for a description of the
ground state of a general pairing Hamiltonian as a product
of collective, real, distinct pairs. An iterative variational
procedure has been proposed which allows a sequential
determination of these pairs through the diagonalization of
the Hamiltonian in spaces of very limited size. A number
of applications have been carried out for both deformed and
spherically symmetric systems. The procedure has proved to
be effective in all these applications. Special attention has been
addressed, for spherically symmetric systems, to the angular
momentum of the pairs defining the ground state. We have ex-
plored both the case of J = 0 pairs and the case of pairs with no
well defined angular momentum. In spite of generating some
(limited) violations of the total angular momentum, the latter
choice has been revealed to be globally more effective leading
to results that, under some circumstances, have been found to
be basically exact even for realistic pairing Hamiltonians.

An aspect of pairing that has attracted considerable at-
tention in the past concerns the spatial properties of the
correlations induced by this interaction. After some early
studies of single-pair cases such as those of 18O [28], 206Pb
[29], 210Pb [30] and, more recently, 11Li [31,32], the attention
has been mostly concentrated on superfluid nuclei [33–37].
The approach usually followed in these cases is the HFB (or
BCS) one and the attention is focused on the spatial distribution
of the abnormal density for like nucleons k(�r1σ1, �r2σ2) =
〈�|ψ(�r1σ1)ψ(�r2σ2)|�〉 [3], where |�〉 is the HFB (or BCS)
ground state and ψ(�rσ ) is the nucleon field operator. It
is customary to regard this density as the wave function
of a “Cooper pair” in the correlated ground state. These
investigations have pointed out a small spatial distribution
of this pair (2–3 fm) and its concentration in the nuclear
surface [33–37]. It has been argued [38], however, that this
pair can only be considered as a sort of average over all the
possible pairs (quite different from one another, as we have
seen also in this paper) that can populate the ground state.
The analysis of Ref. [38] on 154Sm, based on the Richardson
formalism, has lead to the conclusion that even the smallest
of these pairs could actually be larger than the Cooper pair
defined above. Extending this analysis beyond the limited class
of pairing Hamiltonians that can be treated in the Richardson
formalism (including its possible extensions [39,40]) would
certainly help to shed light on this debated subject. The
approach presented in this paper proposes itself as, we believe,
a valid tool to achieve this goal. More generally, this approach
provides a new (we are not aware of similar approaches in
literature) and more appropriate (with respect to standard
approaches like BCS or PBCS) way to describe systems where
pairs of very different nature are expected to populate the
ground state. Being, however, undoubtedly more complex than
these standard approaches, a greater computational effort is
demanded for its applications. The impossibility, in particular,
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of making use of simple expressions or recurrence relations
for the evaluation of norms and matrix elements of operators,
as it can be done for BCS or PBCS, is an obstacle to extending
the present method to systems which are instead within reach
of these simpler approaches.
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