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We study boron, carbon, nitrogen, and oxygen isotopes with a newly constructed shell-model Hamiltonian
developed from a monopole-based universal interaction (VMU ). The present Hamiltonian can reproduce well
the ground-state energies, energy levels, electric quadrupole properties, and spin properties of these nuclei in
full psd model space including (0 − 3)h̄ω excitations. Especially, it correctly describes the drip lines of carbon
and oxygen isotopes and the spins of the ground states of 10B and 18N while some former interactions such as
WBP and WBT fail. We point out that the inclusion of 2h̄ω excitations is important in reproducing some of
these properties. In the present (0 + 2)h̄ω calculations small but constant E2 effective charges appear to work
quite well. As the inclusion of the 2h̄ω model space makes a rather minor change, this seems to be related to
the smallness of the 4He core. Similarly, the spin g factors are very close to free values. The applicability of
tensor and spin-orbit forces in free space, which are taken in the present Hamiltonian, is examined in shell-model
calculations.
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I. INTRODUCTION

The existence of the unexpected doubly magic nucleus
24O shows the exotic property of drip-line nuclei; that is,
the change of magic numbers far from the stability [1]. One
of the aims of theoretical works on nuclear structure is to
describe both stable nuclei and nuclei far from the stability
in a unified framework. In shell-model studies, for many
existing conventional interactions, it is difficult to reproduce
simultaneously the drip lines of carbon and oxygen isotopes
as well as some other properties such as the energies of 2+

1
states and B(E2). From a microscopic study, the inclusion of
effects of the three-body force is important in describing the
drip line of oxygen isotopes [2]. It is urgent to construct new
shell-model interactions applicable from the β-stability line to
the drip lines.

The realistic nucleon-nucleon (NN) interactions need to
be renormalized when applied to shell-model calculations
because of the short-range correlation and in-medium effect
[3]. The NN interaction is composed of three components:
the central force, spin-orbit force, and tensor force. Recent
studies show that the monopole components of the tensor force
barely change after renormalization and that the multipole
components also change little [4,5]. Based on these studies,
a monopole-based universal interaction (VMU ) including the

*cxyuan@pku.edu.cn
†suzuki@phys.chs.nihon-u.ac.jp
‡otsuka@phys.s.u-tokyo.ac.jp
§frxu@pku.edu.cn

bare π + ρ tensor force is introduced to describe the shell
evolution [4]. As this VMU is constructed based on monopole
properties, it requires examination as to whether VMU can be
used or not in actual shell-model calculations. In this paper we
try to apply the VMU to shell-model calculations in psd model
space.

In the psd region, several effective interactions have been
introduced in shell-model calculations, such as PSDMK [6],
the Warburton-Brown WBT [7] and WBP [7], and SFO [8].
The PSDMK, WBT, and WBP interactions are all constructed
in (0 − 1)h̄ω model space, which means that 0 − 1 nucleons
are allowed to be excited from p shell to sd shell. The
mixing between (0 − 1)h̄ω states and (2 − 3)h̄ω states is not
considered in the fitting of the interaction. SFO, which includes
the (2 − 3)h̄ω states, concentrates mostly on the spin properties
such as magnetic moments and Gamow-Teller transitions. Up
to now, the 〈pp|V |sdsd〉 matrix elements, which represent
the interaction between (0 − 1)h̄ω states and (2 − 3)h̄ω states,
have not been well studied. In Ref. [9], the tensor part of the
〈psd|V |psd〉 matrix elements is taken to be that of the π + ρ

meson exchange potential and the spin properties of C isotopes
are studied. Recently, the study of the microscopic derivation
of the effective interaction for the shell model in two major
shells has begun [10]. It would be interesting to apply the
results to future shell-model calculations.

In this paper we try to construct the effective interaction in
psd space based on VMU to describe ground-state energies,
energy levels, electric quadrupole properties, and spin prop-
erties. The 〈psd|V |psd〉 and 〈pp|V |sdsd〉 matrix elements
are obtained based on VMU while phenomenological effective
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interactions are used for the p-shell and sd-shell parts to
maintain the good description of the phenomenology by these
interactions. Microscopic interactions have been obtained
based on the G-matrix method with medium modification
[11], the similarity renormalization group (SRG) method [12]
and the coupled-cluster method [13]. While they produce
interesting results, fully microscopic calculations have not
been successful, as far as a good agreement to experiment is
concerned. We restrict ourselves here to a more phenomeno-
logical approach based on VMU to study the spectroscopic
properties of the nuclei to be discussed.

In the next section, we introduce the Hamiltonian. Coulomb
correction and center-of-mass correction are discussed in
Secs. III and IV, respectively. In Sec. V, we discuss the
ground-state energies and energy levels. We present the
results of electric quadrupole properties and spin properties in
Secs. VI and VII, respectively. A summary is given in Sec.
VIII.

II. HAMILTONIAN

The present Hamiltonian is developed from VMU , SFO,
and SDPF-M [14]. The two-body matrix elements (TBME) are
constructed as follows: 〈pp|V |pp〉 from SFO, 〈sdsd|V |sdsd〉
from SDPF-M, 〈psd|V |psd〉, and 〈pp|V |sdsd〉 from VMU

plus the spin-orbit force. In the 〈pp|V |pp〉 matrix el-
ements, we reduce the strength of the monopole term
〈p1/2p3/2|V |p1/2p3/2〉T =0 by 0.5 MeV from SFO. This will
improve the description of the ground-state energies of these
nuclei. The 〈sdsd|V |sdsd〉 matrix elements in the present
Hamiltonian are the same as SDPF-M. In earlier interactions,
such as WBP and WBT, the matrix elements 〈pp|V |sdsd〉
are not considered in the fitting procedure. The strength of the
interaction in 〈pp|V |sdsd〉 in WBP and WBT is the same as in
〈psd|V |psd〉 in WBP. In the present interaction, strengths of
these two parts of the interaction are not taken to be the same.
VMU includes a Gaussian-type central force and a π + ρ tensor
force. We use an M3Y [15] force for the spin-orbit force. We
keep the spin-orbit and tensor forces unchanged. The form of
the interactions in the matrix elements of 〈psd|V |psd〉 and
〈pp|V |sdsd〉 is as follows:

V = Vcentral + Vspin-orbit(M3Y) + Vtensor(π + ρ), (1)

with Vcentral being

Vcentral =
∑

S,T

fS,T PS,T exp[−(r/μ)2], (2)

where S (T ) means spin (isospin) and PS (PT ) is the projection
operator on the S (T ) channel. r and μ are the distance between
two nucleons and the Gaussian parameter, respectively. fST

is the strength of the central force. In the original VMU ,
f0,0 = f1,0 = −166 MeV, f0,1 = 0.6f0,0, and f1,1 = 0.8f0,0

[4]. In the present study, we reduce the central force in the
〈psd|V |psd〉 and 〈pp|V |sdsd〉 matrix elements by factors
of 0.85 and 0.55, respectively, from the original VMU . The
final interaction in the 〈psd|V |psd〉 (〈pp|V |sdsd〉) matrix
elements is

V = 0.85(0.55)Vcentral + Vspin-orbit(M3Y) + Vtensor(π + ρ).

)b()a(

(c) (d)

FIG. 1. (Color online) Total TBME, TBME of central force,
spin-orbit force, and tensor force in each part of interaction:
(a) 〈sdsd|V |sdsd〉, (b) 〈pp|V |pp〉, (c) 〈psd|V |psd〉, and (d)
〈pp|V |sdsd〉.

(3)

Notice that the spin-orbit force and the tensor force are
kept unchanged. The TBME are calculated with harmonic
oscillator parameter h̄ω = 45A−1/3 − 25A−2/3 where A = 18
which is the average mass number of the investigated nuclei
from 10B to 26O. The sd-shell single-particle energies (SPEs)
in SDPF-M are εd5/2 = −3.95 MeV, εd3/2 = 1.65 MeV, and
εs1/2 = −3.16 MeV, which takes 16O as the core [14]. In the
present shell-model calculations, 4He is chosen as the core,
thus the sd-shell SPEs in the present Hamiltonian should be
adjusted to give the same one-particle excitation energies for
17O as in SDPF-M. The adjusted SPEs are εd5/2 = 8.01 MeV,
εd3/2 = 10.11 MeV, and εs1/2 = 2.11 MeV. The p-shell SPEs
are obtained based on SFO but with slight changes by fitting the
ground-state energies of the studied nuclei and related levels
such as the 1/2−

1 state in 11B and 3/2−
1 state in 13C. We obtain

εp3/2 = 1.05 MeV and εp1/2 = 5.30 MeV. The detailed TBME
of the present Hamiltonian can be obtained by contacting the
authors.

We compare the TBME of the present Hamiltonian with
those of WBT and WBP in Fig. 1. The TBME of central,
spin-orbit and tensor interactions are also presented by the
spin-tensor decomposition method [16]. The sd and ppsdsd

parts of WBT and WBP are the same between the two. So we
show only the WBT result in these two parts. The sd part of the
present interaction is from SDPF-M which is modified from
USD (the same as the sd part of WBT) interaction. There is not
much difference between WBT and the present interaction in
the sd part. In the p part, all three of these interactions (i.e., the
present interaction and the WBT and WBP interactions) are fit
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(a)

(b)

FIG. 2. (Color online) Monopole terms of total, central, spin-
orbit, and tensor forces in each isospin channel: (a) T = 0 and (b)
T = 1.

to low-lying levels of the p-shell nuclei. The difference among
these three interactions is not large except for the tensor force.
In the psd and ppsdsd parts of the interaction, the deviation
of the present interaction from WBT (WBP) turns out to be
larger. The central force of the present interaction in the psd

part is 0.85VMU . We find that this strength is proper because
the number of points above the diagonal line is close to that
below the line, as shown in the Fig. 1(c). It is interesting
that the spin-orbit interaction of the present interaction is very
similar to that of the WBP interaction in both the psd and
ppsdsd parts. In these two parts of the interaction, WBP has 10
parameters for the potential fitting while the present interaction
is taken from the M3Y potential. Quite similar results between
WBP and the present interaction indicate that the spin-orbit
force is rather well determined compared to the central force.

Figure 2 presents the monopole terms of the interactions
and their spin-tensor components. The monopole term is a
weighted average of TBME for orbits j and j ′ [17,18]:

V T
j,j ′ =

∑
J (2J + 1)〈jj ′|V |jj ′〉J,T∑

J (2J + 1)
. (4)

The monopole terms are presented in three groups, pp, sdsd,
and psd in each picture. In each group the central monopole
is relatively flat compared with the total monopole. The total
interaction can be recognized as a global central force plus
other staggers. The T = 0 central monopole is the most
attractive among all these six central, spin-orbit, and tensor
monopoles. The nuclear binding energy comes mostly from
this interaction. Both T = 0 and T = 1 spin-orbit monopoles
of the present interaction are very close to those of WBP.
This is consistent with the analysis of the spin-orbit part
of the TBME. Comparing with WBT, the present spin-orbit
monopoles are also not much different. The present tensor
force is stronger than WBT and WBP in the T = 0 channel,
more attractive in 〈p1/2d5/2|V |p1/2d5/2〉, and more repulsive in
〈p3/2d5/2|V |p3/2d5/2〉. In the sd region of nuclei, this effect of
the tensor force is canceled as the p1/2 and p3/2 orbits are fully
occupied [19]. Going to the psd region, such as neutron-rich
boron, carbon, and nitrogen isotopes, the opposite sign of the
monopoles of the tensor force turns out to be important.

III. COULOMB CORRECTION

In the shell-model study, Coulomb interaction is not
included in many cases in order to keep the isospin sym-
metry. When we compare the ground-state energies between
theoretical results and observed values, Coulomb correction
is needed. Present calculations in psd model space do not
include the ground-state energies of 4He, E(4He), which also
needs to be removed. The total correction is

Ecorrection = Eexpt. − ECoulomb − E(4He), (5)

where ECoulomb and Ecorrection are the energy of the Coulomb
correction and the ground-state energy after the correc-
tion, respectively. E(4He) = −28.296 MeV. ECoulomb is cal-
culated through a similar method used in the construc-
tion of the WBT and WBP interactions [7]. We calcu-
late the energy difference of mirror nuclei near N = Z

where the observed ground-state energies are taken from
Ref. [20]. This ECoulomb depends only on Z in our calcula-
tion. ECoulomb = 1.075 (Z = 3), 2.720 (Z = 4), 4.593 (Z =
5), 7.368 (Z = 6), 10.248 (Z = 7), 13.854 (Z = 8) MeV.

IV. CENTER-OF-MASS CORRECTION

Because our calculation is done in two major shells,
we need the center-of-mass (c.m.) correction to remove the
spurious components which come from the c.m. motion. We
use the method suggested by Gloeckner and Lawson [21].
In the calculations, the Hamiltonian is H ′ = HSM + βHc.m.,
where HSM and Hc.m. are the original and c.m. Hamiltonians,
respectively. If β is large enough, the effect of the c.m. motion
is small enough in low-lying states. Figure 3 indicates some
physical quantities of 16C to check whether this method works
or not, and how large a β is needed.

We find that the number of nucleons in the sd shell,
B(E2; 0+

1 → 2+
1 ), or the energy of 2+

1 in 16C hardly change
when β changes. The ground-state energy of 16C changes
quickly when β is small. For β > 10, it becomes almost flat.
We use β = 10 in the following calculations.
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FIG. 3. (Color online) Effects of the center-of-mass corrections
in four physical quantities: (a) nucleon number in sd shell, (b)
B(E2; 0+

1 → 2+
1 ) value, (c) E(2+

1 ), and (d) ground-state energy of
16C. Their values change as the function of β.

V. GROUND-STATE ENERGY AND ENERGY LEVEL

The nuclei 22C, 23N, and 24O are the last bound nuclei in
neutron-rich side of C, N, and O isotopes [22]. The neutron-
drip lines in elements beyond oxygen is not determined yet
[22]. In WBT and WBP, 22C is unbound and 26O is bound. The
present Hamiltonian improves the description of the drip lines
of C and O isotopes. Figures 4 to 6 present the ground-state
energies as well as one- and two-neutron separation energies
Sn and S2n, for B, C, N, and O isotopes. For O isotopes, the

FIG. 4. (Color online) Ground-state energies of boron, carbon,
nitrogen, and oxygen isotopes. Experimental values are taken from
Ref. [20].

FIG. 5. (Color online) Two-neutron separation energies, S2n, of
boron, carbon, nitrogen, and oxygen isotopes. Experimental values
are taken from Ref. [20].

WBT and WBP interactions have the same result as their sd

parts. From Sn and S2n of O isotopes, one can see that both
WBT and the present Hamiltonian predict 25O to be unbound,
which is consistent with experiment [22]. 26O is about 1.2 MeV
unbound in the present result and 1.0 MeV bound in WBT.
The positive Sn value in 26O indicates that 26O is one-neutron
bound but two-neutron unbound. In N isotopes, all these three
interactions can reproduce that 23N is bound and 24N and 25N
are unbound. 21C is unbound experimentally [22] and also
unbound in the calculations by all three of these interactions.
22C is 0.1 MeV bound in the present result and 0.2 and 0.6 MeV
unbound in WBT and WBP, respectively. 16B is 40 (60) keV
unbound [20]. It is 144 keV bound in WBP and 65 and 153 keV

(a)

(b)

FIG. 6. (Color online) One-neutron separation energies, Sn of
boron, carbon, nitrogen, and oxygen isotopes. Experimental values
are taken from Ref. [20].
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FIG. 7. (Color online) Comparison of Sn and S2n under three
different values of the center-of-mass parameter: β = 1, 10, and 20.

unbound in WBT and the present Hamiltonian, respectively.
All Hamiltonians succeed in describing unbound 18B. In the
experiment [22], WBP, and the present Hamiltonian, it is one-
neutron unbound. But in WBT it is both one- and two-neutron
unbound. 19B, which is experimentally bound [22], is unbound

FIG. 8. Energy levels for boron and light carbon isotopes,
obtained in the present, SFO, and WBP calculations, compared with
experimental data [25–30].

with 160, 381, and 538 keV in the present Hamiltonian, WBT,
and WBP, respectively.

Here we briefly summarize the descriptions of drip lines
by these three Hamiltonians. The present Hamiltonian is
successful in describing all drip-line nuclei except for 19B
while WBT fails in 26O, 22C, 18B, and 19B and WBP fails in
26O, 22C, 16B, and 19B. One reason that the present interaction
improves the description of drip lines is the inclusion of the
mixing between 0h̄ω and 2h̄ω configurations. WBT and WBP
have mass-dependent term in the sd shell [7]. Going from
18O to 28O, the sd-shell interaction decreases, which makes
the nuclei less binding. We find that the mixing between 0h̄ω

and 2h̄ω states has a similar effect. The partial effect of mass
dependence therefore comes from the mixing between 0h̄ω

and 2h̄ω states, which is not included in WBT and WBP. We
will discuss more about the contribution of 2h̄ω states later.

In order to see if the prediction for the neutron drip line
is sensitive to the center-of-mass parameter β, we have made
calculations assuming three different values of the parameter.
Figure 7 displays the calculations of one- and two-neutron
separation energies under different β values, showing that

FIG. 9. Similar to Fig. 8, but for heavier carbon and light nitrogen
isotopes.
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FIG. 10. Similar to Fig. 8, but for heavier nitrogen and light
oxygen isotopes.

the value of β = 10 used in the present work is large
enough to remove the spurious center-of-mass components.
For example, the neutron separation energies of neutron-rich
oxygen isotopes change about 100 keV when increasing β

from 1 to 10, while the separation-energy variation is about
20 keV when increasing β from 10 to 20. It is consistent with
discussions in Sec. IV that the physical properties are well
convergent when β = 10.

Figures 8 to 11 present the energy levels of B, C, N, and O
isotopes. The agreement between experiment and the present
work is fairly good. In particular, for 10B and 18N, we can
reproduce the spins of the ground states of these two nuclei
while WBP and WBT fail. WBT also fails in describing the
spins of the ground states of 17C, 19C, and 16N. We only
show WBP results here because WBP is similar to WBT
and is better in describing the spins of the ground states. The
ground states of 16N and 22N are about 100 keV higher in
the present interaction. The SFO can also reproduce the spin
of the ground state of 10B and nuclei nearby. But it fails in
some neutron-rich nuclei such as 19O and 21O. This is because
the 〈sdsd|V |sdsd〉 part of SFO is from the renormalized

FIG. 11. Similar to Fig. 8, but for heavier oxygen isotopes.

G matrix [8]. The interaction is too attractive without the
contribution of three-body forces [2]. The first 1/2+ and 5/2+
states in 19O, 21O, and 23O indicate that the neutron 1s1/2

orbit is too low compared with the neutron 0d5/2 orbit in SFO.
This situation can be improved by using effective interactions
such as SDPF-M or including the contribution of three-body
forces [2], for instance.

The energy difference between the first 3+ and 1+ in 10B can
be reproduced well by both SFO and the present Hamiltonian.
This is partly because the 0p1/2 orbit is much higher than the
0p3/2 orbit and partly because the strength of 〈pp|V |sdsd〉 is
chosen properly, which will be discussed later. For 10B and
11B, an ab initio no-core shell-model calculation based on
chiral perturbation theory showed that the inclusion of the
three-body force is necessary to reproduce the ground-state
spins [23]. In the present Hamiltonian, the phenomenological
effective two-body interaction is mostly obtained by fitting
experimental data. Therefore, the effective interaction thus
obtained includes, at least partly, the three-body effect. Our
calculations show this equivalence. In Ref. [2], it was pointed
out that the ab initio interaction without three-body force can-
not reproduce the neutron drip line of oxygen isotopes, while
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FIG. 12. (Color online) Percentage of 2h̄ω components in carbon
and oxygen isotopes.

ab initio interaction with three-body force or phenomenologi-
cal two-body interactions may describe the drip line.

The ν(sd)3 configuration shows different structure in N =
11 isotones from 17C to 19O [24]. ν(0d5/2)3 can couple to
J = 5/2 with seniority v = 1 or couple to J = 3/2 with
seniority v = 3. The structure of ν(sd)3 as well as the low-
lying states in N = 11 isotones is a subtle problem because
of these two configurations together with ν(0d5/2)2(1s1/2)1,
ν(0d5/2)1(1s1/2)2, and many small components. For the first
time, the present Hamiltonian in the full psd model space
reproduces the low-lying states in all three of these nuclei,
17C, 18N, and 19O. The 〈(0d5/2)2|V |(0d5/2)2〉J=0,T =1 paring
interaction contributes to this good agreement because this
paring is reduced in SDPF-M, which will make the v = 1 state
less bound and keep the v = 3 state unchanged. As one can
see, the 2+ state in 18N and the 5/2+ states in 19O and 17C in the
present results become higher compared with those in WBP
results. Other matrix elements also contribute to this subtle
problem. We will discuss the contribution of 〈pp|V |sdsd〉 in
17C later.

The WBP and WBT results show more expanded energy
levels compared with observed energy levels in C and N
isotopes [25,26]. This can be improved by reducing neutron-
neutron interactions by 25% (for C isotopes) or 12.5% (for
N isotopes) in the sd shell in WBP and WBT [25,26]. The
spectra of the present interaction are not so expanded as in
WBP and WBT for C, N, and O isotopes.

In the present work, energy levels of unnatural parity state
are not fully considered. One reason is that experimental data
of these energy levels are not very available in neutron-rich
nuclei. Another reason is that the dimension of the calculation
increases quickly when including 3h̄ω components. We can
improve the description of these unnatural-parity states with
more experimental data and more advanced computers in the
future.

The strength of the interaction in the 〈pp|V |sdsd〉 matrix
elements is not determined in PSDMK, WBP, and WBT and
is not fully considered in SFO. In the present interaction,
the strength of the central part of 〈pp|V |sdsd〉 is 55% of
VMU . We will show some examples that the 〈pp|V |sdsd〉
matrix elements are important in describing the nuclei being
studied. The total wave function of a nucleus can be written as
� = a�(0h̄ω) + b�(2h̄ω). Figure 12 shows the probability

FIG. 13. (Color online) Energy levels of 10B and 17C as a
function of x, which specifies the strength of the central force,
〈pp|V |sdsd〉(central) = (0.55 + x)VMU (central).

b2 of the 2h̄ω component. It is clear that the probability
b2 is very sensitive to neutron numbers. When the neutron
number increases from 8 to 15, the value of b2 decreases
except for a singular point: 17C. In WBP and WBT, the sd part
includes the mass-dependent term (18/A)1/3 [7]. Only, with
this effect, WBP and WBT can well reproduce the ground-state
energies of these nuclei. The mass-dependent term is needed
for calculations of nuclei in a large mass range because the
nuclear force is related to the radii of nuclei as well as the
nucleon number A. But in a range of nuclei with small mass
numbers, the effect of mass dependence is not obvious when
we include 2h̄ω components. In the present Hamiltonian,
we can reproduce well the ground-state energies, separation
energies, and energy levels of B, C, N, and O isotopes without
a mass-dependent term. One can see from Fig. 12 that the
inclusion of 2h̄ω components will automatically contain a part
of the mass-dependent effects. More work is needed to study
the mass-dependent effects in light nuclei.

The 〈pp|V |sdsd〉 matrix elements are also important for
energy levels in certain nuclei. Figure 13 shows the dependence
of the energy levels in 10B and 17C on the interaction. Energy
differences, such as difference between 3+

1 and 1+
1 in 10B and

that between 3/2+
1 and 5/2+

1 in 17C, are very sensitive to the
strength of 〈pp|V |sdsd〉. The energy difference between 3+

1
and 0+

1 in 10B, on the other hand, is hardly changed when the
strength of the central part of 〈pp|V |sdsd〉 is changed by 60%
of VMU . The above observations suggest that the contribution
of 2h̄ω components is not only A dependent but is also state
dependent. The 2h̄ω components are 4.3%, 16.0%, and 6.0%
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in the 3+
1 , 1+

1 , and 0+
1 states in 10B, respectively. It is interesting

to do a systematic investigation on how 〈pp|V |sdsd〉 as well as
2h̄ω or more h̄ω components affect the energies and effective
operators, such as effective charges and spin g factors which
will be mentioned in the next two sections.

VI. ELECTRIC QUADRUPOLE PROPERTIES

The present Hamiltonian has been shown to describe the
energies of the psd-shell nuclei quite well. It is necessary to
investigate whether this interaction gives appropriate wave
functions as well. In this section, we discuss the electric
quadrupole properties with the use of the present Hamiltonian
and WBP. In the shell model, effective charges are needed
because of the polarization of the core, which is not included in
the model space [31,32]. One set of effective charges, ep = 1.3
and en = 0.5, is suitable for sd-shell nuclei [31], which means
that both valence protons and neutrons are excited in the sd

shell. For valence protons and/or neutrons located in the p shell
in neutron-rich nuclei, this set of effective charges becomes
invalid [33,40].

Figure 14 shows the quadrupole moments in B, C, and N
isotopes and B(E2) in Be and C isotopes with two sets of
effective charges: one is Z, N dependent [33] and the other
is independent of Z and N . Experimental values are taken
from Refs. [34–41]. For the Z- and N -independent effective
charges, we obtain them by fitting to quadrupole moments of
these nuclei except for 18N and 10B. The quadrupole moment
of 18N is not exactly determined as there are two experimental
values [34]. In case of 10B, Z- or N -independent effective
charges cannot describe well its quadrupole moment, as will
be discussed later.

The Z and N independent effective charges obtained for the
present Hamiltonian and WBP are ep = 1.26, en = 0.21 and
ep = 1.27, en = 0.23, respectively. We also get the effective
charges for the present Hamiltonian in 0h̄ω model space,
ep = 1.25 and en = 0.25. The inclusion of the 2h̄ω model
space reduces the effective charges a little. Both of them
underestimate the quadrupole moments in stable nuclei such
as 10B, 11C, and 12N and overestimate those of the nuclei
somewhat far from the stability line such as 15B and 17B.
This probably means that stable nuclei have stronger core

(c)(a)

(d)(b)

FIG. 14. (Color online) Electric quadrupole moments Q and B(E2) values calculated by the present and WBP interactions and compared
with experimental data [34–41]. Two sets of effective charges are used: one is Z, N dependent [33] and another is fixed to be ep = 1.26,
en = 0.21 and ep = 1.27, en = 0.23 for the present and WBP interactions, respectively. (a) Electric quadrupole moments calculated with
Z-, N -dependent effective charges. (b) B(E2) values calculated with Z-, N -dependent effective charges. (c) Electric quadrupole moments
calculated with fixed effective charges. (d) B(E2) values calculated with fixed effective charges. All quadrupole moments are for the ground
states except for 2+

1 in 12C. All B(E2) values are from 0+
1 to 2+

1 except for the second B(E2) value in 12Be, which is from 0+
2 to 2+

1 .
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polarization while nuclei far from the stability-line have
weaker core polarization. In nuclei far from the stability
line, some valence nucleons are weakly bound, which will
make the radial wave function extended farther than the
well-bound nucleons. The extended wave function will reduce
the interaction between valence nucleons and the core. In case
of 12C, the results for B(E2) values with fixed effective charges
are better than those with Z- and N -dependent effective
charges. We emphasize that the smaller but constant effective
charges can reproduce experimental data rather well in Fig. 14.
The smallness may be explained as a consequence of the small
core of 4He in the present work. More studies on effective
charges are of great interest.

Although none of the combinations of WBP or the present
Hamiltonian with either set of effective charges works well
in the quadrupole moment of 14B, the present Hamiltonian
improves the result of 14B compared with WBP. We also
calculate this quadrupole moment in the 0h̄ω model space with
the present interaction. The result becomes worse than what
we show in Fig. 14 which is obtained in the 2h̄ω model space.
The ground state of 14B includes 17% of 2h̄ω configurations.
Including more h̄ω excitations may improve the result of 14B.
The 2h̄ω configurations also improve the B(E2; 0+

2 → 2+
1 ) of

12Be. The 2+
1 of 12Be is almost a pure 2h̄ω state; that is, with

93% of the 2h̄ω components in the present Hamiltonian. The
0+

1 and 0+
2 of 12Be have 64% and 54% of the 2h̄ω components,

respectively. Therefore, although B(E2; 0+
1 → 2+

1 ) values are
very close to each other in WBP and the present results, they
are contributed by different configurations in each calculation.

(a)

(b)

FIG. 15. (Color online) Similar to Fig. 14, but for ep = 1.3 and
en = 0.5.

In the WBP result, B(E2; 0+
1 → 2+

1 ) of 12Be is all from
the contributions by the transition between p-shell nucleons,
especially the transition inside the 0p3/2 proton orbit. In
the present result, besides p-shell protons, p- and sd-shell
neutrons contribute a lot to B(E2; 0+

1 → 2+
1 ) in 12Be. In

12Be, the pure p-shell proton is not enough to reproduce the
B(E2; 0+

2 → 2+
1 ) value, as we see in Fig. 14.

We also try the conventional effective charges for the sd

shell, ep = 1.3 and en = 0.5, to calculate quadrupole moments
and B(E2) values with the present Hamiltonian (see Fig. 15).
It is seen clearly that this set of effective charges is also
invalid for this new Hamiltonian. Almost all values are much
overestimated with this set of effective charge.

VII. SPIN PROPERTIES

If two protons (neutrons) couple to a pair of angular
momentum zero, their total magnetic moment (m.m.) is zero.
The m.m. reflects the motion of unpaired protons and/or
neutrons. Figure 16 presents the m.m. with WBP and the
present Hamiltonian in both 0h̄ω and 2h̄ω model spaces
with δg(l)

π,ν = ±0.1μN and g(eff)
s /gs = 0.95, 0.92, and 0.90 for

the present 2h̄ω, the present 0h̄ω, and WBP, respectively.
δg(l) comes from the meson exchange processes [42,43]
and δg(s)/g(s) is obtained from the χ -square fitting of the
calculated values to the experimental ones in these nuclei. All
theoretical results reproduce well the observed values except

(a)

(b)

m
ag

ne
tic

 m
om

en
t

m
ag

ne
tic

 m
om

en
t

FIG. 16. (Color online) Magnetic moments calculated with WBP
in 0h̄ω, present in both 0h̄ω and 2h̄ω model spaces, compared with
experimental data [34]. All magnetic moments are for the ground
states except for 2+

1 in 20O and 18O and 3−
1 in 16O and 14C.
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FIG. 17. (Color online) Root-mean-square deviation between
calculated magnetic moments (m.m.) and the experimental ones,
|m.m.(Expt.) − m.m.(Calc.)|, as a function of g(eff)

s /gs .

for a few nuclei. The largest deviation between calculations
and experimental results is found in 18O, 16N, 14C, and 14B.
Notice that their E2 properties are also not well described.
We do not show the result for 18O in the present work. Its
calculated B(E2) value is much smaller than the observed
one. These nuclei may demand larger model space with 4h̄ω

or more excitations.
In Fig. 17, we also show the root-mean-square (rms) devia-

tion between calculations and observed values, |m.m.(Expt) −
m.m.(Calc)|, versus g(eff)

s /gs . In a region δg(eff)
s /gs = ±0.03,

the rms deviation of each result is very flat. Outside this region,

the rms deviation increases. The minimal point for the rms
deviation is located at g(eff)

s /gs = 0.95, 0.92 and 0.90 for the
present 2h̄ω, the present 0h̄ω and WBP, respectively. As we
expect, the quenching is weaker when we enlarge the model
space. The quenching of the present 2h̄ω result is rather weak
and we may safely use bare gs . If all results are with bare gs ,
the present Hamiltonian gives the smallest rms deviation. We
should also note, on the other hand, that the quenching factor
obtained here has some ambiguity as the dependence of the
rms deviation on the value of g(eff)

s /gs is quite modest.
Table I presents the Gamow-Teller transition rates B(GT).

The B(GT) values can be extracted from experimental log f t

values with the equation

f t = 6147

(gA/gV )2B(GT)
, (6)

where 6147 is from Ref. [44], and gA and gV are the
axial-vector and vector coupling constants, respectively. For
beta decays, we use bare gA/gV = −1.26 [45]. The calculated
results are with g

(eff)
A which is from χ -square fitting of these

B(GT) values. (g(eff)
A /gA) = 0.72, 0.68, and 0.64 for the

present 2h̄ω, the present 0h̄ω, and WBP, respectively. The
(g(eff)

A /gA) value for WBP is very close to the commonly used
value 0.60 [31]. 11Li and 15C are weakly bound with 0.325
and 1.218 MeV neutron separation energy, respectively. The
protons in their daughter nuclei from β decay are well bound.
Halo or skin effects need to be included which is not included

TABLE I. B(GT) values of experiment, WBP, and present interaction for both 0h̄ω and 2h̄ω results. Experimental values are taken from
Ref. [8] and related references in this paper.

Transition J π
i Ti ,J π

f Tf Experiment Present 2h̄ω Present 0h̄ω WBP

10C→10B 0+1, 1+0 3.467 (8) 3.256 2.724 3.022
11C→11B 3

2

− 1
2 , 3

2

− 1
2 0.3472 (45) 0.3606 0.3638 0.5043

11Li→11Be 3
2

− 5
2 , 1

2

− 3
2 0.0086 (24) 0.0079 0.0266 0.0126

12Be→12B 0+2, 1+1 0.624 (3) 0.754 1.488 1.359
12N→12C 1+1, 0+0 0.2950 (21) 0.2866 0.3650 0.3085

1+1, 2+0 0.0273 (5) 0.0335 0.0405 0.0145
12B→12C 1+1, 0+0 0.3288 (15) 0.2866 0.3650 0.3085

1+1, 2+0 0.0298 (10) 0.0335 0.0405 0.0145
13N→13C 1

2

− 1
2 , 1

2

− 1
2 0.1960 (38) 0.1958 0.1668 0.1537

13B→13C 3
2

− 3
2 , 1

2

− 1
2 0.3580 (50) 0.4005 0.4536 0.4175

3
2

− 3
2 , 3

2

− 1
2 0.137 (15) 0.137 0.173 0.137

3
2

− 3
2 , 5

2

− 1
2 0.0181 (43) 0.0166 0.0243 0.0015

13O→13N 3
2

− 3
2 , 1

2

− 1
2 0.3221 (83) 0.4005 0.4536 0.4175

3
2

− 3
2 , 3

2

− 1
2 0.110 (26) 0.137 0.173 0.137

3
2

− 3
2 , 5

2

− 1
2 0.0106 (71) 0.0166 0.0243 0.0015

14B→14C 2−2, 1−1 0.291 (40) 0.2580 0.2600 0.1960
2−2, 3−1 0.038 (2) 0.025 0.034 0.022

14C→14N 0+1, 1+0 3.46 (3)×10−7 0.0344 0.0450 0.0042
14O→14N 0+1, 1+0 2.02 (4)×10−7 0.0344 0.0450 0.0042

0+1, 1+0 2.818 (106) 2.942 2.990 2.905
15C→15N 1

2

+ 3
2 , 1

2

+ 1
2 0.2978 (42) 0.4524 0.4797 0.1046

1
2

+ 3
2 , 3

2

+ 1
2 4.91 (56)×10−4 0.0069 0.0125 0.0001

15O→15N 1
2

− 1
2 , 1

2

− 1
2 0.2490 (20) 0.2172 0.2266 0.2133
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(a)

(b)

FIG. 18. (Color online) Ratio of the observed B(GT) values to
calculated B(GT), B(GT)expt/B(GT)calc, in nuclei listed in Table I.

in calculations with harmonic oscillator bases. The overlap
between related neutron and proton orbits is calculated in
Woods-Saxon bases to modify the B(GT) of these two nuclei.
All three of these calculated results (i.e., WBP and the present
interaction in 2h̄ω and in 0h̄ω) are modified by the halo or
skin. More details can be found in Ref. [8].

The present 2h̄ω results improve most of the B(GT)
values compared with the present 0h̄ω and WBP results.
In order to show the difference between calculations and
observed values, we present B(GT)expt/B(GT)calc in Fig. 18.
B(GT)expt/B(GT)calc from the present 2h̄ω calculation is very
close to unity except for 14C and 14O, and the second transitions
in 15C. 14C and 14O are the same in the present isospin
symmetric Hamiltonian. The abnormally long lifetime of 14C
has been a long-standing theoretical problem [46]. The present
0h̄ω and WBP results also fail in describing B(GT) for 14C
and 14O. The reason is that two main components of the
transition almost all cancel in 14C [46]. It is hard to describe the

FIG. 19. (Color online) Root mean square of |B(GT)calc −
B(GT)expt| as a function of g

(eff)
A /gA.

cancellation exactly in interactions determined by considering
all nuclei nearby. In case of the the second transition from
15C to 15N, the reason is similar; that is, three components are
canceled resulting in a rather small value.

Similar to the discussion for m.m., the rms deviation
of calculated B(GT) values from the experimental ones is
presented in Fig. 19. It is clearly seen that both the rms
deviation and the quenching get smaller when the model space
is enlarged.

VIII. SUMMARY

In the present work, we present a systematic study of
boron, carbon, nitrogen, and oxygen nuclei in full psd

model-space with a newly constructed Hamiltonian. While
some former Hamiltonians, such as PSDMK, WBP, and
WBT, are constructed in (0 − 1)h̄ω model space, we in-
clude (2 − 3)h̄ω excitations in the present work. The present
Hamiltonian is based on VMU and has four parts, 〈pp|V |pp〉
from SFO, 〈sdsd|V |sdsd〉 from SDPF-M, 〈psd|V |psd〉 and
〈pp|V |sdsd〉 from VMU , plus the spin-orbit force. We optimize
the central part of VMU while the tensor force in VMU

and the spin-orbit force are kept unchanged. The central
force in 〈psd|V |psd〉 is 30% of VMU s stronger than that in
〈pp|V |sdsd〉, while the strength of these two parts are the
same in WBP. The SPE of the five orbits are also modified.
More details on this Hamiltonian are explained in the text.

The present Hamiltonian can reproduce well the ground-
state energies, drip lines, energy levels, electric properties,
and spin properties of psd-shell nuclei. In particular, we can
describe the drip lines of carbon and oxygen isotopes and spins
of the ground states of 10B and 18N where WBP and WBT fail.
The inclusion of 2h̄ω excitations is important in describing
such properties because a part of the mass-dependent effect
in WBP and WBT is naturally included when we include
2h̄ω excitations. The effective operators become closer, in
general, to bare operators when we enlarge the model space.
We note that constant and smaller effective charges work quite
well in the present study, which may also be attributed to the
small size of the 4He core. The contribution coming from 2h̄ω

excitations are investigated by comparison to 0h̄ω calculations,
suggesting that the present model space is still insufficient
to reduce effective charges almost to zero. More systematic
study is needed in a model space larger than psd and more h̄ω

excitations, especially for 4p4h excitations from p to sd shells.
It is also examined whether the tensor force and the

spin-orbit force can be kept unchanged in full shell-model cal-
culations. Shell-model calculations without the modification
of the strength of these two forces are found to be successful
in the description of a wide range of psd-shell nuclei. It is
interesting to do more work on applying the present tensor and
spin-orbit forces to shell-model calculations in other region of
nuclei.
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