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Symmetry energy of deformed neutron-rich nuclei
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The symmetry energy, the neutron pressure, and the asymmetric compressibility of deformed neutron-rich
even-even nuclei are calculated for the examples of Kr and Sm isotopes within the coherent density fluctuation
model using the symmetry energy as a function of density within the Brueckner energy-density functional. The
correlation between the thickness of the neutron skin and the characteristics related to the density dependence
of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the
self-consistent Skyrme-Hartree-Fock plus BCS method. Results for an extended chain of Pb isotopes are also
presented. A remarkable difference is found in the trend followed by the different isotopic chains: the studied
correlations reveal a smoother behavior in the Pb case than in the other cases. We also notice that the neutron
skin thickness obtained for 208Pb with the SLy4 force is found to be in a good agreement with recent data.
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I. INTRODUCTION

The study of the nuclear matter symmetry energy that
essentially characterizes the isospin-dependent part of the
equation of state (EOS) of asymmetric nuclear matter (ANM)
is currently an exciting topic of research in nuclear physics
[1–4]. In fact, applications of ANM are broad, ranging from
the structure of rare isotopes [5,6] to the properties of neutron
stars [7,8] and the dynamical process of nuclear reactions [9].
The transition from ANM to finite nuclei is a natural and
important way to learn more about the nuclear symmetry
energy, which is poorly constrained by experimental data on
ground-state nuclear properties.

The ground states of atomic nuclei are characterized by
different equilibrium configurations related to corresponding
geometrical shapes. The study of the latter, as well as the
transition regions between them, has been a subject of a
large number of theoretical and experimental studies (for a
review, see, for example, Ref. [10] and references therein).
The position of the neutron drip line is closely related to
the neutron excess and the deformation in nuclei. Deformed
nuclei are expected in several regions near the neutron drip
line [11,12]. In some cases, the deformation energy can
impact their existence. For instance, it has been predicted
that there exist particle-bound even-even nuclei that have,
at the same time, negative two-neutron separation energies
caused by shape coexistence effects [11]. In fact, the nuclear
deformation increases the surface area, thus leading to a larger
surface symmetry energy in a neutron-rich nucleus with a
deformed shape. Conversely, the precise determination of
the surface symmetry energy is important to describe the
deformability of neutron-rich systems and also to validate
theoretical extrapolations.

The theoretical treatment of the ground-state proper-
ties of deformed nuclei is usually made in the frame-
work of mean-field approaches; for instance, the nonrela-
tivistic self-consistent Hartree-Fock + BCS approach with

density-dependent Skyrme interaction [13–17], or the Hartree-
Fock-Bogoliubov (HFB) approximation that uses, in partic-
ular, the Gogny force containing a finite-range interaction
[18,19]. Also the relativistic mean-field (RMF) models with
different types of parameter sets have been widely used.
For instance, the RMF theory with parameter set FSUGold
has been recently employed to study the binding energies,
quadrupole deformations, charge radii, and neutron skins of
rare-earth even-even nuclei ranged from Z = 58 to Z = 70
and some deformed nuclei (Nd, Sm, Gd, and Dy) in other
regions [20]. This new parameter set that includes the nonlinear
coupling between the isoscalar and isovector mesons is
shown to reproduce successfully the ground-state properties
of deformed nuclei. Also, the same parameter set FSUGold
can successfully reflect the shell effect of the neutron magic
number N = 82, thus leading to a good description of the
ground-state properties of Sn, Te, Xe, and Ba isotopes [21].

Nowadays, the experimental information about the symme-
try energy is fairly limited. The need to have information for
this quantity in finite nuclei, even theoretically obtained, is a
major issue because it allows one to constrain the bulk and
surface properties of the nuclear energy-density functionals
(EDFs) quite effectively. For example, the traditional Skyrme
EDF based on the leptodermous expansion of the smooth
nuclear energy was used in Ref. [22], where the strongly
correlated symmetry and surface symmetry terms in this
expansion are resolved by considering data on deformed
neutron-rich nuclei in which the surface symmetry term is
amplified. By starting from microscopic nucleon self-energies
in nuclear matter, the authors of Ref. [23] have made a
comprehensive study of deformation properties of relativistic
nuclear EDFs for a set of 64 axially deformed nuclei in the
mass regions A ≈ 150–180 and A ≈ 230–250.

In our recent work [24] the Brueckner EDF for infinite
nuclear matter was applied to calculate nuclear quantities
of medium-heavy and heavy Ni, Sn, and Pb nuclei that
include surface effects, namely the nuclear symmetry energy
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s, the neutron pressure p0, and the asymmetric compressibility
�K . For this purpose, a theoretical approach that combines
the deformed HF + BCS method with Skyrme-type density-
dependent effective interactions [13] and the coherent density
fluctuation model (CDFM) [25,26] was used. We would like to
note the capability of the CDFM to be applied as an alternative
way to make a transition from the properties of nuclear matter
to the properties of finite nuclei. We have found that there exists
an approximate linear correlation between the neutron skin
thickness �R of even-even nuclei from the Ni (A = 74–84),
Sn (A = 124–152), and Pb (A = 206–214) isotopic chains and
their nuclear symmetry energies. A similar linear correlation
between �R and p0 was also found to exist, while the relation
between �R and �K turned out to be less pronounced. The
kinks displayed by Ni and Sn isotopes and the lack of such a
kink in the Pb chain considered [24] were shown to be mainly
due to the shell structure of these exotic nuclei, but they deserve
further analysis within the used theoretical approach.

Another interesting question is to explore how the nuclear
symmetry energy changes in the presence of deformation
and correlates with the neutron skin thickness within a given
isotopic chain. In Ref. [16], the effects of deformation on
the skin formation were studied in Kr isotopes that are well
deformed nuclei. It has been shown from the analysis on
98,100Kr nuclei that although the profiles of the proton and
neutron densities, as well as the spatial extensions, change with
the direction in both oblate and prolate shapes, the neutron skin
thickness remains almost equal along the different directions
perpendicular to the surface. Thus, a very weak dependence of
the neutron skin formation on the character of the deformation
was found [16].

In the present work an investigation of possible relation
between the neutron skin thickness and the basic nuclear matter
properties in deformed finite nuclei, such as the symmetry
energy at the saturation point, symmetry pressure, and asym-
metric compressibility, is carried out for chains of deformed
neutron-rich even-even Kr (A = 82–96) (including, as well,
the case of some extreme neutron-rich nuclei up to 120Kr)
and Sm (A = 140–156) isotopes, following the theoretical
method of Ref. [24]. We also present for comparison results
for an extended chain of Pb (A = 202–214) isotopes. This
is motivated by the significant interest (in both experiment
[27–29] and theory [30–33]) to study the neutron distribution
and rms radius in 208Pb, aiming at precise determinations of the
neutron skin in this nucleus. In addition to the interest that this
study may have by itself as well as in combination with the
previous calculations of Ref. [24], we give some numerical
arguments in proof of the existence of kinks in Ni and Sn
isotopic chains that are not present in the Pb chain. The kinks
are produced because of the sensitivity of the symmetry energy
and neutron pressure to the shell structure (see, for instance,
the discussion in Refs. [24,34,35]).

The paper is organized as follows. In Sec. II we present
a brief description of the theoretical formalism (definitions
of ANM properties, CDFM basic expressions, Brueckner
energy-density functional, and Hartree-Fock + BCS den-
sities) used to unveil a possible correlation between the
neutron skin thickness and the nuclear matter characteristics
of the considered isotopic chains. Section III contains our

results with a discussion on the obtained relationships and
on the presence of kinks. Concluding remarks are given in
Sec. IV.

II. THEORETICAL FRAMEWORK

We study in the present work the symmetry energy s(ρ) and
related quantities of finite deformed nuclei on the basis of the
corresponding definitions for ANM. The quantity sANM(ρ),
which refers to the infinite system and therefore neglects
surface effects, is related to the second derivative of the energy
per particle E(ρ, δ) using its Taylor series expansion in terms
of the isospin asymmetry δ = (ρn − ρp)/ρ (ρ, ρn, and ρp

being the baryon, neutron and proton densities, respectively)
(see, e.g., Refs. [24,36,37]):

sANM(ρ) = 1

2

∂2E(ρ, δ)

∂δ2

∣∣∣∣
δ=0

= a4 + pANM
0

ρ2
0

(ρ − ρ0)

+ �KANM

18ρ2
0

(ρ − ρ0)2 + · · · . (1)

In Eq. (1) the parameter a4 is the symmetry energy at
equilibrium (ρ = ρ0). In ANM the pressure pANM

0 and the
curvature �KANM are

pANM
0 = ρ2

0
∂sANM(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

, (2)

�KANM = 9ρ2
0

∂2sANM(ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

. (3)

The “slope” parameter LANM is defined as

LANM = 3pANM
0

ρ0
. (4)

In general, the predictions for the symmetry energy vary
quite substantially: e.g., a4 ≡ s(ρ0) = 28–38 MeV while an
empirical value of a4 ≈ 29 MeV has been extracted from
finite nuclei by fitting the ground-state energies using the
generalized Weizsäcker mass formula (see, e.g., Ref. [38]).
By using the experimental pygmy strength, an average value
of a4 = 32.0 ± 1.8 MeV was obtained from the 130,132Sn
analysis [39], which is within the acceptable range of values of
a4 to be around 32.5 MeV coming from various experiments
using different experimental probes (for a recent status, see,
for example, Ref. [40] and references therein).

In Ref. [24] we calculated the symmetry energy, the
pressure and slope, as well as the curvature for finite nuclei
applying the coherent density fluctuation model (suggested
and developed in Refs. [25,26]). In the CDFM the one-body
density matrix ρ(r, r′) of the nucleus is written as a coherent
superposition of the one-body density matrices ρx(r, r′) for
spherical “pieces” of nuclear matter called “fluctons” with
densities ρx(r) = ρ0(x)�(x − |r|), ρ0(x) = 3A/4πx3:

ρ(r, r′) =
∫ ∞

0
dx|f (x)|2ρx(r, r′) (5)
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with

ρx(r, r′) = 3ρ0(x)
j1(kF (x)|r − r′|)
(kF (x)|r − r′|)

× �

(
x − |r + r′|

2

)
, (6)

where j1 is the first-order spherical Bessel function,

kF (x) =
(

3π2

2
ρ0(x)

)1/3

≡ α

x
(7)

with

α =
(

9πA

8

)1/3

� 1.52A1/3 (8)

is the Fermi momentum of the nucleons in the flucton with a
radius x. In Eq. (5) |f (x)|2 is the weight function that in the
case of monotonically decreasing local densities [dρ(r)/dr �
0] can be obtained using a known density distribution for a
given nucleus:

|f (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

(9)

with the normalization
∫ ∞

0 dx|f (x)|2 = 1.
The main assumption of the CDFM is that properties of

finite nuclei can be calculated using the corresponding ones
for nuclear matter, folding them with the weight function
|f (x)|2. Along this line, in the CDFM the symmetry energy for
finite nuclei and related quantities are assumed to be infinite
superpositions of the corresponding ANM quantities weighted
by |f (x)|2:

s =
∫ ∞

0
dx|f (x)|2sANM(x), (10)

p0 =
∫ ∞

0
dx|f (x)|2pANM

0 (x), (11)

�K =
∫ ∞

0
dx|f (x)|2�KANM(x). (12)

The explicit forms of the ANM quantities sANM(x), pANM
0 (x),

and �KANM(x) in Eqs. (10)–(12) are defined below. They
have to be determined within a chosen method for description
of the ANM characteristics. In the present work, as well as in
Ref. [24], considering the pieces of nuclear matter with density
ρ0(x), we use for the matrix element V (x) of the nuclear
Hamiltonian the corresponding ANM energy from the method
of Brueckner et al. [41,42]:

V (x) = AV0(x) + VC − VCO, (13)

where

V0(x) = 37.53[(1 + δ)5/3 + (1 − δ)5/3]ρ2/3
0 (x)

+ b1ρ0(x) + b2ρ
4/3
0 (x) + b3ρ

5/3
0 (x)

+ δ2[b4ρ0(x) + b5ρ
4/3
0 (x) + b6ρ

5/3
0 (x)] (14)

with

b1 = −741.28, b2 = 1179.89, b3 = −467.54,
(15)

b4 = 148.26, b5 = 372.84, b6 = −769.57.

In Eq. (13) V0(x) is the energy per particle in nuclear matter
(in MeV) accounting for the neutron-proton asymmetry, VC is
the Coulomb energy of protons in a flucton,

VC = 3

5

Z2e2

x
, (16)

and VCO is the Coulomb exchange energy:

VCO = 0.7386Ze2(3Z/4πx3)1/3. (17)

Thus, using the Brueckner theory, the symmetry energy
sANM(x) and the related quantities for ANM with density ρ0(x)
[the coefficient a4 in Eq. (1)] have the forms

sANM(x) = 41.7ρ
2/3
0 (x) + b4ρ0(x)

+ b5ρ
4/3
0 (x) + b6ρ

5/3
0 (x), (18)

pANM
0 (x) = 27.8ρ

5/3
0 (x) + b4ρ

2
0 (x)

+ 4
3b5ρ

7/3
0 (x) + 5

3b6ρ
8/3
0 (x), (19)

and

�KANM(x) = −83.4ρ
2/3
0 (x) + 4b5ρ

4/3
0 (x) + 10b6ρ

5/3
0 (x).

(20)

In our method (see also Ref. [24]) Eqs. (18)–(20) are used to
calculate the corresponding quantities in finite nuclei s, p0,
and �K from Eqs. (10)–(12), respectively. We note that in the
limit case when ρ(r) = ρ0�(R − r) and |f (x)|2 becomes a δ

function [see Eq. (9)], Eq. (10) reduces to sANM(ρ0) = a4.
In our work we use the proton and neutron densities

obtained from self-consistent deformed Hartree-Fock calcu-
lations with density-dependent Skyrme interactions [13] and
pairing correlations. Pairing between like nucleons is included
by solving the BCS equations at each iteration with a fixed
pairing strength that reproduces the odd-even experimental
mass differences [43].

The spin-independent proton and neutron densities are
given by [16,44]

ρ( �R) = ρ(r, z) =
∑

i

2v2
i ρi(r, z) , (21)

where r and z are the cylindrical coordinates of �R, v2
i are the

occupation probabilities resulting from the BCS equations, and
ρi are the single-particle densities

ρi( �R) = ρi(r, z) = |	+
i (r, z)|2 + |	−

i (r, z)|2 (22)

with

	±
i (r, z) = 1√

2π

∑
α

δ
,±1/2 δ�,�∓ Ci
α ψ�

nr
(r) ψnz

(z) (23)
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and α = {nr, nz,�,
}. In Eq. (23) the functions ψ�
nr

(r) and
ψnz

(z) are expressed by Laguerre and Hermite polynomials:

ψ�
nr

(r) =
√

nr

(nr + �)!
β⊥

√
2 η�/2 e−η/2 L�

nr
(η) , (24)

ψnz
(z) =

√
1√

π2nznz!
β1/2

z e−ξ 2/2 Hnz
(ξ ) (25)

with

βz = (mωz/h̄)1/2, β⊥ = (mω⊥/h̄)1/2,
(26)

ξ = zβz, η = r2β2
⊥ .

The normalization of the densities is∫
ρ( �R)d �R = X (27)

with X = Z,N for protons and neutrons, respectively.
The multipole decomposition of the density can be written

in terms of even λ multipole components as [13,44]

ρ(r, z) =
∑

λ

ρλ(R)Pλ(cos θ ). (28)

In the calculations, for the density distribution ρ(r) needed
to obtain the weight function |f (x)|2 [Eq. (9)], we use the
monopole term ρ0(R) in the expansion (28).

The neutron skin thickness is usually estimated as the
difference of the rms radii of neutrons and protons:

�R = 〈
r2

n

〉1/2 − 〈
r2

p

〉1/2
. (29)

In our calculations the following Skyrme force parametriza-
tions are used: SLy4 [45], Sk3 [46], SGII [47], and LNS [48].
These are among the most extensively used Skyrme forces
that work successfully for describing finite nuclei properties.
Although it is well known that SGII and LNS interactions do
not predict accurate binding energies in finite nuclei, we have
included them in our work because they are representative
examples of Skyrme interactions and because we are not
concerned here with the absolute values of binding energies,
but rather with the isotopic evolution of relative differences of
various magnitudes and energy derivatives.

III. RESULTS AND DISCUSSION

We start our analysis by searching for the role of deforma-
tion on the rms radii. It is illustrated by showing the differences
between the proton (neutron) radii and the corresponding
proton (neutron) radius of semimagic 86Kr (N = 50) which is
taken as a reference nucleus. The results are given in Figs. 1(a)
and 1(b), respectively. In addition, in Fig. 1(c) our results
with the SLy4 force for the squared charge radii differences

(a) (b)

(c)

FIG. 1. (Color online) Proton (a) and neutron (b) rms radii differences relative to 86Kr for oblate and prolate nuclear shapes. (c) Theoretical
(with the SLy4 Skyrme force) and experimental isotope shifts δ〈r2

c 〉 of Kr isotopes relative to 86Kr. The results for oblate and prolate shape for
A = 82, 84 isotopes are indistinguishable.

064319-4



SYMMETRY ENERGY OF DEFORMED NEUTRON-RICH NUCLEI PHYSICAL REVIEW C 85, 064319 (2012)

FIG. 2. (Color online) HF + BCS neutron
skin thicknesses �R for Kr isotopes as a function
of the symmetry energy s and the pressure p0

calculated with SLy4, SGII, Sk3, and LNS forces
and for oblate and prolate shapes. The results for
oblate and prolate shape for A = 82, 84 isotopes
are indistinguishable.

in Kr isotopes are shown, and they are compared with the
experimental data from Ref. [49]. Results of this type have
been presented in Ref. [16], where the charge radii differences
in Sn isotopes obtained from SLy4, SGII, and Sk3 Skyrme
forces are compared with the experimental data, taking the
radius of 120Sn as the reference. In principle, these differences
have been found to be very sensitive probes of nuclear shape
transitions, and it is worth studying globally a wide region of
neutron-rich exotic nuclei and discussing the similarities and
differences among the various isotopic chains [50].

In this analysis the even-even 86Kr isotope turns out to be
spherical, while for Kr isotopes beyond the semimagic 86Kr
(N = 50) nucleus a deformation (oblate or prolate) takes place.
We note that for the considered lightest isotopes with A = 82
and 84, both shapes produce results that are indistinguishable
and, therefore, only the prolate solutions are presented. A
smooth increase of radii differences relative to 86Kr with
increasing neutron number can be observed in all three panels
of Fig. 1. The charge and proton radii grow following the
growth of the neutron radius with increasing neutron number.
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These increases are only slightly dependent on whether an
oblate or a prolate shape is considered. A similar behavior has
been obtained from Gogny-D1S-HFB calculations performed
in Ref. [50]. A satisfactory agreement with the experimental
isotope shifts is observed in Fig. 1(c) that provides a good
starting point to study further quantities such as the symmetry
energy and related characteristics of deformed nuclei within
our theoretical method.

Next, an illustration of a possible correlation of the neutron
skin thickness �R with the s and p0 parameters, extracted from
the density dependence of the symmetry energy around the
saturation density for the Kr isotopic chain, is given in Fig. 2.
The symmetry energy and the pressure are calculated within
the CDFM according to Eqs. (10) and (11) by using the weight
functions (9) calculated from the self-consistent densities in
Eq. (21). The differences between the neutron and proton rms
radii of these isotopes [Eq. (29)] are obtained from HF + BCS
calculations using four different Skyrme forces, SLy4, SGII,
Sk3, and LNS. It can be seen from Fig. 2 that there exists an
approximate linear correlation between �R and s for the even-
even Kr isotopes with A = 82–96. Similarly to the behavior of
�R vs s dependence for the cases of Ni and Sn isotopes [24],
we observe a smooth growth of the symmetry energy up to the
semimagic nucleus 86Kr (N = 50) and then a linear decrease
of s while the neutron skin thickness of the isotopes increases.
This linear tendency expressed for Kr isotopes with A > 86
is similar for the cases of both oblate and prolate deformed
shapes. We note that all Skyrme parametrizations used in the
calculations reveal similar behavior; in particular, the average
slope of �R for various forces is almost the same.

In addition, one can see from Fig. 2 a stronger deviation
between the results for oblate and prolate shape of Kr isotopes
in the case of SGII parametrization when displaying the
correlation between �R and s. This is valid also for the
correlation between �R and p0, where more distinguishable
results for both types of deformation are present. The neutron
skin thickness �R for Kr isotopes correlates with p0 almost
linearly, as in the symmetry-energy case, with an inflection-
point transition at the semimagic 86Kr nucleus. In addition,
one can see also from Fig. 2 that the calculated values for
p0 are smaller in the case of LNS and SLy4 forces than for
the other two Skyrme parameter sets. In general, we would
like to note that the behavior of deformed Kr isotopes shown
in Fig. 2 is comparable with the one found for the spherical
Ni and Sn isotopes having a magic proton number that we
discussed in Ref. [24]. The small differences just indicate that
stability patterns are less regular within isotopic chains with a
nonmagic proton number.

For more complete study, we also consider in our work the
extremely neutron-rich Kr isotopes (A = 96–120). The results
for the symmetry energy s as a function of the mass number A

for the whole Kr isotopic chain (A = 82–120) are presented
in Fig. 3. We observe peaks of the symmetry energy at specific
Kr isotopes, namely at semimagic 86Kr (N = 50) and 118Kr
(N = 82) nuclei. In addition, a flat area is found surrounded by
transitional regions A = 88–96 and A = 110–116. Also, the
SGII and Sk3 forces yield values of s comparable with each
other that lie between the corresponding symmetry energy
values when using SLy4 and LNS sets. The specific nature

FIG. 3. (Color online) The symmetry energies s for Kr isotopes
(A = 82–120) calculated with SLy4, SGII, Sk3, and LNS forces.

of the LNS force [48] (not being fitted to finite nuclei) leads
to larger values of s (and to a larger size of the neutron skin
thickness, as is seen from Fig. 2) with respect to the results with
other three forces. Although the values of s slightly vary within
the Kr isotopic chain when using different Skyrme forces, the
curves presented in Fig. 3 exhibit the same trend.

The results shown in Fig. 3 are closely related to the evolu-
tion of the quadrupole parameter β = √

π/5 Q/(A〈r2〉1/2) (Q
being the mass quadrupole moment and 〈r2〉1/2 the nucleus
rms radius) as a function of the mass number A that is
presented in Fig. 4. First, one can see from Fig. 4 that the
semimagic A = 86 and A = 118 Kr isotopes are spherical,
while the open-shell Kr isotopes within this chain possess
two equilibrium shapes, oblate and prolate. In the case of
open-shell isotopes, the oblate and prolate minima are very
close in energy and the energy difference is always less than

84 88 92 96 100 104 108 112 116 120
A

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

β

Kr SLy4

FIG. 4. (Color online) The quadrupole parameter β as a function
of the mass number A for the even-even Kr isotopes (A = 82–120)
in the case of the SLy4 force.
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(a) (b) (c)

FIG. 5. (Color online) HF + BCS neutron skin thicknesses �R for Sm isotopes as a function of the symmetry energy s (a), pressure p0

(b), and asymmetric compressibility �K (c) calculated with the SLy4 force.

1 MeV. In this region of even-even Kr isotopes with very large
N/Z ratio (�1.7) the competition between the prolate and
oblate shapes has also been studied with HFB calculations
and the Gogny force in Ref. [51]. Shape coexistence in lighter
Kr isotopes has also been examined [52,53]. Nevertheless,
we specify in Fig. 4 which shape corresponds to the ground
state of each isotope by encircling them. Thus, the trend
that the evolution of the symmetry energy shown in Fig. 3
follows can be clearly understood. The peaks of the symmetry
energy correspond to the closed-shell nuclei that are spherical.
Mid-shell nuclei (A = 96–110) are well deformed and exhibit
a stabilized behavior with small values of s. The transitional
regions from spherical to well deformed shapes correspond
to transitions from the peaks to the valley in the symmetry
energy.

In Figs. 5 and 6 we give results for Sm isotopes (A = 140–
156) as a well established example of deformed nuclei. In

the calculations, all Sm isotopes are found to have a prolate
shape, except for the even-even 144Sm and 146Sm nuclei that
are spherical. Such an evolution of shape from the spherical
to the axially deformed shapes in the same Sm isotopic region
is in accordance with the results obtained from microscopic
calculations in the RMF theory [54]. In Ref. [54] the ground
state of the semimagic 144Sm (N = 82) is found to be spherical
(having about a 12 MeV stiff barrier against deformation) and
the deformation in 146Sm to be still small. With the increase
of the neutron number, the ground state gradually moves
toward the deformed one until the well deformed 154–158Sm
[54]. Also, the analysis of the potential energy curves [15]
within the same microscopic approach that we use in the
present work, as well as within the HFB method with Gogny
interaction [19], confirmed the transitional behavior between
the spherical 144Sm and the well prolate-deformed 154−158Sm
isotopes.

(a) (b)

FIG. 6. (Color online) HF + BCS neutron skin thicknesses �R for Sm isotopes as a function of the symmetry energy s (a) and the pressure
p0 (b) calculated with SGII, Sk3, and LNS forces.
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(a) (b) (c)

FIG. 7. (Color online) HF + BCS neutron skin thicknesses �R for Pb isotopes as a function of the symmetry energy s (a), pressure p0 (b),
and asymmetric compressibility �K (c) calculated with SLy4, SGII, Sk3, and LNS forces.

The results for the correlation between the neutron skin
thickness and the nuclear matter properties in finite nuclei
with the SLy4 Skyrme force for a chain of Sm isotopes are
shown in Fig. 5, while those with SGII, Sk3, and LNS forces
are presented in Fig. 6. Similar to the case of Kr isotopes with
transition at specific shell closure, we observe a smooth growth
of the symmetry energy until the semimagic nucleus 144Sm
(N = 82) and then an almost linear decrease of s while the neu-
tron skin thickness of the isotopes increases. An approximate
linear correlation between �R and p0 is also shown in Figs.
5(b) and 6(b), while Fig. 5(c) exhibits a very irregular behavior
of �R as a function of the asymmetric compressibility �K .
Nevertheless, the values of �K deduced from our calculations
are in the interval between –295 and –315 MeV that compares
fairly well with the neutron-asymmetry compressibility (K ′


 =
−320 ± 180 MeV) deduced from the data [55] on the breathing
mode giant monopole resonances in the isotopic chains of Sm
and Sn nuclei.

The theoretical neutron skin thickness �R of Pb nuclei
(A = 202–214) against the parameters of interest, s, p0, and
�K , is illustrated in Fig. 7. In this work we consider an
extended chain of Pb isotopes in comparison to the one
analyzed in Ref. [24] by adding two nuclei lighter than
206Pb. Therefore, a more precise study of the corresponding
correlations, especially in the transition region at the double-
magic 208Pb nucleus, could be made. Here, we test three more
parametrizatios (SGII, Sk3, and LNS) in addition to the SLy4
force applied in Ref. [24]. All predicted correlations manifest
an almost linear dependence and no pronounced kink at 208Pb
is observed. Similarly to Kr and Sm isotopes presented in
this study (and isotopes from Ni and Sn chains described in
Ref. [24]), the LNS force produces larger symmetry energies
s than the other three forces also for Pb nuclei with values
exceeding 30 MeV. Another peculiarity of the results obtained
with LNS is the almost constant �K observed in Fig. 7(a).

Further attention is deserved for the value of the neutron
skin thickness in 208Pb, whose determination has motivated
recent experiments. The model-independent measurement of
parity-violating asymmetry (which is sensitive to the neutron

distribution) in the elastic scattering of polarized electrons
from 208Pb at JLAB by the PREX Collaboration [27,28]
has provided the first electroweak observation of �R =
0.33+0.16

−0.18 fm in 208Pb. Obviously, future precise measurements
are needed to reduce the quoted uncertainties of �R. The
distorted-wave electron scattering calculations for 208Pb [31]
extracted a result for the neutron skin thickness which agrees
with that reported in the experimental paper [28]. As can be
seen from Fig. 7(a), the value of �R for 208Pb (0.1452 fm)
deduced from the present HF + BCS calculations with the
SLy4 force agrees with the recent experimentally extracted
skin thickness (0.156+0.025

−0.021 fm) using its correlation with the
dipole polarizability [29]. However, this experimental value
was derived by means of covariance analysis based on one
Skyrme functional (SV-min). In this respect, a systematic study
with a variety of EDFs as well as experimental tests in other
nuclei would be important because the correlation between
polarizability, neutron skin thickness, and symmetry energy
is model dependent (see, for example, Fig. 1 of Ref. [33]).
In addition, our theoretically obtained value of �R for 208Pb
agrees well with the value 0.18 ± 0.027 fm from Ref. [40].
It is lower than the one obtained in Refs. [56,57] with the
same Skyrme force, but is in agreement with the values
calculated with self-consistent densities of several nuclear
mean-field models (see Table I in Ref. [58]). The p0 and �K

values for 208Pb are in a good agreement with those from
Ref. [56].

We would like to note that linear correlations �R vs s

and �R vs p0 are found to exist in the Kr (A = 82–96), Sm
(A = 140–156), and Pb (A = 202–214) isotopic chains. The
correlation �R vs �K presented for the examples of Sm and
Pb isotopes (Figs. 5 and 7, respectively) is less strong than the
ones mentioned before and shows a slight irregular behavior.
This concerns also the calculated results for �K in the case
of Kr isotopes that are not shown in Fig. 2. Such observations
are confirmed by the results for these correlations obtained in
Refs. [59,60]. In addition, it was demonstrated in Ref. [61] that,
among various observables that correlate with the neutron form
factor (related to the neutron density and, thus, to the neutron
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(a) (b) (c)

FIG. 8. (Color online) The weight function |f (x)|2 calculated for three Ni (A = 76, 78, 80) isotopes (a), three Sn (A = 130, 132, 134)
isotopes (b), and three Pb (A = 206, 208, 210) isotopes (c) by using the HF + BCS total densities for these nuclei and with the SLy4 force.

skin thickness), the incompressibility is a poor indicator of
isovector properties.

Following our previous analysis within the CDFM approach
[24], here we would like to give more detailed study of the
weight function |f (x)|2 (that is related to the density and thus,
to the structural peculiarities) to understand the kinks observed
in the relationships between �R and s, as well as �R and p0.
The latter were shown to exist [24] in double-magic nuclei in
the cases of Ni (at 78Ni) and Sn (at 132Sn) isotopic chains. As
one can see in Figs. 2, 5, and 6 of the present work, they exist
also in the considered cases of Kr (at 86Kr) and Sm (at 144Sm)
isotopes. In contrast, such a kink does not exist in the case of
the Pb isotopic chain (at 208Pb, particularly).

Here we analyze, as an example, the cases of Ni, Sn, and
Pb isotopic chains, trying to understand the origin of the kinks
without additional complexities coming from deformation. For
this purpose, let us introduce the quantity

�s± = sA±2 − sA

sA

(30)

which gives information on the relative deviation of the
symmetry energy s of even-even isotopes with respect to the
double-magic ones, namely with A = 78 for Ni, A = 132 for
Sn, and A = 208 for Pb. Here we will consider the range of
integration on x in Eq. (10) in each of the cases of Ni, Sn, and
Pb isotopes. First, we will introduce the value of xmin at which
the symmetry energy for nuclear matter sANM(x) changes sign
from negative (at x < xmin) to positive (at x > xmin). In our

work we use the symmetry energy sANM(ρ(x)) [Eq. (18)] from
the Brueckner theory, that is defined by the second derivative
of the energy per particle E(ρ, δ). Considering in principle in
the CDFM the range of x from zero to infinity we include in
this way the region of densities ρ0(x) from infinity to zero,
respectively. When the values of x are small we consider in
practice values of the density ρ0(x) that are much larger than
the density in the equilibrium state ρ0. In this case unphysical
(negative) values of the symmetry energy appear, and thus
starting the integration from x � xmin we exclude these values.
We have to note simultaneously that at x < xmin the weight
function |f (x)|2 is close to zero (it is its “left wing”; see
Fig. 8), so there is no contribution to s from this region
(x < xmin). Secondly, we introduce the value of xmax (in the
“right wing” of |f (x)|2) beyond which the contribution to s

[i.e., the result of the integration in Eq. (10) from xmax to
infinity] is negligible. If we define by �x = xmax − xmin, then
we impose for xmax the condition s − s�x � 0.1 MeV, where
s�x is obtained by Eq. (10) integrating over x from xmin to
xmax, while s is the result of integration from xmin to infinity.
The points xmin and xmax corresponding to the double-magic
nuclei of the three isotopic chains considered are indicated
in Fig. 8, where the intrinsic weight functions |f (x)|2 for
76,78,80Ni [Fig. 8(a)], 130,132,134Sn [Fig. 8(b)], and 206,208,210Pb
[Fig. 8(c)] are separately presented. Then, if one uses Eq. (10)
that determines the symmetry energy s in finite nuclei within
the CDFM, the contribution s�x of s in the interval �x is
obtained. The values of s�x are given in Table I together with

TABLE I. Integration limit values xmin and xmax (in fm) and values of the contribution s�x to the total symmetry energy s (in MeV) for three
Ni (A = 76, 78, 80), Sn (A = 130, 132, 134), and Pb (A = 206, 208, 210) isotopes.

76Ni 78Ni 80Ni 130Sn 132Sn 134Sn 206Pb 208Pb 210Pb

xmin 3.26 3.30 3.32 3.90 3.92 3.94 4.56 4.56 4.58
xmax 7.78 7.82 8.16 8.70 8.72 8.92 9.56 9.62 9.64
s�x 27.55 27.75 27.37 28.52 28.66 28.46 28.97 28.86 28.76
s 27.65 27.85 27.47 28.62 28.76 28.56 29.07 28.96 28.86
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FIG. 9. The weight function |f (x)|2 and the HF + BCS total
density ρ0(R) of 208Pb calculated with the SLy4 force.

the values of xmin, xmax, and s. We can see from Table I that, as
can be expected, the total symmetry energy is almost exhausted
by its contribution s�x , thus showing the important role which
the nuclear surface plays for the obtained symmetry energy
values. For a better illustration of this fact, we plot together in
Fig. 9 the weight function |f (x)|2 and the HF + BCS total
density ρ0(R) of 208Pb in the case of the SLy4 force. As
can be seen, the nuclear surface part of the density which
determines the weight function |f (x)|2 containing the peak
around the maximum is responsible to a large extent for the
main contribution to the total symmetry energy.

TABLE II. Relative deviation values of the symmetry energy �s+
and �s− [Eq. (30)] for the range of integration �x in Eq. (10) and
for Ni, Sn, and Pb isotopes.

Ni Sn Pb

�s+ −0.0137 −0.0070 −0.0035
�s− −0.0072 −0.0049 0.0038

The analysis of the quantity �s± [Eq. (30)] might be
instructive because this quantity is a direct measure of the
relative deviation of the symmetry energy with respect to the
double-magic nuclei, taking them as reference nuclei in each
of the chains, where the kinks are expected. The values of �s+
and �s− are listed in Table II, where the two numbers for each
isotopic chain correspond to the range of integration �x. One
can see first from this table that the absolute values of �s+ and
�s− for Pb isotopes are comparable with each other, which is
not the case for the two other isotopic chains. Second, and very
important, is that the �s+ value turns out to be negative and
the �s− value to be positive for Pb isotopes in the range of in-
tegration �x, and this is the main difference regarding the cor-
responding values (both are negative) in the Ni and Sn chains.

These differences can be attributed to the profiles of the
density distributions, particularly in the surface region. They
are given in Fig. 10, where curves for five Ni, Sn, and Pb
isotopes around double-magic 78Ni, 132Sn, and 208Pb nuclei
are presented in panels (a), (b), and (c), respectively. One can
see from Fig. 10 the same trend in the tails of the three isotopic
chains, which are ordered according to the mass number A,
being higher for heavier isotopes to produce larger radii. On
the other hand the behavior in the top part of the surface

3 4 5
R [fm]

0

0.05

0.10

0.15

ρ 0(R
) [

fm
-3

]

74Ni
76Ni
78Ni
80Ni
82Ni

4 5 6
R [fm]

128Sn
130Sn
132Sn
134Sn
136Sn

5 6 7 8
R [fm]

204Pb
206Pb
208Pb
210Pb
212Pb

3.4 3.6 3.8
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4.2 4.4 4.6
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130Sn
132Sn
134Sn
136Sn

5.2 5.4 5.6
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206Pb
208Pb
210Pb
212Pb

(a) (b) (c)

FIG. 10. (Color online) HF + BCS total densities in the surface region for five Ni (A = 74–82) isotopes (a), five Sn (A = 128–136)
isotopes (b), and five Pb (A = 204–212) isotopes (c) around double-magic 78Ni, 132Sn, and 208Pb nuclei, respectively, calculated with the SLy4
force.
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region, shown in the inset of the panels, is different. In the
case of Ni and Sn isotopes in panels (a) and (b), one observes
that the double-magic nuclei have the largest density with
all the neighboring isotopes lying below. In the case of Pb
isotopes in panel (c), the density increases from heavier to
lighter isotopes with the double-magic nucleus in between. In
Pb isotopes, this ordering is opposite in the tail. As a result
of this, the slope of the density in Pb isotopes, and therefore
|f (x)|2, decreases with the number of neutrons continuously
and no kink is present in the symmetry energy. On the other
hand, in the case of Ni and Sn isotopes, the slope of the density
is larger for the double-magic isotopes, generating a kink in
the symmetry energy.

In this way, the kinks displayed in our previous study [24]
by the Ni and Sn isotopes and the fact that no kinks appear
in the Pb chain considered can be understood. It concerns not
only the symmetry energy evolution, but also its relationship
with the neutron skin thickness �R and the pressure p0. We
would like to summarize the discussion about the kinks, saying
that within the CDFM we are able to use only the densities
resulting from the specific shells that are occupied. The
presented Figs. 9 and 10 give information about the differences
between densities of Ni, Sn, and Pb isotopes that are reflected in
the corresponding weight functions |f (x)|2 for these isotopes
(see Fig. 8). Of course, these differences are due to the different
occupancies of the shells in these nuclei. Thus, we see that in
general kinks are produced at shell closures, but the analyses
of the precise dependence of various kinks on the amount of
occupation of specific shells will require further work.

IV. CONCLUSIONS

In this paper, we have investigated possible relationships
between the neutron skin thickness of deformed neutron-rich
nuclei and the symmetry energy characteristics of nuclear
matter for these nuclei. A microscopic approach based on
deformed HF + BCS calculations with Skyrme forces has
been used. Four Skyrme parametrizations were involved in
the calculations: SGII, Sk3, SLy4, and LNS. Nuclear matter
properties of nuclei from Kr and Sm isotopic chains have been
studied by applying the CDFM that provides a transparent
and analytic way to calculate the intrinsic EOS quantities by
means of a convenient approach to the weight function. As a
first step we study the variation with neutron number of proton
and neutron radii predicted by the self-consistent microscopic
(HF + BCS) calculations. We find that charge and proton
radii increase similarly with neutron number following the
increase of neutron radii, as it should be expected from the
general properties of the nuclear force. The same microscopic
method is then applied to calculate the skin thickness and
the weight function for each isotope. The analysis of the
nuclear symmetry energy s, the neutron pressure p0, and
the asymmetric compressibility �K has been carried out
on the basis of the Brueckner EDF for infinite nuclear
matter.

For both Kr (A = 82–96) and Sm (A = 140–156) isotopic
chains we have found that there exists an approximate linear
correlation between the neutron skin thickness of these nuclei

and their nuclear symmetry energies. Comparing with the
spherical case of Ni, Sn, and Pb nuclei described in our
previous study [24], we note that the linear correlation
observed in the Kr and Sm isotopes is not smooth enough
due to their different equilibrium shapes, as well as to the
transition regions between them. As known, the latter are
difficult interpret as they exhibit a complicated interplay
of competing degrees of freedom. Nevertheless, a smoother
behavior is observed in Kr isotopes that is a consequence of
the stabilization of the oblate shapes along the isotopic chain.
As far as Sm isotopes are concerned, the shape evolution from
the spherical to the axially deformed configurations in the Sm
isotopes causes a less pronounced linearity of the observed
correlation between �R and s. A similar correlation between
�R and p0 is also found to exist, while the relation between
�R and �K exhibits an irregular behavior. However, for both
classes of deformed nuclei an inflection-point transition at
specific shell closure, in particular at semimagic 86Kr and
144Sm nuclei, appears for these correlations of the neutron
skins with s and p0. In addition, the role of the relative
neutron-proton asymmetry on the evolution of the symmetry
energy has been pointed out on the example of Kr isotopes
with N > 60.

We have analyzed in detail the existence of kinks on the
example of the Ni and Sn isotopic chains and the lack of
such a kink for the Pb isotopic chain. For this purpose, we
have estimated the relative deviation of the symmetry energy
of even-even isotopes with respect to the double-magic 78Ni,
132Sn, and 208Pb nuclei. An analysis of the weight function
|f (x)|2 (determined by the HF + BCS density distributions)
as the key ingredient of the CDFM is performed. It is shown
that for the Pb isotopes the different signs of the relative
deviations, corresponding to the range of integration on x in
Eq. (10) that contains the peak of |f (x)|2, is in favor of the
absence of a kink in the Pb chain. Thus, from the previous
study in Ref. [24] and the present analysis, the kinks displayed
by Ni and Sn can be understood as consequences of particular
differences in the structure of these nuclei and the resulting
densities and weight functions.

It has to be mentioned that the used microscopic theoretical
approach is capable also of predicting important nuclear matter
quantities in deformed neutron-rich exotic nuclei and their re-
lation to surface properties of these nuclei. This is confirmed by
the good agreement achieved with other theoretical predictions
and some experimentally extracted ground-state properties.
New experimental results on giant resonances, neutron skin
in heavy nuclei, and heavy-ion collisions could further lead
to new constraints, e.g., on the nuclear symmetry energy,
allowing successful interpretation of data and observations
on physical quantities of nuclear systems.
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