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Study of the pygmy dipole resonance in the interacting boson approximation framework
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Background: The pygmy dipole resonance (PDR) is an interesting nuclear structure phenomenon with an
impact in predicting different astrophysics scenarios, for example, specific properties of neutron stars that can be
determined from the thickness of the neutron skin which is directly connected to the strength of the PDR. Various
collective and microscopic models were employed in order to account for the observed properties of the PDR.
Purpose: Determine for the first time whether it is possible to use the interacting boson approximation (IBA) to
reproduce the general characteristics of the PDR.
Methods: The PDR properties of the stable even-even N = 82 isotones are calculated in the IBA-spdf model
based on the assumption that many effects of the mixing caused by the shell structure can be simulated by
considering the number of bosons as an effective value.
Results: The IBA calculations indicate a resonance-like structure of the E1 strength in the energy region 5–8 MeV,
thus confirming the experimental results for this mass region. The distribution and fragmentation of the J π = 1−

states and of the E1 strength are in good agreement with the experimental data. By employing the same procedure
as for the N = 82 isotones, the model is used to predict the PDR strength for a nucleus in a different mass region,
i.e., for the 94Mo nucleus.
Conclusions: The calculations confirm a good agreement for the distribution and fragmentation of the E1
strength.
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I. INTRODUCTION

In the last few decades many experimental and theoretical
investigations have been devoted to the study of electric
dipole excitations in atomic nuclei. It has been found that
in addition to the well-established isovector electric giant
dipole resonance (IVGDR) [1] another concentration of dipole
strength is observed at excitation energies around the neutron-
separation energy. This bunching of strong dipole transitions
has been named pygmy dipole resonance (PDR) and has
attracted considerable interest during the last few years [2–12].
Various high-resolution experiments have revealed details of
the strength distribution of this excitation mode in different
mass regions of the nuclear chart. Furthermore, it was predicted
that the strength of the PDR is related to the oscillation of the
neutron skin against a symmetric proton-neutron core [13,14].
To confirm this picture the E1 response of nuclei far from the
β-stability line has to be measured, which will allow the ex-
tension of the systematics to the very neutron-rich nuclei [15].
Presently, the measurements of the PDR have been restricted
mostly to stable nuclei (except, for example, the experiments
on 130,132Sn [5] and 68Ni [8]). The observed concentration of
collective strength close to the particle threshold is not only
an interesting nuclear structure phenomenon but also has an
important impact in predictions of neutron capture rates in the
r-process nucleosynthesis [16,17]. Also the thickness of the
neutron skin, which can be determined from the strength of
the PDR, can be connected to different properties of neutron
stars [18–20].

Various, sometimes contradictory, model descriptions exist
to account for the origin of the E1 strength. In hydrodynamic
and collective approaches, it has been suggested that an
oscillation of the neutron-rich nuclear matter at the nuclear

skin relative to the rest of the nucleus is responsible for the
generation of pygmy resonances [21,22]. Further microscopic
calculations, such as density functional calculations [23],
quasiparticle random-phase approximations [24,25], calcula-
tions in the quasiparticle-phonon model [6,26,27], relativistic
quasiparticle time blocking approximations [28], and calcula-
tions in the extended theory of finite Fermi systems [29–31],
have provided a deeper understanding of this excitation mecha-
nism. The systematics have been extended to the neutron-rich
nuclei, indicating a strong correlation between the neutron
excess and the observed total E1 strength of the PDR.

An important role in nuclear structure is played by
the interaction between valence neutrons and protons. This
interaction accounts for the onset of deformation, subshell
structure, and intruder states in the medium mass region. The
structure of nuclei situated very close to a subshell or shell
closure is known to be difficult to describe by collective models
like the interacting boson approximation (IBA). However,
various methods have been applied previously in order to
overcome this difficult point. A possible way to do this is
within the IBA-2 model (which takes into account separately
the proton and neutron degrees of freedom) [32] by mixing two
boson configurations differing by two bosons. This procedure
has been applied with success to account for the low-lying
properties of Mo isotopes [32], Cd [33,34], and Hg [35]. The
other approach is provided by the calculations performed in the
IBA-1 framework by introducing into the model an effective
boson number. This procedure was shown to give similar
results as the IBA-2 calculations for Mo and Cd nuclei [36].

In the present paper we report on a description of PDR
properties of the stable even-even N = 82 isotones in the
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IBA-spdf model based on the assumption that many effects
of the mixing caused by the shell closure can be simulated
by considering the number of bosons as an effective value.
The calculations are concentrated on reproducing the main
features of the PDR excitations. It is shown that a simple
phenomenological model can provide a good description of
the number of 1− states and of the E1 decay probabilities of
these levels. Furthermore, the distribution and fragmentation
of these states is found to be in a good agreement with the
experimental values. In the last section of the paper, we use the
same procedure to predict the PDR strength in the nonmagic
nucleus 94Mo.

The results show a great similarity with the calculations
provided by the more modern microscopic models [11]. This
confirms the collective nature of the PDR and points to an
underlying microscopic structure of the collective behavior
taken into account in the IBA calculations.

II. THEORETICAL FRAMEWORK

The interacting boson model provides a phenomenological
approach for studying nuclear structure. In this picture the
collective levels in even-even nuclei are constructed as states
of a system of N interacting bosons of a given spin. The
quadrupole vibration and deformation are described in terms
of s and d bosons (L = 0 and L = 2), while negative parity
states are described by introducing p and f bosons (L = 1
and L = 3).

Calculations were performed in the spdf IBA-1 framework
(no distinction is made between protons and neutrons) using
the extended consistent Q formalism (ECQF) [37]. The most
commonly used form of the IBA-1 Hamiltonian, which allows
a clear interpretation of the role provided by each term in deter-
mining the structure of the nucleus considered, is the so-called
multipole expansion. The Hamiltonian employed in the present
paper is the natural extension of the Ĥsd Hamiltonian [38]:

Ĥspdf = εd n̂d + εpn̂p + εf n̂f + κ(Q̂spdf · Q̂spdf )(0)

+ a3[(d̂†d̃)(3) · (d̂†d̃)(3)](0) + a4[(d̂†d̃)(4) · (d̂†d̃)(4)](0),

(1)

where εd , εp, and εf are the boson energies and n̂p, n̂d , and n̂f

are the boson number operators. The other two parameters, a3

and a4, are introduced to account for the anharmonicities of
the nuclei described by the present calculations. In the spdf

model [39], the quadrupole operator is given by

Q̂spdf = Q̂sd + Q̂pf =
[

(ŝ†d̃ + d̂†ŝ)(2) −
√

7

2
(d̂†d̃)(2)

]

+ 3
√

7

5
[(p†f̃ + f †p̃)](2) − 9

√
3

10
(p†p̃)(2)

− 3
√

42

10
(f †f̃ )(2). (2)

This form of the quadrupole operator implies the use of the
same quadrupole parameter strength κ to describe both the
sd bosons and the pf bosons. In addition, the rotational
SUspdf (3) structure is also generated by this form [Eq. (2)] of
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FIG. 1. Effective boson number employed in the present calcu-
lations to reproduce the PDR properties of stable even-even N = 82
isotones.

the Q̂spdf quadrupole operator [39]. In this way, no additional
free parameters are used in the calculations.

For the E1 transitions there is more than one operator in
the spdf algebra. Consequently, a linear combination of the
three allowed one-body interactions was taken:

T̂ (E1) = e1
[
χ (1)

sp (s†p̃ + p†s̃)(1) + (p†d̃ + d†p̃)(1)

+χ
(1)
df (d†f̃ + f †d̃)(1)], (3)
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FIG. 2. Evolution of the εd , εp , εf , a3, a4, κ , e1, χsp , and χdf

parameters for the stable even-even N = 82 isotones as a function of
mass number obtained in the present work. The first six parameters
[(a)–(f)] stem from the Hamiltonian of Eq. (1), while the last three
[(g)–(i)] belong to the E1 transition operator of Eq. (3).
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where e1 is the effective charge for the E1 transitions and χ (1)
sp

and χ
(1)
df are two model parameters.

III. PHENOMENOLOGICAL EFFECTIVE
BOSON NUMBER

The number of bosons for a given nucleus is usually equal to
half the number of valence particles. However, this definition
can become sometimes ambiguous. This is the situation for two
different cases. The first case arises when a subshell closure is
located inside a major shell. For example, in the Z = 50–82
major shell there are strong evidences that Z = 64 acts as a
subshell closure [40]. The second case arises for nuclei with
N or Z close to a magic number. In this situation many states
are stemming from two-particle excitations across the shell
gap. These effects can be taken into account by the collective
models in two ways: (i) by using an IBA-2 description which
mixes two different configurations [32] or (ii) by employing an
IBA-1 description with a free number of bosons [36] (effective
boson number).

By considering the s and d bosons as the shell-model S
and D pairs, Scholten [41] proposed a method to calculate the
effective boson number in a microscopic model. He proved
that for the Z = 50–82 shell, the calculations yield a minimum
value for Z = 64. However, the minimum value is Neff �2.4
instead of 0, what one would expect from the subshell closure.

The procedure was applied in Ref. [42] to reproduce the
properties of the low-energy levels in Sm isotopes.

In the present calculations it was found that only one set
of choice for the effective boson number yielded a better
agreement with the experimental values than all other choices.
The values employed in the present paper for the effective
boson number are presented in Fig. 1. This choice gives a
reasonable description of the experimental data, as will be
shown below.

IV. RESULTS OF THE IBA-spdf CALCULATIONS FOR THE
STABLE N = 82 ISOTONES

IBA fits were performed for 136Xe, 138Ba, 140Ce, 142Nd, and
144Sm. The calculations were performed with the OCTUPOLE

computer code [43]. The Hamiltonian is diagonalized in a
Hilbert space with a total number of bosons Neff = ns + nd +
np + nf . For the present calculations we used an extended
basis allowing up to three negative parity bosons (np + nf =
3). The experimental data are taken from Nuclear Data Sheets
[44–48] for the low-lying states and from Refs. [6,11] for the
PDR characteristics of the nuclei involved in the present study.

Figure 2 summarizes the IBA parameters employed
in the present study, both for the Hamiltonian of Eq. (1) and
the E1 transition operator from Eq. (3). A free variation of
the parameters employed in the Hamiltonian was performed
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FIG. 3. Comparison between experimental (a)–(e) and calculated (f)–(j) B(E1) strength distributions in stable even-even N = 82 isotones.
The experimental information concerning the PDR strength is from Refs. [6,11]. IBA calculations give a good reproduction for the strength of
these states.
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in fact only for κ , a3, and a4, while εd and εf were fixed
at a value corresponding to the energies of the first 2+ and
3− states, respectively, of each nucleus. This ensures a good
reproduction of the first low-lying levels of the investigated
nuclei. In the previous studies of the low-lying states in atomic
nuclei [49,50], the energy of the p boson was identified with
the energy of the first 1− state. However, in vibrational nuclei,
the first 1− state arises from the coupling of the first 2+ and
3− states. This means that there is no physical justification
to include an additional degree of freedom for nuclei situated
close to the U(5) symmetry. Therefore, in the present work we
identified the p boson with the experimental energy centroid
of the E1 strength distribution. However, most of the states of
the singly magic nuclei do not have a collective character and
cannot be reproduced by the IBA calculations. Nevertheless,
one has to keep in mind that the PDR is considered as being a
collective effect arising from the oscillation of the neutron-rich
matter relative to an isospin saturated core of the nucleus. At
least such collective effects should be correctly described with
a simple collective model. The parameters of the E1 transition
operator from Eq. (3) were fitted to the absolute B(E1) values
in each nucleus.

A comparison between the experimental B(E1) strength
distributions and the results of the IBA-spdf calculations for
all stable even-even N = 82 isotones is shown in Fig. 3. In
all cases a resonance-like structure is observed between 5 and

TABLE I. Strongest components of the wave functions of the
first 1− state in the stable even-even N = 82 nuclei. For illustrative
purposes, the representations of the basis states have been simplified
and are given in terms of bosons of a specific type: |[ns][np][nd ][nf ]〉.
Only the contributions with an amplitude higher than 10% are
included. The components of basis states that are labeled with the
same boson numbers are distinguished by other quantum numbers
that are not included in this representation.

Nucleus J π
i Main components of the wave function

144Sm 1−
1 0.72|0041〉 + 0.50|0041〉 + 0.43|1031〉

142Nd 1−
1 0.60|0051〉 + 0.40|1041〉 + 0.40|1041〉 + 0.35|2031〉

140Ce 1−
1 −0.44|2031〉 − 0.43|0051〉 − 0.41|1041〉 − 0.40|1041〉

138Ba 1−
1 0.67|0051〉 + 0.43|1041〉 + 0.32|1041〉 + 0.32|2031〉

136Xe 1−
1 −0.61|4011〉 + 0.46|2031〉 + 0.45|3021〉

8 MeV in all nuclei, in experiment as well as in calculations.
Aside from an energy shift which usually does not exceed
300 keV, there is a good agreement between experiment and
theoretical calculations in the shape of the resonance as well
as in the increasing strength while increasing the N/Z ratio
[although the three parameters in Eq. (3) have no specific
dependence on N/Z]. Moreover, the energetic position of the
E1 strength distribution centroid while going from 144Sm to
136Xe is well reproduced.
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FIG. 4. (Color online) Comparison between the experimental and calculated integrated E1 strength for the stable even-even N = 82
isotones. The calculations are performed for three choices of the effective boson number: Neff−1 [(a)–(e)], Neff [(f)–(j), also marked with a
heavy-black (green) box], and Neff+1 [(k)–(o)]. The calculated sum is taken up to the energy at which the experimental information ends. A
small shift in energy between experiment and calculated running sums can be observed in 138Ba; but in each case, the final value agrees very
well with the measured value, within the experimental uncertainties [marked only for the total B(E1) strengths].
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In Table I the strongest components of basis states of the
wave functions for the first 1− states in each analyzed nucleus
are displayed. For illustrative purposes, the representations of
the basis states have been simplified and are given in terms
of bosons of a specific type: |[ns][np][nd ][nf ]〉. Only the
contributions with an amplitude higher than 10% are included.
From the calculations one can see that the wave function of
the first 1− state in all stable N = 82 even-even nuclei is
dominated by the coupling of d and f bosons, with almost no
contribution from the p boson. This is in good agreement with
the previous theoretical studies which identified the first 1−
state in these nuclei with the two-phonon state (corresponding
to a coupling of the first 2+ excitation with the first 3−
state).

The good reproduction of the experimentally observed E1
strength by the IBA-spdf calculations can be observed in
Fig. 4, where the results for the integrated E1 strength (“run-
ning sum”) are presented for the stable N = 82 isotones. The
calculations are performed for three choices of the effective
boson number: Neff−1 [panels (a)–(e)], Neff [(f)–(j)], and
Neff + 1 [(k)–(o)], where Neff is the effective boson number
given in Fig. 1. The calculated sum is taken up to the energy at
which the experimental information ends. For the calculations
using the effective boson number from Fig. 1, a small shift
(around 300 keV) between experiment and calculated running
sum can be observed in 138Ba. For all the other nuclei the shift
has a vanishing small value, pointing to a very good description
of the distribution and fragmentation of the E1 strength. Also,
the decrease of total strength from 136Xe to 144Sm observed
experimentally is nicely reproduced by the IBA calculations.
In each case the final values of the summed strength agrees
very well with the measured values, within the experimental
uncertainties. For the other effective boson number choices
(Neff−1 and Neff+1), the integrated E1 strength is usually
under predicted or has a different distribution pattern with
increasing excitation energy. The calculations are performed
using the same parameters given in Fig. 2. The distribution of
the 1− states can be improved to some degree by adjusting
the a3 and a4 parameters in the Hamiltonian, but the E1
strength distribution on individual states is not severely
affected by this choice. As seen in Fig. 4, the integrated E1
strength can be reproduced only by a specific set of boson
numbers.

To further investigate the good reproduction of the E1
strength distribution, it is interesting to look also at the separate
contribution to the integrated E1 strength of the three different
terms in Eq. (3). The squared contributions of each term
are plotted in Fig. 5 [both the B(E1) distribution and the
’running sum’] for 142Nd, where the agreement between the
experimental and calculated E1 strength is the best (see Fig. 4).
One can see that in the low-energy part of the distribution
the higher contribution comes from the coupling of d and
f bosons, while in the higher energy part (above 6 MeV),
there is a competition between the d-f and p-d terms, the
last one dominating the final part of the spectrum. This means
that at higher excitation energies the p boson starts to play
an important role in producing the E1 strength. This can be
better understood if one considers the dipole and octupole
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FIG. 5. (Color online) Comparison between the separate contri-
bution to the (a) integrated and (b) absolute E1 strength distribution
of the three different terms in Eq. (3). While in the low-energy part of
the distribution the higher contribution comes from the coupling of d

and f bosons, in the higher energy part, the p bosons start to play an
important role in producing the E1 strength.

deformation of these states. These quantities are defined as

Dipole deformation = 〈n̂p〉
〈n̂d〉 , (4)

and
Octupole deformation = 〈n̂f 〉

〈n̂d〉 , (5)

where 〈n̂p〉, 〈n̂f 〉, and 〈n̂d〉 are the p, f , and d content of
each state, respectively. In the low-energy part of the spectrum
(up to around 6 MeV) the octupole deformation is dominant
(roughly 25%) while the dipole deformation accounts only for
about 2%. In the high-energy part, the situation is reversed and
the dipole deformation gives rise to an enhanced E1 strength.
The crossing point is again situated around 6 MeV, where the
p-d term becomes dominant.

Another test for the IBA calculations is the distribution of
states and the fragmentation of the B(E1) strength. For this
purpose the procedure given in Ref. [7] was followed. We begin
the discussion with distribution of states in stable even-even
N = 82 isotones. To focus on the distribution, the states
are grouped in 250-keV-wide energy bins. The comparison
between the experimental distribution and the calculated one
is given in Fig. 6 for the effective boson numbers from Fig. 1.
By using Neff , the IBA-spdf calculations give a larger number
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FIG. 6. (Color online) Comparison between the experimental and
calculated distribution of states for the stable even-even N = 82
isotones. The states are grouped in energy bins 250-keV wide and the
number of states for each bin is counted. A resonance-like structure
is clearly observed both experimentally and theoretically between
5 and 8 MeV (see the text for details).

of states than the corresponding amount of levels observed
experimentally by a factor that does not exceed 2 in any
nucleus. Most of the states produced in excess are lying in
the resonance-like region between 5 and 7 MeV, but do not
carry much strength. This is in a rather good agreement with
the results given by the quasiparticle-phonon model (QPM)
calculations presented in Ref. [7], which predict a number
of additional excited configurations when taking into account
three particle-hole components. Similar to our calculations,
many of these states produced by the QPM do not carry much
strength [7].

A comparison between the experiment and the calculated
values for the distribution of the E1 strength is presented
in Fig. 7 as a function of the energy binning. The integrated
B(E1) strength is calculated for each bin. There is a remarkable
agreement between the experiments and the IBA calculations
for the summed B(E1) values for most of the energy bins.
Again, our results agree with the QPM calculations presented
in Ref. [7]. This agreement indicates that the distribution of
both states and E1 strength of the PDR can be reproduced by
a simple phenomenological model like the IBA.
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FIG. 7. (Color online) Comparison between the experimental and
calculated distribution of E1 strength for the stable even-even N = 82
isotones. The states are grouped in energy bins 250-keV wide and the
integrated E1 strength for each bin is counted (see the text for more
details).

To further investigate the PDR properties, one has to look
also at the fragmentation of the observed PDR states. A
comparison between the experimental and calculated frag-
mentation is given in Fig. 8. Here, the states are grouped
in 1 × 10−3 e2 fm2 wide bins and the number of levels for
each bin is counted. It can be seen that for the low-strength
excitations, the calculations exceed the experimental values.
The same situation is encountered for the QPM calculations in
Ref. [7]. However, in IBA, these excitations do not carry too
much strength and the effect of these states on the integrated
total strength is negligible.

To finalize the study for the fragmentation of the PDR
properties we have to investigate also the fragmentation
of the B(E1) strength distribution. A comparison between
experimental data and theoretical calculations is presented in
Fig. 9. Again, the states are grouped in 1 × 10−3 e2 fm2 wide
bins and the summed E1 strength is calculated for each bin. In
this way, one can look at how the strength is distributed over
the individual states. A good agreement between experimental
data and theoretical calculations could be concluded. The main
difference arises here between the IBA and QPM descriptions
of the low-strength excitations [B(E1) � 2 × 10−3 e2 fm2].
This is the region of the experimental limit, defined by
the authors of Ref. [11] as being the minimum strength
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for more details).

for an excitation to result in a peak above the background
observed in the spectrum. In this region IBA predicts a similar
B(E1) strength as for the B(E1) � 2 × 10−3 e2 fm2 region
(around 10–20 × 10−3 e2 fm2). The QPM calculations [11]
predict that the experiment misses strength in this region [the
integrated strength for the B(E1) � 2 × 10−3 e2 fm2 region is
�200 × 10−3 e2 fm2 for each nucleus]. Therefore, by taking
into account this experimental limit in the QPM calculations,
the agreement between theory and experiment is clearly
improved. By applying the same experimental limit to the IBA
calculations presented in Figs. 4–9 [integrated B(E1) strength,
distribution, and fragmentation], the main characteristics of the
PDR remain practically unchanged. It is possible that for this
small region the QPM calculations would yield a better result
than the present IBA predictions. A comparison with some
very sensitive experimental data that can lower the detection
limit well below B(E1) = 2 × 10−3 e2 fm2 is clearly needed.

The detailed comparison between the experimental results
and IBA-spdf calculations for stable even-even N = 82
isotones revealed that the main characteristics of the PDR can
be reproduced by the IBA model. The calculations confirmed
a good agreement for the distribution and fragmentation of the
E1 strength.
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FIG. 9. (Color online) Analysis of the fragmentation of the E1
strength in the experimentally observed distribution and within the
IBA model for the stable even-even N = 82 isotones (see the text for
more details).

V. IBA PREDICTIONS OF THE PYGMY DIPOLE
RESONANCE IN 94Mo

In the previous section it was shown that IBA can account
for most of the observed properties of the PDR in stable even-
even N = 82 isotones. From a theoretical point of view it is
interesting to see if the procedure employed in this paper can
be used to describe the PDR properties in other regions of the
nuclear chart. To perform such an investigation we chose the
N = 52 region, and we concentrate in this section on the study
of 94Mo.

For the present calculations we used the same extended
basis for diagonalization allowing up to three negative parity
bosons. The experimental data for the low-lying states are
taken from Ref. [51]. The experimental information concern-
ing the energies of the 1− states is taken from Ref. [52] and
is used to fit the parameters of the Hamiltonian in Eq. (1).
However, because of some inconsistencies that were found
in this experiment, we cannot trust the absolute values of the
B(E1) strength. These quantities are the ones that we want to
predict, and not the energies of the individual states.

From a boson counting perspective, the structure of 94Mo
should be similar to the one of 136Xe (two bosons counted in a
traditional way). This is the reason why we adopted the same
number of effective bosons for the IBA calculations of both
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FIG. 10. IBA-spdf predictions for the PDR properties of 94Mo.
(a) Individual E1 strengths of the PDR states. (b) Total summed
strength predicted by the calculations.

136Xe and 94Mo, Neff = 6. The parameters of the Hamiltonian
from Eq. (1) were chosen such that they reproduce the low-
lying states of this nucleus: εd = 0.871 MeV, εf = 2.534 MeV
(the energy values of the first 2+ and 3− states, respectively),
a3 = 0.40 MeV, and a4 = 0.57 MeV (identical to the ones in
136Xe). The quadrupole deformation parameter was kept at
a similar value as for the stable even-even N = 82 isotones
(κ = −0.025 MeV). The p-boson energy is fixed at the typical
value for the N = 82 isotones (εp = 6.0 MeV). Because
of the lack of detailed experimental results [53], there were
not sufficient data to constrain the E1 operator parameters.
However, to have an estimation of the E1 strengths, we
adopted the following procedure. The E1 operator parameters
employed were the same as for 136Xe: e1 = 0.17 e b1/2,
χsp = 0.63, and χdf = 0.24. The B(E1) value of the first 1−
state can be derived from the lifetime of this state measured
in Ref. [54] and has a value of � 0.9 × 10−3 e2 fm2. The
obtained B(E1) strengths for all the 1− states produced by
the IBA model were normalized to this value.

The predictions of the IBA-spdf calculations for the PDR
properties of 94Mo are given in Fig. 10. In panel (a) the

individual E1 strength of the PDR states are given. Between
5 and 7 MeV a resonance-like structure is predicted by the
IBA calculations, pointing to a similar behavior as for the
stable even-even N = 82 isotones. In panel (b) the inte-
grated E1 strength predicted by the calculations is presented.
The summed E1 strength is predicted to have a value of
0.070 e2 fm2. Remarkably, this value is roughly 10 times lower
than the corresponding value in 136Xe, although the parameters
used in the E1 calculations were the same. Clearly the
measurement of these data will finally establish if the picture
predicted by the IBA model is correct. Additional calculations
performed within a modern microscopic model (QPM, QRPA)
will clarify whether this effect can be connected with the os-
cillation of the neutron skin against the isospin saturated core.

VI. CONCLUSIONS

The pygmy dipole resonance in stable even-even N = 82
isotones was investigated in the framework of the IBA-spdf

model with effective boson numbers. A detailed comparison
between the experimental results and the IBA calculations
has been performed for all stable even-even N = 82 isotones.
The calculations predict a resonance-like structure between
5 and 8 MeV, very similar to the experimental results and
to other theoretical calculations performed within the QPM.
The calculations confirm a good agreement for the distribution
and fragmentation of the E1 strength. This represents a strong
argument in favor of the collective nature of the PDR. In the last
section, the predictions of the PDR strength for 94Mo are given.
The measurement of these data will establish if the picture
predicted by the IBA model is correct. In addition, microscopic
calculations are needed to establish the connection between
the experimental observed states and the assumption of an
out-of-phase oscillation of the neutron skin against the isospin
saturated core.
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