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A novel analytically solvable prolate-oblate shape phase transitional description for the SU(3) limit of the
interacting boson model is investigated for finite-N as well as in the large-N classical limit. It is shown that the
ground state shape phase transition is of first order due to level crossing. Through a comparison of the theoretical
predictions with available experimental data for even-even 180Hf, 182−186W, 188−190Os, and 192−198Pt, it is shown
that this simple novel description is suitable for a description of the prolate-oblate shape phase transition in these
nuclei.
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I. INTRODUCTION

Shape phase transitions in nuclei have attracted a lot of
interest from both experimental and theoretical perspectives
[1–29]. Theoretically, the interacting boson model (IBM) [5],
which provides direct correspondence between nuclear shapes
and dynamical symmetries, may be the most frequently used
model for studying shape phase transitions. Various nuclear
shape phase transitions can be explored within transitional
patterns among different symmetries in the IBM, in which at
least two of the three dynamical symmetries, U(5), SU(3), and
O(6), are involved [5]. For example, the phase transition from
spherical to axially deformed shape is characterized as the
U(5)-SU(3) transition; the phase transition from spherical to
the γ -unstable motion is described by the U(5)-O(6) transition;
and the phase transition from prolate to oblate shape is often
described by the SU(3)-O(6)-SU(3) transition [6,22,23]. It
should be noted that the prolate phase and the oblate phase
in the SU(3)-O(6)-SU(3) transitional description are described
by the SU(3) and the SU(3) symmetry, respectively, in which
the O(6) limit emerges exactly at the critical point [6]. Since the
SU(3) generators can be constructed from the corresponding
SU(3) generators with a phase change in the s-boson operators
in the IBM [30,31], dynamical structures in the two limiting
cases are the same except a sign change in the quadrupole
operator [6,25].

It was shown previously that triaxial shape phase in nuclei
may be described by a model Hamiltonian with higher order
terms. For example, the [d† × d† × d†](3) · [d̃ × d̃ × d̃](3) type
interaction can induce a stable triaxial shape [32]; the [Q̂′ ×
Q̂′ × Q̂′](0) term may give rise to a rotational spectrum within
the O(6) limit [33], where Q̂′

q = [s† × d̃ + d† × s̃](2)
q are

generators of the O(6) group; a Hamiltonian involving three-
and four-body interactions in the SU(3) limit can generate
a spectrum of the asymmetric rotor [34], which was based
on previous description of the asymmetric rotor in the SU(3)
shell model scheme [35–40]. As shown in these studies, the
high-order interactions greatly enrich phase structures in the
model even within the dynamical symmetry limit.

In this article, as a simple alternative description of the
prolate-oblate shape phase transition in the IBM, the oblate
shape phase is considered to be caused by a three-body
interaction within the SU(3) limit [34,41–43]. Specifically,
the prolate-oblate shape phase transitional patterns are investi-
gated within this framework. In Sec. II, the oblate shape phase
generated by the three-body interaction within the SU(3) limit
is discussed, and a schematic Hamiltonian for describing the
prolate-oblate shape phase transition is proposed. In Sec. III,
the prolate-oblate shape phase transition in the classical limit
is explored. In Sec. IV, the correspondence between two
different descriptions of the shape variables, namely the shape
variables determined from the coherent state theory and those
determined from the SU(3) correspondence, is discussed.
The prolate-oblate shape phase transition in a finite boson
system is investigated in detail. In Sec. V, evolutions of some
observables with variation of the control parameter in the
model are considered. Comparisons of the theoretical results
of some quantities with the corresponding experimental data
are made. A summary is given in Sec. VI.

II. SU(3) SYMMETRY IN THE IBM AND SPECTRA
IN THE OBLATE

A Hamiltonian in the IBM framework is constructed from
two kinds of boson operators; namely, a s-boson with Jπ =
0+ and a d-boson with Jπ = 2+. The total boson number N

is taken as the number of valence particle (or hole) pairs in
a nucleus. The dynamical symmetry limits in the IBM are
characterized by three different chains of the U(6) group [5]:

U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) , (1)

U(6) ⊃ SU(3) ⊃ O(3) , (2)

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) . (3)
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The dynamical symmetries associated with the above three
chains correspond to three typical nuclear shapes or collective
modes. These are the spherical vibration in the U(5) limit, the
prolate rotational motion in the SU(3) limit, and γ -unstable
motion in the O(6) limit. In addition, there also exist two
“hidden” dynamical symmetries [30,31] described by the
following chains of U(6):

U(6) ⊃ SU(3) ⊃ O(3) , (4)

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) , (5)

in which generators of the SU(3) and O(6) dynamical sym-
metry groups can be constructed from the traditional SU(3)
and O(6) group via the gauge transformation s† �→ eiφs†

with φ = π , and φ = ±π
2 , respectively [30,31,44,45]. The

dynamical symmetry limits of the IBM are be described by
Hamiltonians constructed out of group invariants (Casimir
operators) in the corresponding group chains. As a result, the
model in these three limits is exactly solvable. In this article, we
only consider only the (2) and (4) limits, since they correspond
to the prolate and oblate shape phases, respectively, based on
the original IBM considerations [6].

The eight generators of the SU(3) group can be expressed
as

Q̂u = [s† × d̃ + d† × s̃](2)
u − (

√
7/2)[d† × d̃](2)

u , (6)

L̂u =
√

10[d† × d̃](1)
u , (7)

by which the SU(3) invariant operators can be expressed as [34]

Ĉ2[SU(3)] = 2Q̂ · Q̂ + 3

4
L̂ · L̂ , (8)

Ĉ3[SU(3)] = −4

9

√
35[Q̂ × Q̂ × Q̂](0)

0 −
√

15

2
[L̂ × Q̂L̂](0)

0 .

(9)

For a given SU(3) irrep (λ,μ), the eigenvalues of the SU(3)
invariant operators under the group chain U(6) ⊃ SU(3) ⊃
O(3) are given as

Ĉ2[SU(3)]|N (λ,μ)KL〉
= (λ2 + μ2 + λμ + 3λ + 3μ)|N (λ,μ)KL〉 , (10)

Ĉ3[SU(3)]|N (λ,μ)KL〉
= 1

9
(λ − μ)(2λ + μ + 3)(λ + 2μ + 3)|N (λ,μ)KL〉 ,

(11)

where |N (λ,μ)KL〉 are basis vectors of the U (6) ⊃ SU (3) ⊃
O(3) chain, where the additional quantum number K is that of
the projection of the angular momentum on the third intrinsic
axis [46]. The values of (λ,μ) contained in a symmetric
representation [N ] of U(6) are given by [5]

(λ,μ) = (2N, 0) ⊕ (2N − 4, 2) ⊕ (2N − 8, 4) ⊕ · · · ⊕ (2, N − 1) or (0, N )

⊕(2N − 6, 0) ⊕ (2N − 10, 2) ⊕ (2N − 14, 4) ⊕ · · · ⊕ (2, N − 4) or (0, N − 3)
(12)

⊕(2N − 12, 0) ⊕ (2N − 16, 2) ⊕ (2N − 20, 4) ⊕ · · · ⊕ (2, N − 7) or (0, N − 6)

· · ·
⊕(4, 0) ⊕ (0, 2) for N (mod3) = 2 ⊕ (2, 0) for N (mod3) = 1 ⊕ (0, 0) for N (mod3) = 0 .

The angular momentum quantum number L contained in each
representation (λ,μ) of SU(3) can be obtained according to
the rules:

K = 0, 2, . . . , min{λ,μ};
L = 0, 2, . . . , max{λ,μ} for K = 0 , (13)

L = K,K + 1,K + 2, max{λ,μ} for K 	= 0 .

It should be noted that the basis vectors |N (λ,μ)KL〉 are not
orthogonal with respect to K [46]. Therefore, an orthogonal-
ization process of |N (λ,μ)KL〉 is needed in order to obtain
the matrix element of each operator in the corresponding
orthogonal basis [47], which can be realized with the algorithm
shown in Refs. [48–50]. The orthogonalized SU(3) ⊃ O(3)
basis is often referred to as the Draayer-Akiyama basis.

We briefly recall the original prolate-oblate shape phase
transitional description in the IBM. A typical consistent-Q
formalism Hamiltonian [16] used to study the shape phase

transition in the IBM can be written as

Ĥ (χ, ξ ) = ε

[
(1 − ξ )n̂d − ξ

4N
Q̂χ · Q̂χ

]
, (14)

where ε is a scale parameter taken as 1 in the following, n̂d =∑
u d

†
udu is the number operator of d-bosons, and

Q̂χ
μ = [s† × d̃ + d† × s̃](2)

u + χ [d† × d̃](2)
u (15)

with −√
7/2 � χ �

√
7/2 is the quadrupole operator.

Equation (14) can also be written as [51]

Ĥ (χ, ξ ) =
[

(1 − ξ ) − ξχ

14N

(
χ +

√
7

2

)]
Ĉ1[U(5)]

− ξχ

14N

(
χ +

√
7

2

)
Ĉ2[U(5)]

+ ξ

4N

(
1 + 3√

7
χ + 2

7
χ2

)
Ĉ2[O(5)]
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FIG. 1. The extended Casten triangle described by the
Hamiltonian (14), where the central dots represent the critical point
of the second-order phase transition along the U(5)-O(6) side, while
the dashed line and the line connecting the central dot with the O(6)
point represent the first order phase transitions line of the transitions
along the ξ and χ directions, respectively.

− ξχ

56N
(χ + 2

√
7)Ĉ2[O(3)] + ξχ

4
√

7N
Ĉ2[SU(3)]

− ξ

4N

(
1 + 2√

7
χ

)
Ĉ2[O(6)] , (16)

where Ck[G] denotes the rank-k Casimir operator of group G.
It is evident that Eq. (16) is just the Hamiltonian in the U(5)
limit when ξ = 0; it is in the SU(3) limit when ξ = 1 and
χ = −√

7/2; it is in the O(6) limit when ξ = 1 and χ = 0;
and it corresponds to the one in the SU(3) symmetry [30]
when ξ = 1 and χ = √

7/2. The whole parameter range of
the model Hamiltonian (14) may be described by the extended
Casten triangle [6], which is shown in Fig. 1. One can easily
find various phase transition processes and related critical
points from the triangle. Typically, there are second-order
phase transition occurring along the U(5)-O(6) side, first-order
phase transitions between the U(5) limit and points along the
SU(3)-SU(3) leg of the triangle, except for the O(6) limit point,
and first-order phase transitions along the SU(3)-O(6)-SU(3)
line, in which the O(6) limit point is the corresponding critical
point. Besides the three legs of the triangle, the first-order
phase transitions generally occur inside of the triangle with
the dashed line and the line connecting the central dot with the
O(6) point representing the collections of all the critical points
of the first-order phase transition as seen in Fig. 1.

As mentioned above, the three-body interaction [Q̂′ ×
Q̂′ × Q̂′](0) in the O(6) limit [33] can also generate rotational
spectrum, which is completely different from that described by
two-body interaction in the SU(3) limit. Similarly, a three-body
interaction in the SU(3) limit, such as [Q̂ × Q̂ × Q̂](0) or
Ĉ3[SU(3)] defined in Eq. (9), can also bring out a novel ro-
tational spectrum related with the oblate shape [34,36,39,43].
We prefer to use the Ĉ3[SU(3)] operator to construct a model
Hamiltonian to describe oblate spectra.

The most general Hamiltonian up to including three-body
terms with the SU(3) dynamical symmetry may be written
as [41,42]

Ĥ = a2Ĉ2[SU(3)] + a3Ĉ3[SU(3)] + δ
 + η′L̂ · L̂, (17)

where 
 = [L̂ × Q̂ × L̂](0)
0 and a2, a3, δ, and η′ are adjustable

parameters. Since the 
 term does not affect the nature of the
shape phase transition in the ground state, for simplicity, we
take δ = 0 in Eq. (17) and rescale the other parameters in order
to investigate the prolate-oblate shape phase transition. Then,
the Hamiltonian may be rewritten as

Ĥ = c

[
(x − 1)

N
Ĉ2[SU(3)] + x

N2
Ĉ3[SU(3)] + ηL̂ · L̂

]
, (18)

in which c = N (a3N − a2), x = a3N (a3N − a2), and η =
η′/c in comparison to the parametrization shown in Eq. (24).
In Eq. (18), the L̂ · L̂ term is used to avoid level degeneracy
for levels with different L. Further, Eq. (18) can be used either
to describe spectra if x = 0 is taken, or to describe that with
an oblate shape if x = 1 is taken. Thus, one can realize a
prolate-oblate phase transition by varying x ∈ [0, 1]. Owning
to the exact SU(3) symmetry, Eq. (18) can be analytically
solved for any values of the parameters and boson number N .
This situation is different from the common quantum phase
transition studied with a Hamiltonian [26,28]

Ĥ = (1 − x)Ĥ1 + xĤ2 , (19)

where Ĥ1 and Ĥ2 describe two different phases, respectively. In
general Ĥ1 and Ĥ2 are mutually incompatible, [Ĥ1, Ĥ2] 	= 0,
having no common eigenstate. On the other hand, Ĉ2[SU(3)]
and Ĉ3[SU(3)] in Eq. (18) do commute with each other and
therefore have common eigenstates, which are the basis vectors
of the group chain (2). In other words, the different phases
are usually described by the terms in the Hamiltonian with
different symmetries, while the prolate and oblate phases in
this case are described within the same SU(3) limit. Though the
two phases are described within the same SU(3) limit, the low-
lying structures and the corresponding eigenstates obtained
with only the Ĉ2[SU(3)] in the Hamiltonian and those with
only the Ĉ3[SU(3)] term are completely different since they
are related to different SU(3) irreps. Thus the case considered
here is an asymmetric prolate-oblate shape phase transition
in contrast to the former SU(3)-O(6)-SU(3) case studied
in [6].

Specifically, the typical lowing-lying spectrum with the
prolate shape and those with oblate shape in our scheme
are illustrated in Fig. 2, where the results calculated with
Eq. (18) are shown for N = 8 and N = 9 representing the
N = even and N = odd cases respectively. As seen from panel
(a) of Fig. 2, the ground band in the prolate case belongs to
the SU(3) irrep (2N, 0), from which Lmax = 2N . Moreover,
the irrep (2N − 4, 2) in the prolate phase includes the two
lowest excited rotational bands corresponding to the β- and
γ -bands, in which the energy levels with the same L value are
degenerate. As for the oblate spectrum for N = even shown in
panel (b) of Fig. 2, the ground band belongs to the SU(3) irrep
(0, N) with Lmax = N , and the β-, γ -, and the lowest K = 4
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FIG. 2. The schematic spectra generated by the Hamiltonian (18)
with x = 0 representing the prolate phase and x = 1 representing the
oblate phase for N = 8 and 9, where the values of the second 0+

energy levels in all the cases are set to 20 (arbitrary unit) by adjusting
the scale parameter c, and η is taken as 1

c
.

bands are all belong to the irrep (4, N − 2), where the energy
levels are also degenerate for the same L. In addition, the
prolate spectrum for N = odd is similar to that for N = even
as shown in panels (a) and (c) of Fig. 2. But there are some
notable differences in the oblate case. For example, both the
ground band and the γ -band belong to the irrep (2, N − 1)
seen from panel (d) of Fig. 2. As a result, an obvious feature
of the oblate spectrum for N = odd is that eigenenergies of
the double-degenerate levels, such as 2+, 4+, 6+, etc, increase
with increasing of L; and E2 transitions between the ground
band and the γ -band are much stronger than those between

the β-band and the ground band or the γ -band since interband
transitions within the same SU(3) irrep are much stronger [5].
These features may be used to distinguish oblate from prolate
shapes. Moreover, the third order term Ĉ3[SU(3)] is used to
describe pure rotational motion for oblate case similar to the
SU(3) description. Actually, spectra generated by the SU(3)
and the SU(3) invariants up to two-body terms are exactly
symmetric [6,25], namely the prolate spectrum generated by
the Ĉ2[SU(3)] are the same as the oblate spectrum generated
by the Ĉ2[SU(3)]. As a result, what have been shown in
Fig. 2 can also be regarded as comparisons between oblate
spectra generated by the SU(3) invariant and those generated
by the third order invariant Ĉ3[SU(3)] within the SU(3) limit.
However, as observed from experimental results, most oblate
nuclei with positive quadrupole moments may involve other
collective motions, such as γ -unstable motion described by
the O(6) symmetry, which may distort rotational features
described by the third-order term Ĉ3[SU(3)].

III. PROLATE-OBLATE SHAPE PHASE TRANSITION IN
THE LARGE-N LIMIT

To investigate the prolate-oblate shape phase transition in
the large-N limit, the coherent state (also called the intrinsic
state) defined as [5,43]

|β, γ,N〉 = 1√
N !(1 + β2)N

[
s† + βcosγ d

†
0

+ 1√
2
βsinγ (d†

2 + d
†
−2)

]N

|0〉 (20)

may be adopted to study the classical limit of the model.
Ground state energy corresponding to the Hamiltonian (18)
in the large-N limit is then estimated by the expectation value
in the coherent state, 〈β, γ,N |Ĥ |β, γ,N〉. Thus, the ground
state energy per boson in the large-N limit can be expressed
as

E(x, β, γ ) = −(1 − x)
β2

(1 + β2)2
[β2 + 4

√
2βcos3γ + 8]

− x
16

441

√
7

β3

(1 + β2)3

[
− 7

8

√
7β3(2cos23γ − 1)

−
√

14

(
21

4
β2 + 14

)
cos3γ − 21

√
7β

]
, (21)

where c = 1 is taken in Eq. (18). In order to show the
phase structure and the transition, contour diagrams of the
ground state energy per boson at several values of the control
parameter x are shown in Fig. 3. As clearly shown in Fig. 3,
for x < 0.6, there is a global minimum around β = 1.4 and
γ = 0◦ that represents a prolate phase. With increasing x,
an oblate minimum begins to emerge around β = 0.7 and
γ = 60◦. At x = 0.6, the oblate minimum is connected with
the prolate minimum and develops into a minimal region, in
which a prolate-oblate shape phase transition occurs. When
x > 0.6, the minimal region becomes a global minimum point
around β = 0.7 and γ = 60◦ indicating that an oblate phase
appears. As shown in Fig. 3, γ varies from 0◦ and 60◦ in the
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FIG. 3. The contour diagrams of the ground state energy per boson with x = 0.00, 0.59, 0.60, 0.61, and 1.00 shown in the sub-diagrams in
the order from left to right and from top to bottom, in which the unit of the γ variable is degree. In addition, the smaller the energy, the darker
the color.

equilibrium valley at the critical point around x = 0.6, which
indicates a γ -soft shape. As a result, there is no stable triaxial
shape occurring at the critical point of the prolate-oblate shape
phase transition in this description. Actually, the shape at the
critical point appears similar to that found in the O(6) limit. But
the difference between the case at this critical point and that in
the O(6) limit is also evident. For example, at the critical point,
the β variable in the equilibrium valley can be taken from 0.7
to infinity, while the β variable in the equilibrium positions in
the O(6) limit can only be taken as two fixed values.

Furthermore, the ground state energy per boson Eg and
the β and γ values at the corresponding equilibrium point
are calculated in order to clarify the order of the shape phase
transition. The results are shown as functions of the control
parameter x in Fig. 4. It is clear from these results that the
ground state energy per boson Eg varies with x around the
critical point; specifically, Eg = −4 + 52

9 x for x < 0.6, and
Eg = −1 + 7

9x for x > 0.6. As a result, the first derivative
∂Eg(x)

∂x
is discontinuous at x = 0.6, which indicates that the

prolate-oblate shape phase transition is of first order. In
addition, the equilibrium values of β and γ are constants with
β = √

2 and γ = 0◦ for the prolate phase when x < 0.6, while
β = √

2/2 and γ = 60◦ for the oblate phase when x > 0.6,
which confirms the first-order phase transition occurring at the
critical point x = 0.6. It should be noted that the same phase
diagram in the classical limit based on a similar Hamiltonian
was also obtained and discussed in [43]. In the large-N limit,
since the L̂2 and [L̂ × Q̂ × L̂](0) terms contribute nothing to
the potential surface, the Hamiltonian (18) will be equivalent to
the one used in Ref. [43] if setting the parameters 2c(1 − x) =

1, ξ = 0, χ = −√
7/2 and k3 = 2

√
35x

9(1−x) , where ξ , χ and k3

are the parameters of the Hamiltonian used in Ref. [43]. As
a result, the potential structure generated by the Hamiltonian
(18) should be the same as that given in Ref. [43] within the
above parameter restrictions.

IV. PROLATE-OBLATE SHAPE PHASE TRANSITION IN
FINITE SYSTEMS

The analysis shown in the previous section indicates that
a first-order shape phase transition in the large-N limit is
induced by the three-body interaction with SU(3) symmetry.
However, the boson number N is always finite in realistic
systems. As a result, it is important to investigate the finite-N
effects on the phase transition [6]. Most studies about the
finite-N effects in phase transitions can only be carried out
numerically since the problem cannot be solved analytically
in most cases. However, the Hamiltonian (18), which preserves
the exact SU(3) symmetry, is analytically solvable. Therefore,
it provides a situation in the IBM to analytically study the
whole process in the prolate-oblate shape phase transition for
any number of bosons.

In order to define the shape of the system for finite-N cases,
we resort to the relations between the shape variables (β, γ )
of the collective model and the (λ,μ) values of the SU(3)
irrep [39], from which we have

κβcosγ = 1

3
(2λ + μ + 3),

(22)

κβsinγ = 1√
3

(μ + 1)
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(a)

(b)

(c)

FIG. 4. (a) The ground state energy per boson Eg; (b) the corre-
sponding equilibrium values of β; (c) the corresponding equilibrium
values of γ . All the quantities are shown as functions of the control
parameter x.

with

κ =
√

5

9π
Ar2

0 , (23)

where A denotes the number of like particles and r2
0 is a

dimensionless mean square radius [39]. In the following,
κ is treated as a parameter to be determined in the IBM.
Accordingly, one can write the shape variables β and γ as
the functions of the quantum number λ and μ with

β = 2

3κ

√
λ2 + μ2 + λμ + 3λ + 3μ + 3,

(24)

γ = tan−1

( √
3(μ + 1)

2λ + μ + 3

)
.

As discussed in Sec. II, the ground state in the prolate phase
belongs to the SU(3) irrep (2N, 0), while the one in the oblate
phase corresponds to the SU(3) irrep (0, N) for N = even
or (2, N − 1) for N = odd. According to Eq. (24), one gets
γP = tan−1(

√
3

4N+3 ) for the ground state in the prolate phase,

and γO = tan−1(
√

3(N+1)
N+3 ) for N = even or γO = tan−1(

√
3N

N+2 )
for N = odd for the ground state in the oblate phase. It is clear
that γP = 0◦ and γO = 60◦ are given for the prolate phase
and the oblate phase, respectively, when N → ∞. The results
are consistent with those obtained from the coherent theory
discussed in Sec. III, where the equilibrium β and γ values
just correspond to the β and γ values for the ground state. As

for the shape variable β in the ground state, one gets

βP = 4

3κ

√
N2 + 3

2
N + 3

4
(25)

in the prolate case, and

βO = 2

3κ

√
N2 + 3N + 3 (for N = even) (26)

or

βO = 2

3κ

√
N2 + 3N + 9 (for N = odd) (27)

in the oblate case. It is easy to see that βP/βO = 2 in the
large-N limit. It is very interesting to observe that the result
also agrees with that calculated from the coherent theory, by
which one can get the equilibrium β value as βP = √

2 for
the prolate phase and βO = √

2/2 for the oblate phase in the
large-N limit as shown in Fig. 4. Thus, we have βP/βO =
2. We conclude that the shape variables β and γ defined in
Eq. (22) and those defined in the coherent theory are consistent
with each other not only in quality but also in quantity in
the large-N limit. Moreover, one can extract κ by assuming
βP|N→∞ = √

2 in Eq. (25) and βO|N→∞ = √
2/2 in Eq. (26)

or Eq. (27). Concretely, one can get κ2 = 8
9N2 in the leading

order. Inputting κ2 into Eq. (24), one gets βP = √
2 and βO =√

2/2 in the large-N limit. The results are the same as those
obtained in the coherent state theory.

To investigate how the system evolves from the pro-
late to the oblate phase, eigenenergies calculated from the
Hamiltonian (18) are listed in Table I, where eigenenergies
corresponding to all the SU(3) irreps (λ,μ) for N = 12 are
shown for several values of the control parameter x. It can
be clearly seen from Table I that the ground state always
corresponds to the symmetric (24, 0) irrep of SU(3) when
x < 0.57, and corresponds to (0, 12) irrep when x > 0.57.
The results indicate that the point x = 0.57 is just the critical
point, at which the levels corresponding to the irreps (λ,μ)
with λ + 2μ = 24 become the same lowest energy levels.
In other words, the ground state is degenerate with the
quantum numbers (λ,μ) satisfying λ + 2μ = 24 at the critical
point of phase transition. As can be seen from the model
Hamiltonian (18), the combination of the second and the third
order Casimir operators will result in level-crossing when the
control parameter x satisfies certain conditions, at which the
first order quantum phase transition takes place. And indeed,
such situations also occur in excited levels. For example, when
x = 0.63, the excited energy levels corresponding to the SU(3)
irreps (λ,μ) with λ + 2μ = 18 become degenerate as shown
in Table I. Actually, there are several level-crossing points,
such as those with x = 0.63, 0.71, 0.80, etc. as shown in
Fig. 5, where the excited energy levels with (λ,μ) satisfying
λ + 2μ = 2N − b are degenerate for a fixed value of b with
b = 6, 12, 18, etc. As shown in Fig. 5, these are just the
level-crossing points of levels labeled with (2N − b, 0) and
those labeled with (0, N − b

2 ) with b
2 = even or those labeled

with (2, N − b
2 − 1) with b

2 = odd. As the analysis presented
in [9], the energy level-crossing resulting in a first-order
quantum phase transition in the finite-N system also occurs
in the SU(3)-O(6)-SU(3) phase transitional description, where
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FIG. 5. (Color online) Several excited energy levels with specific
(λ,μ) which cross with each other at the critical-like points with
variation of the control parameter x. The relevant parameters are
taken as the same as those used in Table I.

one of the level-crossing points coincides with the O(6) limit
point. Actually, the level-crossing point in our model also
coincides with the critical point xc = 0.6 in the large-N
limit because the value of the level-crossing point varies as
x = 3N

5N−b+3 with b = 6, 12, 18, . . . for a fixed boson number
N . As mentioned above, the energy levels corresponding to
the irreps (λ,μ) satisfying λ + 2μ = 2N − b are degenerate
at the level-crossing points. As a result, one can get several
sets of levels with the same eigenenergy at the level-crossing
points xc as a function of b in the large-N limit. If the
energy of the ground level with 0+

1 and b = 0 is set to 0,
and all excited levels are normalized to the 0+

2 level with
b = 6, one get energy ratios E0+

3
/E0+

2
= 2 and E0+

4
/E0+

2
= 3.

Generally, we have E0+
n
/E0+

2
= n − 1 with n = 6+b

6 , where
E0+

n
are levels with b = 6(n − 1). Therefore, these degenerate

0+ levels generate a harmonic spectrum [52,53]. In addition,
the first order quantum phase transition also occurs in excited
part of the spectrum [54,55], of which possible effects will be
further discussed elsewhere.

To explore the role finite N effects have on the shape phase
transition, and to compare this with the large-N limit, the
ground state energy per boson, along with the corresponding
β and γ values, were calculated as functions of x. The results
are shown in Fig. 6. From this one can see that the ground level
belongs to the (24, 0) irrep when x < 0.57 and transitions over
to the (0, 12) irrep for larger x values, displaying upon crossing
into the x > 0.57 range a different dependence on x. It is
obvious that the first-order derivative of the ground state energy
∂Eg(x)

∂x
is discontinuous at xc = 0.57, which indicates a first

order prolate-oblate phase transition occurring at the critical
point xc = 0.57 for the N = 12 boson system. Moreover, ∂β

∂x

and ∂γ

∂x
in the ground state are also discontinuous at the critical

point, which further confirms that a first order prolate-oblate
phase transition occurs in the model system. In comparison to
the large-N limit, one finds that the finite-N effects changes
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FIG. 6. (a) The ground state energy per boson; (b) the correspond-
ing β value; (c) the corresponding γ value. All the quantities are give
as functions of the control parameter x for a N = 12 boson system.
The relevant parameters are taken the same as those used in Table I.

the position of the critical point, but not by much, xc = 0.57
compared to xc = 0.60 in the large-N limit.

From the explicit expression for the eigenvalues of Eq. (18)
for fixed boson number N , one can show that the ground state
energy per boson in the prolate phase can be expressed in terms
of the control parameter x as

Eg = −4 + 52

9
x + 10

N
x + 2

N2
x − 6

N
, (28)

and the corresponding one in the oblate phase is

Eg = −1 + 7

9
x + 2

N
x + 1

N2
x − 3

N
. (29)

In the large-N limit, the results of Eqs. (28) and (29) will
become the corresponding results calculated from the coherent
state theory shown in Sec. III. Since the ground state energy in
the prolate phase is equal to the one in the oblate phase at the
critical point xc, one obtains xc = 3N

3+5N
, which just equals to

xc = 0.6 in the large N limit, and is consistent with the result
obtained from the coherent state theory. We conclude that, in
this case, the results derived from finite-N system in the large-
N limit are completely consistent with those obtained from
the coherent state theory. Moreover, the prolate-oblate shape
phase transition is well defined in this finite boson system and
is due to the level-crossing according to the above discussion.

FIG. 7. The quadrupole invariants q2 (in e2b2) and K3 (normal-
ized q3) as functions of x in the ground state, where t = 1 eb was
used and the other relevant parameters are taken to be the as same as
those used in Table I.

V. EFFECTIVE ORDER PARAMETERS FOR PHASE
TRANSITIONS

Although the shape variables β and γ can be taken
as classical order parameters to identify the shape phase
transition, they cannot be directly measured in experiment.
Therefore, the quadrupole invariants q2 and K3 (renormalized
q3) [6,56] defined by

q2 = t2〈0+
1 |Q̂ · Q̂|0+

1 〉 , (30)

q3 =
√

35

2
t3〈0+

1 |[Q̂ × Q̂ × Q̂](0)|0+
1 〉 , (31)

K3 = q3

q2
3/2

, (32)

where t is the effective charge, were calculated. The results as
functions of x are shown in Fig. 7.

These quantities can be used to define effective order
parameters to identify the shape phases and their transition in
experiment. In addition, the spectroscopic quadrupole moment
Q(2+

1 ) of the first 2+ state is also taken as an effective
order parameter to measure the prolate-oblate shape phase
transition. Q(2+

1 ) < 0 indicates a prolate phase and Q(2+
1 ) > 0

represents an oblate phase. Another quantity β2 related to the
quadrupole deformation but different from the β variable is
also considered, which is defined as [25,57,58]

β2 = −sign(Q̂(2+
1 ))

4π

3ZR2
0

[
B(E2; 0+

g → 2+
1 )

e2

]1/2

, (33)

where sign(Q̂(2+
1 )) is the sign of the quadrupole moment of

the first 2+ state, Z is the proton number, R0 is the mean
radius of nucleus, and e is the charge. Accordingly, the E2
operator is simply chosen as T (E2) = tQ̂ to calculate the
B(E2; 0+

g → 2+
1 ). The calculated results for Q(2+

1 ) and those
for β2 are both shown in Fig. 8.
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FIG. 8. The same as Fig. 7 but for the quadrupole Q(2+
1 ) (in eb)

and the quadrupole deformation parameter β2, where the effective
charge t = 1 eb and a constant 4π/ZR2

0 = 0.81 b−1 were used. The
other relevant parameters are taken the same as those used in Table I.

It can be clearly seen in Fig. 7 that there is a sudden change
in the value of all these quantities through the prolate-oblate
phase transition. For example, K3 � −1 across the prolate
phase but then suddenly jumps to K3 � 1 after the critical
point, which is similar to the behavior seen for K3 in the
SU(3)-O(6)-SU(3) phase transitional description [6], except
that the change of K3 around the O(6) critical point is smoother
than that shown in panels (c) and (d) of Fig. 7. Also shown in
panels (a) and (b) of Fig. 7 is the order parameter q2 (with the
effective charge t set to unity) which shows a similar phase
transitional behavior. Specifically, q2 retains its large value,
q2 = 2N2 + 3N , across the prolate phase, but then drops
suddenly to q2 = (N2 + 3N )/2 beyond the critical point and
holds at this lower value throughout the oblate phase; that is,
through the prolate-oblate shape phase transition the amplitude
of q2 decreases by about 3/4. This behavior of q2 stands in
contrast with what happens in the SU(3)-O(6)-SU(3) phase
transitional description [6] where the value of q2 in the prolate
phase equals that in the oblate phase.

As shown in Fig. 8, both Q(2+
1 ) and β2 show a sign

change in the transition from prolate to oblate shape, just as
K3 does. For example, Q(2+

1 ) takes a negative value in the
prolate phase, and flips to a positive value in the oblate phase,
a feature that may be the most direct signal indicating the
phase transition from prolate to oblate shape in experiment.
But in contrast to K3, Q(2+

1 ) also shows a asymmetric phase
transitional feature similar to those given by q2. The absolute
value of Q(2+

1 ) in the prolate phase may be as twice that in
the oblate phase, which indicates that the deformation of the
oblate nuclei should be much smaller than that of prolate nuclei
along the prolate-oblate shape phase transition. Accordingly,
the absolute value of β2 in the prolate phase is also much larger
than in the oblate phase, which further confirms that the present
SU(3) prolate-oblate phase transition pattern is an asymmetric
one, in contrast to the SU(3)-O(6)-SU(3) phase transitional

(a)

(b)

FIG. 9. Comparison of the theoretical values (solid line) obtained
with Hamiltonian (18) and the corresponding experimental data
of the quadrupole moment Q(2+

1 ) and the quadrupole deformation
parameter β2 for 180Hf, 182,184,186W, 188,190Os, and 192,194,196,198Pt. In
our calculation, a constant effective charge with t = 0.06 eb was
used and R0 has been taken to be 1.2A1/3fm [57] with A being the
mass number.

description. Furthermore, one can also measure ratios of the
deformation quantities in the prolate phase and the oblate phase
by defining RQ = |QP(2+

1 )|/|QO(2+
1 )| and Rβ = |β2P|/|β2O|,

where |AP| (|AO|) is the absolute value of the quantity A in the
prolate (oblate) phase. Our calculation shows that RQ ≈ Rβ ≈√

4N2+3N
N2+3N

, which, to leading order, is in accordance to the ratio
βP/βO obtained from Eqs. (25)–(27). Therefore, it seems that
the observables Q(2+

1 ) and β2 are qualified to measure the
ground state deformation to see whether the nuclei is prolate
or oblate instead of the deformation parameter β.

From an experimental perspective, W, Pt, and Os isotopes
in the A = 180 ∼ 200 mass region may be considered as can-
didates to show the prolate-oblate phase transition [7,25,59].
Since these even-even nuclei with �A = 2 differ from each
other by one boson and the properties of the low-lying
states are experimentally known, in the following, 180Hf [60],
182,184,186W [61–63], 188,190Os [64,65], and 192,194,196,198Pt
[66–69] will be chosen to be fitted by the theory because
there is an evident sign change in Q(2+

1 ) of 192Pt indicating
a prolate-oblate shape phase transition emerging with the
variation of the mass number A. Specifically, experimental
data of Q(2+

1 ) and β2 together with the corresponding results
calculated from the theory are shown in Fig. 9. Some low-lying
energy levels calculated from the theory in comparison to the
corresponding experimental results are shown in Fig. 10. As
shown in Fig. 9, the experimental data are well reproduced by
our model, and clearly indicates a definite prolate-oblate shape
phase transition occurring at A = 192, where the Q(2+

1 ) value
changes to be positive when A > 192 from negative when
A < 192 seen from panel (9a). Moreover, the asymmetric
feature of the prolate-oblate phase transition are also shown
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FIG. 10. The excited energy levels (in MeV) of the low-lying 0+
1 ,

2+
1 , and 4+

1 states for 180Hf, 182,184,186W, 188,190Os, and 192,194,196,198Pt.
The experimental data are denoted by the symbols and the theoretical
results represented by the solid lines are calculated with the
Hamiltonian (18), where the parameter c has been taken as c = 1
and the values of the parameter η fitted by the experiments are shown
in the insert.

from experimental results. We observe that the absolute value
of Q(2+

1 ) and β2 of the prolate nuclei are evidently larger than
that of the oblate nuclei concerned. In addition, the absolute
values of Q(2+

1 ) and β2 in prolate or oblate nuclei decrease with
the decreasing of the boson number. And indeed, this tendency
shown from the experimental data is well reproduced by the
theoretical results shown in Fig. 9.

It should be emphasized that the theoretical results with a
fixed boson number N are not sensitive to the variation of the
control parameter x in Eq. (18) except the case around the
critical point with x = xc, which indicates that the theoretical
predictions given in Fig. 9 are almost parameter independent
up to an overall scale factor. As shown in Fig. 10, the
asymmetric feature is also noticeable in the low-lying energy
levels. Concretely, one can clearly seen from Fig. 10 that the
energy gaps between the level with L and that with L − 2
observed in experiment show a sudden increase at A = 192,
especially for L = 2 levels. This indicates that the fitted η value
increases rapidly around the point of A = 192 as shown in the
insert of Fig. 10. On the other hand, by considering the moment
of inertia defined in the triaxial rotor model [70,71], namely
Tk = 4Bβ2sin2(γ − 2k

3 π ) with k = 1, 2, 3 and B being the
mass parameter, one can find that the smaller the deformation
parameter β, the smaller the two nonzero components of Tk for
an axial deformed system represented by γ = 0◦ or γ = 60◦.
As a result, a possible explanation in the triaxial rotor model
for the spectral behavior around A = 192 in experiment shown
in Fig. 10 is that the deformation of 192Pt is much smaller than
that of 190Os. Since the deformation can be directly reflected
from the quadrupole moment Q(2+

1 ) [70], the results shown
in Fig. 9 indicate that the deformation of 192Pt may be much
smaller than that of 190Os. Moreover, the analysis on energy
surface given in [72–74] also indicate that the deformation of
192Pt is indeed smaller than that of 190Os. In short, the evolution
of the low-lying spectrum shown in Fig. 10 further confirm that

the prolate-oblate shape phase transition occurring at A = 192
is asymmetric.

In addition, there are some quantitative deviations of our
theoretical predictions from the corresponding experimental
results, especially for the 4+

1 level in the oblate nuclei. The
deviations indicate that the excited states of these nuclei
are not purely rotational. Some other collective modes may
also be involved in the low-lying part of the spectra. The
prolate-oblate shape phase transitional description within the
SU(3) limit considered is a simplified model to manifest
the asymmetric shape phase transition in this mass region.
More complicated descriptions, such as mixed symmetry
schemes beyond the SU(3) limit may also be needed to
reproduce the experimental results of these nuclei better in
quantity.

VI. SUMMARY AND CONCLUSIONS

In summary, we have analyzed a simple novel prolate-oblate
shape phase transitional description with a third-order inter-
action term within the SU(3) limit for both the large-N limit
and finite-N cases. The results indicate that the prolate-oblate
phase transition shown in this description is of first order due
to the level-crossing, asymmetric with respect to values of the
order parameters in the two phases, and well defined for finite-
N cases. This novel prolate-oblate shape phase transitional
description provides a simple completely solvable framework
for the quantum phase transition in a finite-N system. Thus,
it allows us to take a closer look at its critical behavior and
study the N -dependent effects during the transition. Various
finite-N effects on the shape phase transition were studied with
the help of the correspondence between the shape variables
in the finite-N cases and those defined by the coherent state
theory. In contrast to the original SU(3)-O(6)-SU(3) shape
phase transition [6,25], the prolate-oblate phase transition
discussed is asymmetric with respect to values of the order
parameters in the two phases. The dynamical structure at the
critical point is shown to be similar to but different from
that in the O(6) symmetry [5], which is the critical point
symmetry in the original SU(3)-O(6)-SU(3) description. In a
comparison of our theoretical results for some shape-sensitive
quantities compared with corresponding experimental data,
the results show that the asymmetric prolate-oblate shape
phase transitional description seems quite reasonable for a
description of the ground state shape evolution with mass
number A from 180Hf to 198Pt. Generally, besides terms with
the SU(3) symmetry, other ingredients such as terms with the
U(5) and O(6) symmetries may also need to be needed in
order to fit experimental data quantitatively, and with these the
sudden change in the order parameters occurring at the critical
point may be smoothed out due to the symmetry-mixing
as the case in the original SU(3)-O(6)-SU(3) transitional
description [6,7,25]. As reported in [43], a very tiny region
of triaxiality can be found in the large-N limit around the
critical point of the prolate-oblate phase transition when a
more general IBM Hamiltonian involving the [Q̂ × Q̂ × Q̂](0)

term is considered. According to the analysis in this work,
triaxiality in finite-N cases seems also important since the
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characteristics of triaxiality may be magnified due to the finite-
N effects [10,24]. A discussion regarding the effective triaxial
deformations induced by the finite-N effects has already been
shown in Ref. [75]. In addition, similar SU(3) Hamiltonians
to that given in Eq. (17) as well as more generalized forms
were considered earlier by a number authors in the SU(3)
shell model [35–40]. Our present investigation reveals such
extension to the boson case is indeed feasible, which may
provide additional insight into the SU(3) IBM theory from a
more microscopic point of view [35].

In conclusion, the simple novel prolate-oblate shape phase
transitional description presented in this work further enriches
the IBM interpretation of nuclear shape phase and phase tran-
sitions. One can extend this scheme to the SU(3) description
via the gauge transformation s† �→ eiπ s†, but the transitional
mechanism remains the same, which derives from the fact that

the effect is due to level-crossing when a third-order term
is introduced. More general situations involving the U(5),
O(6) symmetry terms, and the fourth-order term necessary
in describing a triaxial rotor may also be considered. Related
work is in progress.
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[21] Z. P. Li, T. Nikšić, D. Vretenar, and J. Meng, Phys. Rev. C 80,

061301(R) (2009).
[22] E. Lopez-Moreno and O. Castanos, Phys. Rev. C 54, 2374

(1996).
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[58] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data

Nucl. Data Tables 59, 185 (1995).
[59] K. Kumar, Phys. Rev. C 1, 369 (1970).
[60] S. C. Wu and H. Niu, Nucl. Data Sheets 100, 483 (2003).
[61] B. Singh and J. C. Roediger, Nucl. Data Sheets 111, 2081 (2010).
[62] C. M. Baglin, Nucl. Data Sheets 111, 275 (2010).

[63] C. M. Baglin, Nucl. Data Sheets 99, 1 (2003).
[64] B. Singh, Nucl. Data Sheets 95, 387 (2002).
[65] B. Singh, Nucl. Data Sheets 99, 275 (2003).
[66] C. M. Baglin, Nucl. Data Sheets 84, 717 (1998).
[67] B. Singh, Nucl. Data Sheets 107, 1531 (2006).
[68] X. L. Huang, Nucl. Data Sheets 108, 1093 (2007).
[69] X. L. Huang, Nucl. Data Sheets 110, 2533 (2009).
[70] W. Greiner and J. A. Maruhn, Nuclears Models (Springer-Verlag,

Berlin, 1996).
[71] A. S. Davydov and B. F. Filippov, Nucl. Phys. 8, 237 (1958).
[72] R. Fossion, Dennis Bonatsos, and G. A. Lalazissis, Phys. Rev.

C 73, 044310 (2006).
[73] P. Sarriguren and R. Rodrı́guez-Guzmán, and L. M. Robledo,

Phys. Rev. C 77, 064322 (2008).
[74] K. Nomura, T. Otsuka, R. Rodrı́guez-Guzmán, L. M. Robledo,

and P. Sarriguren, Phys. Rev. C 84, 054316 (2011).
[75] O. Castaños, A. Frank, and P. Van Isacker, Phys. Rev. Lett. 52,

263 (1984).

064312-12

http://dx.doi.org/10.1103/PhysRevE.58.387
http://dx.doi.org/10.1103/PhysRevLett.101.022501
http://dx.doi.org/10.1103/PhysRevLett.101.022501
http://dx.doi.org/10.1103/PhysRevC.80.034311
http://dx.doi.org/10.1103/PhysRevE.78.031130
http://dx.doi.org/10.1016/j.aop.2007.06.011
http://dx.doi.org/10.1016/j.aop.2007.06.011
http://dx.doi.org/10.1103/PhysRevC.71.054314
http://dx.doi.org/10.1103/PhysRevC.71.054314
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1103/PhysRevC.1.369
http://dx.doi.org/10.1006/ndsh.2003.0018
http://dx.doi.org/10.1016/j.nds.2010.08.001
http://dx.doi.org/10.1016/j.nds.2010.01.001
http://dx.doi.org/10.1006/ndsh.2003.0007
http://dx.doi.org/10.1006/ndsh.2002.0005
http://dx.doi.org/10.1006/ndsh.2003.0009
http://dx.doi.org/10.1006/ndsh.1998.0017
http://dx.doi.org/10.1016/j.nds.2006.05.004
http://dx.doi.org/10.1016/j.nds.2007.05.001
http://dx.doi.org/10.1016/j.nds.2009.09.002
http://dx.doi.org/10.1016/0029-5582(58)90153-6
http://dx.doi.org/10.1103/PhysRevC.73.044310
http://dx.doi.org/10.1103/PhysRevC.73.044310
http://dx.doi.org/10.1103/PhysRevC.77.064322
http://dx.doi.org/10.1103/PhysRevC.84.054316
http://dx.doi.org/10.1103/PhysRevLett.52.263
http://dx.doi.org/10.1103/PhysRevLett.52.263

