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Chaoticity and shell effects in the nearest-neighbor distributions for an axially-symmetric potential
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Statistics of the single-particle levels in a deformed axially symmetric Woods-Saxon potential is analyzed
in terms of the Poisson and Wigner nearest-neighbor spacing distributions for several deformations and
multipolarities of the surface distortions. We found the significant differences of all the distributions with a
fixed value of the angular momentum projection of the particle on the symmetry axis, more closely to the Wigner
distribution, in contrast to the full spectra with Poisson-like behavior. The shell effects in the nearest-neighbor
spacing distributions, for both small and large deformations of the surface are analyzed.
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I. INTRODUCTION

The microscopic many-body interaction of particles of
Fermi systems such as heavy nuclei is rather complicated.
Therefore, several theoretical approaches to the description of
the Hamiltonian which are based on the statistical properties
of its discrete levels are applied for solutions of realistic prob-
lems. For a quantitative measure of the degree of chaoticity
of the many-body forces, the statistical distributions of the
spacing between the nearest-neighboring levels were intro-
duced in relation to the so-called random matrix theory [1–5].
Integrability (order) of the system was associated usually to
the Poisson-like exponentially decreasing dependence on the
spacing variable with a maximum at zero while chaoticity
was connected more to the Wigner-like behavior with the zero
spacing probability at zero and a maximum at some finite value
of this variable.

On the other hand, many dynamical problems, in particular,
in nuclear physics can be reduced to the collective motion
of independent particles in a mean field with a relatively
sharp time-dependent edge usually called the effective surface
within the microscopic-macroscopic approximation [6,7].
We may begin with the basic ideas of Swiatecki and his
collaborators [6,8–13]. In recent years it became apparent
that the collective nuclear dynamics is very much related
to the nature of the nucleonic motion. This behavior of the
nucleonic dynamics is important in physical processes like
fission or heavy ion collisions where a great amount of the
collective energy is dissipated into chaotic nucleonic motion.
We have to mention here also very intensive studies of the
one-body dissipative phenomena described largely through
the macroscopic wall formula for the excitation energy [8–13]
and also quantum results [9,11,13,14]. The analytical wall
formula was suggested originally in Ref. [8] on the basis
of the Thomas-Fermi approach. It was rederived in many
works based on semiclassical and quantum arguments (see
Refs. [15–17], for instance). However, some problems in the
analytical study of a multipolarity dependence of the smooth
one-body friction and its oscillating corrections as functions
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of the particle number should still be clarified. In particular,
we would like to emphasize the importance of the transparent
classical picture through the Poincaré sections and Lyapunov
exponents showing the order-chaos transitions [10,18–20] and
also quantum results for the excitation energy [11,13,14].
Then, the peculiarities of the excitation energies for many
periods of the oscillations of the classical dynamics were
discussed for several Legendre polynomials (see Ref. [14])
as the classical measures of chaoticity. The shell-correction
method [7,21] was successfully used to describe the shell
effects in the nuclear deformation energies as functions of
the particle numbers. This is important also for understanding
analytically the origin of the isomers in fission within the
periodic orbit theory (POT) [22]. We should expect also
that the deviations of the level density near the Fermi
surface, like shell effects, from an averaged constant should
influence essentially the nearest-neighbor spacing distribution
(NNSD). For further study of the order-chaos properties of
the Fermi systems, it might be worth applying the statistical
methods of the description of the single-particle (SP) levels
of a mean-field Hamiltonian within microscopic-macroscopic
approaches (see, for instance, Refs. [23–26]).

The relation of the statistics of the spacing between
the neighboring levels and the shell effects depending on
the specific properties of the SP spectra, as well as the
multipolarity and deformation of the shape surfaces should be
expected. The quantitative measure of the order (or symmetry)
can be the number of the single-valued integrals of motion K,
besides the energy (degree of the degeneracy of the classical
and quantum systems, see also Refs. [22,27–29]). If the energy
is the only one single-valued integral of motion (K = 0) one
has the completely chaotic system [30]. For the case of any
additional integral of motion, say the angular momentum
projection for the azimuthal symmetry (K = 1), one finds the
symmetry enhancement which is important for calculations
of the level density as the basic characteristics of the SP
spectra.

Our purpose now is to look at the order-chaos properties of
the SP levels in terms of the Poisson and Wigner distributions
with focus to their dependence on the multipolarities, defor-
mations, and shell effects in relation to the integrability of the
Hamiltonian through the comparison between the spectra with
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FIG. 1. SP energy levels εi in WS potential (V0 = 200 MeV, R0 = 6.622 fm, a = 0.1 fm) as a function of the deformation α for the P2

(left) and P5 (right) shapes [Eq. (3)].

the fixed angular momenta of particles and the full ones for
the axially symmetric Woods-Saxon potential.

II. SPECTRA AND LEVEL DENSITIES

We are going now to study the statistical properties of the
SP spectra of the eigenvalue problem

Hφi = εiφi, H = T + V, (1)

where H is a static mean-field Hamiltonian with the operator of
the kinetic energy T and deformed axially symmetric Woods-
Saxon (WS) potential V :

V ≡ VWS (r) = − V0

1 + exp {[r − R(θ )] /a} , (2)

where r, θ, ϕ are the spherical coordinates of the vector r.
Following Refs. [9,10,12,13], the shape of the WS-potential
surface is defined by the effective radius R(θ ) given by

R(θ ) = R0

λ

[
1 + α

√
4π

5
Yn0 (θ ) + α1

√
4π

3
Y10 (θ )

]
. (3)

Here, λ is a normalization factor ensuring volume conserva-
tion, α1 stands for keeping position of the center of mass at
z = 0 for odd multipolarities, R0 is the radius of the equivalent
sphere, and Yn0(θ ) = √

(2n + 1)/(4π )Pn(cos θ ) are the spher-
ical functions. Pn(cos θ ) are the Legendre polynomials and α

is the deformation parameter and is independent of time. In the
expansion (3) we consider only single Legendre polynomials
just to see how different polynomials influence the picture. For
diagonalization of the Hamiltonian with the WS potential (2),
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FIG. 2. Same SP spectrum of levels as in Fig. 1 but with projection of angular momentum m = 0.
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the expansion over a basis of the deformed harmonic oscillator
is used as shown in Ref. [13].

Figures 1 and 2 show two examples for the full spectra of the
SP energies εi and for the fixed angular momentum projection
m = 0 versus the deformation parameter α for the P2 and P5

shapes, respectively. The spectra for P3 and P4 are very similar
to the P5 case and therefore, they are not shown. As seen from
Fig. 1, there are clear shell effects in the full spectra at small
deformations, approximately at α � 0.1 for all multipolarities
from the P2 shape to the P5 shape. With increasing deformation
α, the shell gaps become less pronounced and slowly change
in the region α ≈ 0.1–0.4 for all these multipolarities. Many
more differences can be found in comparison of Fig. 1 for
full spectra and Fig. 2 for m = 0 levels only. The shell effects
are seen here, too, but much less pronounced. The spectrum
of levels with m = 0 becomes much more uniform due to the
fixing of m itself, in particular with increasing deformations
and multipolarities (n > 1).

The key quantity for calculations of the NNSD P (S) is
the level density g(ε). In Appendix where we rederive P (S),
according basically to Refs. [1,3,5], with emphasis, however,
on the relation of g(ε) to the SP level density as well as the
meaning of its argument ε. For these calculations one may
apply the Strutinsky shell correction method, writing

g	(ε) = g̃(ε) + δg	(ε). (4)

The smooth part g̃(ε) is defined by the Strutinsky smoothing
procedure [7,21]. The so-called plateau condition (stability
of values of the smooth level density g̃ as function of the
averaging parameters: Gaussian width 	 and the degree of
the correction polynomial M takes place at 	 = 20–40 MeV
and M = 4–8). Note that the smooth level density g̃(ε) can be
well approximated by the extended Thomas-Fermi model [29].
Figures 3 and 4 for the full spectra and for the fixed angular
momentum projection m = 0 show typical examples of the
level densities (smooth component and total density with
oscillating part) for the Legendre polynomials n = 2 and 5 at
deformations α = 0.1 and 0.4, in correspondence with spectra
presented in Figs. 1 and 2, respectively. In Fig. 4 for the
case of the specific m = 0 levels, one has somewhat larger
Gaussian-width parameters of the smooth level density g̃ in
the total density [Eq. (4)] than those for the full spectra in
Fig. 3. As seen clearly from Figs. 3 and 4 the smooth level
density for the m = 0 spectra is more flat (besides of relatively
small remaining oscillations because of much fewer levels
with the fixed m = 0), as compared with the full-spectrum
results. In the semiclassical picture this more flat behavior
for the fixed m = 0 value is due to the restriction of the
phase space for motion of the particle to the two-dimensional
(2D) plane going through the symmetry axis. It looks like an
extended Thomas-Fermi approximation for three dimensions
(3D) and 2D to the corresponding smooth level density.
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FIG. 3. Level densities g	(S) [Eq. (4)] as a function of the energy counted from the Fermi level (S = 0) for a given particle number N

for spectra of the SP levels of Fig. 1 for the P2 [(a) and (b)] and P5 [(c) and (d)] shapes at the small α = 0.1 (left panels) and larger α = 0.4
(right panels) deformations; dashed line is the smooth density g̃(S) [Eq. (4)]; solid is the total density g	(S) [Eq. (4)] [	 = 3 MeV, M = 0 for
δg	(S)].
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FIG. 4. Same as in Fig. 3 but for levels with fixed projection of angular momentum m = 0.

[cf., for example, Eqs. (4.139) and (4.138) in Ref. [29] for
billiard systems which are similar to the case of our deep WS
potential with sharp edges]. By fixing m, one has the loss
of the symmetry degree K (see introduction) because the 3D
motion with the partial integrability (K = 1) caused by the
azimuthal symmetry becomes 2D nonintegrable (K = 0) in
the phase space restricted to the symmetry-axis plane by the
given m = 0. Therefore, one expects the system with the fixed
angular momentum m to be more chaotic than for full spectra.
The differences between Figs. 3 and 4 are quite remarkable.
On the other hand, differences between pictures within
Figs. 3 or 4 are less notable and as one can see shell effects are
still remaining at bigger deformations and multipolarities.

III. NEAREST-NEIGHBOR SPACING DISTRIBUTIONS

Following the review paper [3], the distribution P (S) for
the probability of finding the spacing S between the nearest-
neighboring levels is given by (see also Refs. [1,2,4,5] and
Appendix)

P (S) = g(S) exp

(
−

∫ S

0
g(x)dx

)/
ℵ. (5)

The key quantity g(S) can be considered as the density of the
SP levels counted from a given energy, say, the Fermi energy
EF . D is a mean uniform distance between neighboring levels
so that 1/D is the mean density of levels. ℵ is the normalization

factor for a sufficiently large maximal value of S, Smax:

ℵ =
∫ Smax

0
dxg(x) exp

(
−

∫ x

0
g(y)dy

)/
D. (6)

This normalization factor ℵ can be found from the normaliza-
tion conditions:∫

dxP (x) =
∫

dxxP (x) = 1. (7)

[Notice that, for convenience, we introduced the dimensionless
probability P in contrast to that of Ref. [3]; see Eq. (1.3) there.]

The Poisson law follows if we take constant for the level
density, g(S) = 1/D, in Eq. (5),

P (S) = exp(−S/D). (8)

Wigner’s law follows from the assumption of the linear level
density, proportional to S,

P (S) =
(

πS

2D

)
exp

(
−πS2

4D2

)
. (9)

Both distributions are normalized to one for sufficiently large
maximal value of S, Smax = ∞ to satisfy Eq. (7).

The level density in fact is not a constant or ∝S. The
combinations of the Poisson and Wigner distributions were
suggested in Refs. [3,31] by introducing one parameter. For
our purpose to keep a link with the properties of the level
density, like smooth and shell components [7], it is convenient
to define the probability P (S) [Eq. (5)] for a general linear
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level-density function through two parameters A and B:

g(S) = (A + BS/D)/D. (10)

Substituting Eq. (10) into the general formula [Eq. (5)], one
obtains explicitly the analytical result in terms of the standard
error functions, erf(z) = 2

∫ z

0 dx exp(−x2)/
√

π ,

P (S) = (1 + Bξ/A) exp(−Bξ 2/2 − Aξ )/[ℵ0 + Bℵ1/A],

(11)

ℵ0 =
∫ C

0
dξ exp

(
−B

2
ξ 2 − Aξ

)

=
√

π

2B exp

( A2

2B2

)
erf

(A + BC√
2B

)
,

ℵ1 =
∫ C

0
dξξ exp

(
−B

2
ξ 2 − Aξ

)

= − 1

B

[
exp

(
−B

2
C2 − AC

)
+ Aℵ0

]
, (12)

where ξ = S/D, C = Smax/D is the maximal value of ξ . For
large C → ∞ one has simply ℵ0 → √

π/(2B) exp[A2/(2B2)]
and ℵ1 → −Aℵ0/B. Taking the limits A → 1, B → 0, and
A → 0, B → 1 in Eq. (11) one simply finds exactly the stan-
dard Poisson [Eq. (8)] and Wigner [Eq. (9)] distributions. In
this way the constants A and B are measures of the probability
to have Poisson and Wigner distributions [Eq. (10)]. Note that

Eq. (11) for the NNSD P (S) looks similar to Eq. (12) of
Ref. [32], except for the sign in front of the second term (∝S2)
of the exponent argument, which is perhaps a misprint. We
give also explicitly the analytical normalization function [see
Eq. (12)] and more clear relation to the linear level density
g(S) (10) through the general NNSD P (S) given by Eq. (5).

IV. NUMERICAL RESULTS

Figures 5 and 6 show the corresponding NNSD P (S)
[Eq. (5)]. Again, in accordance with spectra (see Figs. 1 and
2) and level-density calculations in Figs. 3 and 4, dramatic
changes are observed between Fig. 6 for the NNSD P (S) with
the m = 0 and Fig. 5 for those of the full-spectrum ones.
Results presented by heavy dots in Fig. 5 look more close to
the Poisson distribution and those in Fig. 6 are more close to
the Wigner distribution.

There are large differences in numbers A and B which
measure the closeness of the distributions P (S) for the
neighboring levels spacing to the standard ones, Poisson (1,0)
and Wigner (0,1). However, in Fig. 6 all distributions are more
close to the Wigner distribution in shape, having a maximum
between zero and being large with respect to D value Smax =
CD as compared to the monotonic exponential-like decrease
similar to the Poisson behavior in Fig. 5. Notice that we have
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FIG. 5. Distributions of spacing of neighboring levels P (S) represented by heavy dots [3] vs the energies S for the same spectra as in
Figs. 1 and 3. Solid curve is a standard Poisson distribution [Eq. (8)] and dotted curve is a standard Wigner distribution [Eq. (9)]. Numbers in
brackets (A, B) show A and B of Eq. (11). Dashed curve corresponds to a linear approximation to the level density [Eq. (10)]; other notations
are the same as in Figs. 3 and 4.
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FIG. 6. Same as in Fig. 5 but for the spectra of Figs. 2 and 4.
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a more pronounced Wigner-like distribution with increasing
multipolarity n and deformation α in Fig. 6, especially
remarkable at P5 surface distortions and sufficiently large
deformation α = 0.4 [see last plot (d) in Fig. 6]. Including
all the angular momentum projections m for all desired
multipolarities and deformations one has clearly Poisson-like
behavior, although they differ essentially in numbers A, B
from the standard ones (1,0) (see Fig. 5). The reason for this
effect is mainly associated with the same loss of the symmetry
degree K from the partially integrable 3D motion (K = 1) for
full-spectrum calculations to the chaotic nonintegrable 2D
one (K = 0) with the fixed m. Note also that we choose the
magnitude of the spacing 
S for our chaoticity parameter (see
Appendix) which would ensure a smooth NNSD. Therefore,
we expect smaller influence of the degeneracies due to
crossings of the SP levels with different values of m (see
Figs. 1 and 2) on the NNSD. This is similar to the smooth level
density g̃ which can be well approximated by the extended
Thomas-Fermi approach ignoring such degeneracies.

In addition, one can study the chaoticity properties of the
m = 0 spectra depending on the deformation and multipo-
larities by looking at the Poincaré sections shown in Fig. 7
[10,14,18]. The upper row is related to a small deformation
and the lower row corresponds to a large deformation. The
projection of the angular momentum is m = 0 in all pictures
of Fig. 7. The difference is remarkable for the integrable
spheroidal cavity and other nonintegrable (in the plane of the
symmetry axis) shapes. As seen by comparing upper and lower

plot lines, with increasing deformation α and multipolarity n,
we find more chaotic behavior and we should expect therefore
the NNSD to be closer to the Wigner distribution (9). This is
in agreement with the NNSD calculations for the fixed m = 0
(see Fig. 6), especially for larger deformation (α = 0.4) and
multipolarity (n = 5). Notice that similar properties of the
NNSD for other potentials and constraints were discussed in
Refs. [23–26].

The difference between the NNSD calculations with the
realistic level densities by the Strutinsky shell-correction
method [see Eq. (4)] for the considered WS potential and
those with their idealistic linear behavior [Eq. (10)] can be
studied in terms of the general formula P (S) [Eq. (5)]. In
particular, the shell effects related to the inhomogeneity of the
SP levels near the Fermi surface for all desired multipolarities
and deformations are found to be significant, also in relation
to the fixed quantum number m.

Figures 8 and 9 show the results of these calculations
corresponding to Figs. 5 and 6. Notice that, in the case of
the full spectra (see Fig. 8), one has Poisson-like distributions
corresponding to the smooth density (dashed) with a similar
behavior as NNSD shown by heavy dots, in contrast to Fig. 9
where we find rather big differences between these curves.
The shell effects are measured by the differences between
the solid curve related to the total level density with the
shell components and the dashed curve for the smooth level
density of Figs. 3 (all m) and 4 (with m = 0) (see Figs. 8
and 9, respectively). In contrast to the NNSD corresponding to
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FIG. 8. General distribution P (S) [Eq. (5)] vs energies S for same spectra as in Figs. 1, 3, and 5; dashed lines are the distributions P (S)
related to the Strutinsky smooth density g̃(S) and solid line is the total level density g	(S) [Eq. (4)]; dots are the same as in Figs. 5 and 6.
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FIG. 9. Same as in Fig. 8 but for spectra of Figs. 2, 4 and 6.

the smooth component g̃ of the level density [see Eq. (4)],
its fluctuating shell correction δg depends essentially on
the degeneracies related in particular to the level crossings
mentioned above in connection with Figs. 1 and 2 and level
density calculations (see Figs. 3 and 4). This is one of
the possible important reasons for spurious effects of the
integrability in the NNSD which might explain to some extent
the differences between the solid curves and heavy dots for
the NNSD in Fig. 9, see also such smaller differences in
Fig. 8, too. Note also that, with increasing deformations,
one has slightly decreasing shell effects, in contrast to the
multipolarity dependence for which there is almost no change
in the shell effects at the same deformations.

V. CONCLUSIONS

We studied the statistics of the neighboring SP levels
in the WS potential for several typical multipolarities and
deformations of the surface shapes and deformations, as
compared with the standard Poisson and Wigner distributions
P (S). For the sake of comparison, we derived analytically the
combine asymptotic Poisson-Wigner distribution P (S) related
to the general linear dependence of the corresponding single-
particle level density. We found significant differences between
distributions for a fixed value of the angular momentum
projection m of the particle and those accounting for all
possible values of m. For the case of the fixed m = 0 we
obtained distributions P (S) more close to the Wigner shape
with the maximum between S = 0 and a maximal large
value of S, the more pronounced the larger multipolarity and

deformation of the potential surface. We also found that the full
spectra distributions P (S) look Poisson like in a sense that they
have maximum at S = 0 and an almost-exponential decrease as
a function of energy near the Fermi surface. Our results clarify
the widely extended opinion of the relation of the distributions
(Poisson or Wigner) to the integrability of the problem (the
integrable or chaotic one). All considered potentials are
axially symmetric but they are the same nonintegrable ones
in the plane of the symmetry axis. The degree of symmetry
which determines the classical degeneracy [22,27,28] K (see
introduction) for the case of the full spectra (Figs. 1, 3, 5) is
higher than for the fixed angular momentum m (K = 0). This is
the effect of decreasing the phase-space volume (accessible for
the particle motion) from a partially integrable 3D system with
K = 1 to the completely chaotic nonintegrable 2D-like system
(K = 0). Notice that integrability is not only one criterion of
the absence of chaoticity. The measure of the differences of
the distributions P (S) between Poisson and Wigner standard
distributions depends also on the properties of the energy
dependence of the level density (from constant to proportional-
to-energy dependence). From comparison between the general
distribution P (S) related to the smooth level density obtained
by the Strutinsky shell correction method and the statistics
of the neighboring SP levels, one finds that all of them are
more close to the Poisson-like behavior. This shows that the
energy dependence of the smooth level density differs much
from the linear functions. We obtained also large shell effects
in the distributions P (S), in nice agreement with those in the
key quantity in this analysis—level density dependencies at
an energy near the Fermi surface. We should point out also
a possible spurious effect of the integrability on the NNSD
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due to the degeneracies related to crossings of the SP levels if
the shell corrections to the level density are included in these
calculations.

Regarding perspectives, it might be necessary to use
the combined microscopic-macroscopic approaches [6,7] and
semiclassical POT [29] to clear up the results more systemat-
ically and analytically. Our quantum results can be interesting
for understanding the one-body dissipation at slow and faster
collective dynamics with different shapes like the ones met in
nuclear fission and heavy-ion collisions.
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APPENDIX: A DERIVATION OF NNSD

In our derivations of the NNSD P (S) we follow basically
Refs. [1,3,5] in order to better clarify the role of the given SP
level density g(S) of the spacing argument S which specifies
the function f (x) of the spacing variable x in notations of
Ref. [1], r10(S) in Ref. [3], or r(x) (x ≡ S) in Ref. [5]. We
introduce first the level density,g(E) as the number of levels
dN in the energy interval [E,E + dE] divided by the energy
interval g(E) = dN/dE. With the help of this quantity one can
derive the NNSD P (S) as the probability density versus the
spacing S between the nearest-neighboring levels. Specifying
thus P (S) to the problem with the known SP spectra of the
Hamiltonian, one can split the energy interval 
E under
investigation into many small (equivalent for simplicity) parts

S 	 
E. Each of 
S nevertheless contains many energy
levels; 
S 
 D. Then, we find the number of the levels
which occur inside of a small interval 
S. Normalizing these
numbers by the total number of the levels inside the total
energy interval 
E one obtains the distribution which we

shall call the probability density P (S). Notice that the result of
this calculation depends on the energy length of the selected

S which plays here a role of the chaotic element of the
introduced ensemble. In our calculations, we select 
S by the
condition of a sufficient smoothness of the distribution P (S).
Such a procedure is often used for the statistical treatment
of the experimentally obtained spectrum with fixed quantum
numbers, like angular momentum, parity, and so on [3].

Following now mainly Ref. [5], let us calculate first the
intermediate quantity f (S) as the probability that there is no
energy level in the energy interval [E,E + S]. According to
the general definition of the level density mentioned above,
g(S)dS can be considered as the probability that there is one
energy level in [E + S,E + S + dS]. Then,

f (S + dS) = f (S)[1 − g(S)dS], (A1)

which leads to the differential equation for f (S),

df = −g(S)dSf (S). (A2)

Solving this equation one gets

f (S) = C exp

(
−

∫ S

0
g(x)dx

)
. (A3)

Let P (S)dS denote the probability that the next energy level
is in [E + S,E + S + dS],

P (S)dS = f (S)g(S)dS. (A4)

Then, substituting Eq. (A3) into Eq. (A4) one finally arrives at
the general distribution:

P (S) = Cg(S) exp

(
−

∫ S

0
g(S ′)dS ′

)
. (A5)

The boundary conditions in solving the differential equation
(A2) accounts for the meaning of the NNSD P (S) and its
argument as the spacing between the nearest-neighbor levels
as shown in the integration limit in Eq. (A5). The constant C

is determined from the normalization conditions [Eq. (6)].
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